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Résumé – Différentes stratégies pour accélérer la résolution du problème Lasso ont été proposées dernièrement. Notamment, les règles de

screening, qui réduisent la dimensionalité du problème en permettent l’élimination de variables inutiles. Une autre technique consiste à approcher

le dictionnaire par une matrice structurée plus rapide à manipuler. Cet article propose une façon de concilier ces deux stratégies. D’abord, on

montre comment obtenir des règles de screening sûres vis-à-vis du problème exact en manipulant un dictionnaire approché. Ensuite, on adapte

une règle de screening existante à ce nouveau cadre et on définit une procédure générale pour bien combiner les avantages des deux approches.

Des réductions significatives de complexité ont été observées par rapport au screening isolé.

Abstract – Various strategies to accelerate the Lasso optimization have been recently proposed. Among them, screening rules provide a way to

safely eliminate inactive variables, thus reducing the problem’s dimensionality. Another line of work consists in replacing the dictionary matrix

by a structured approximation of it, which is faster to manipulate. This paper proposes a method to conciliate both strategies. First, we show how

to obtain safe screening rules for the exact problem while manipulating an approximate dictionary. We then adapt an existing screening rule to

this new framework and define a general procedure to leverage the advantages of both strategies. Significant complexity reductions are obtained

in comparison to screening rules alone.

1 Introduction

The ℓ1-regularized least squares, referred to as Lasso, is a

ubiquitous tool for variable selection in the context of underde-

termined linear regression problems. By denoting y ∈RN the

observation vector and X = [x1, . . . ,xK ]∈RN×K the design

matrix (or dictionary), the Lasso problem consists in finding a

sparse solution β∈RK of the following optimization problem :

β̂ = argmin
β

1

2
‖Xβ − y‖22 + λ‖β‖1 (1)

where the parameter λ > 0 controls the trade-off between the

data fidelity and sparsity of the solution. We supposeλ≤λmax =
‖XTy‖∞, since otherwise 0 ∈ R

K is the unique solution.

This papers aims at combining two of the main approaches

for accelerating the resolution of such sparsity-inducing opti-

mization problems : 1) Screening techniques [1–5] provide safe

rules for identifying inactive dictionary atoms on the optimum

of a certain Lasso instance ; 2) Structured dictionaries [6, 7]

lead to complexity savings on matrix-vector products, which

are repeatedly performed on iterative thresholding optimization

algorithms for the Lasso.

The overall idea is the following : starting the iterative Lasso

optimization by using a structured approximation of the dictio-

nary (X̃) to take advantage of its reduced multiplication cost,

and as the algorithm approaches the solution (and/or a conside-

rable portion of the dictionary atoms have been screened out)

switching back to the original dictionary.

A mandatory step for achieving this goal is determining how

to obtain safe rules with respect to the Lasso problem (1) by

manipulating an approximate version of the dictionary (X̃).

In Section 2, we briefly recall the screening method, which

we extend to approximate dictionaries in Section 3. The resul-

ting optimization algorithm and simulation results are presen-

ted in Sections 4 and 5.

2 Screening tests

Screening tests rely on the dual formulation of the Lasso :

θ̂ = argmax
θ

1

2
‖y‖22 −

λ2

2

∥

∥

∥
θ −

y

λ

∥

∥

∥

2

2
(2)

s.t. ‖XTθ‖∞ ≤ 1.

where the dual solution θ̂ is linked to a primal solution β̂ by

the following relation y = Xβ̂ + λθ̂.

Optimality conditions (KKT) at the dual solution θ̂ imply

that every dictionary atom for which |xT
j θ̂|< 1 is not used on

a Lasso solution and is referred to as inactive. Screening tests

consist in using this fact to identify as many inactive atoms as

possible before even having full knowledge of θ̂ and β̂.

Since the dual problem optimal solution θ̂ is not known, the

scalar productsxT
j θ̂ cannot be evaluated. The idea is to identify

a region R, often called safe region, which is guaranteed to

contain the optimal θ̂. If for all θ ∈ R the inequality |xT
j θ| < 1

holds, then we can ensure that xj is inactive. This sufficient

condition can be expressed as the screening test, µR(xj) :

µR(xj)=max
θ∈R
|xT

j θ| < 1 =⇒ β̂j = 0. (3)

So, in practice, for each dictionary atom xj , we compute the

test µR(xj), and, depending on the result, we eliminate or not

the atom. Formally, we are able to partition the atoms into a

(potentially) active set

A = {j ∈ {1, . . . ,K} : µR(xj) ≥ 1}, (4)



and its complementary, the rejection set Ac, that gathers the

indexes of the eliminated atoms. Note that this is not a heuristic,

in the sense that it will never lead to false rejections, hence its

common denominations : safe tests or safe rules.

The region R might have different forms. The two most

common in the literature are spheres [1–4] and domes [3,4] (i.e.

intersection between a sphere and one or more half spaces).

Sphere tests In particular, when the safe regionR is a closed

ℓ2-ball with center c and radius r, denoted B(c, r) = {z :
‖z− c‖2 ≤ r}, the test has a closed form

µB(c,r)(xj) = |x
T
j c|+ r‖xj‖2 < 1 =⇒ β̂j = 0 (5)

The screening test should be designed so as not to entail a

considerable computational overhead, after all, the goal is to re-

duce the cost of the Lasso resolution. Keep in mind that the test

in (5) has to be repeated K times (one for each atom). Consi-

dering all tests, the calculation of the term |xT
j c| requires a

matrix-vector multiplication XT c, which might be costly. For

this reason, screening techniques in the literature generally try

to define the region (center and radius) so as to reuse calcula-

tions previously performed in the optimization algorithm.

Safe regions In this section, we recall ways to define a region

which surely includes the dual solution θ̂ of problem (2).

As iterative algorithms are often employed to solve the Lasso,

the safe regions can be refined as the algorithm progresses. The

associated tests are referred to as dynamic, as opposed to static

tests in which a safe region is defined before the optimization

begins and the screening is performed once and for all.

Note that the solution θ̂ is the projection of y/λ on the fea-

sible set {θ : ‖XTθ‖∞ ≤ 1} implying that, if a feasible point

θF is known, then θ̂ can’t be further away from y/λ than θF

in the ℓ2 sense. This leads to the basic ℓ2-spherical bound with

center c = y/λ and radius r = ‖θF − y/λ‖2. Now the task

comes down to determining a feasible point θF .

The static test in [1] is obtained by taking θF = y/λmax

whose feasibility follows directly from the definition of λmax.

A dynamic safe region can be obtained by defining the fea-

sible point at iteration t, θt, proportional to the current resi-

duals ρt=y−Xβt [3]. We denote [z]ba := min(max(z, a), b)
the projection of the scalar z onto the segment [a, b].











θt = αtρt,

αt =

[

yTρt

λ‖ρt‖
2
2

]

1

‖XT ρt‖∞

− 1

‖XT ρt‖∞

(6)

The resulting spherical region B(y/λ, ‖θt − y/λ‖2) gives

rise to the dynamic spherical test (DST1) introduced by [3].

3 Extending screening tests

Suppose that an approximate version X̃ of the dictionary X

is available (e.g. for faster matrix-vector product), such that

X = X̃+E, (7)

where E is the approximation error matrix. Each atom (co-

lumn) x̃j of X̃ is thus a “distorted” version of the original atom

xj , that is xj = x̃j + ej .

The question then arises : is it possible to provide safe tests

with respect to the original Lasso problem (1) by manipulating

X̃ instead of X ?

Sphere tests with approximate dictionaries If a spherical

safe region is given, one cannot simply apply the original test

(5) to the approximate atoms, that is µB(c,r)(x̃j). It is intuitive

to imagine that a certain “security margin” should be added

to the test in (5) to account for the approximation error. By

substituting (7) in (5), we obtain

µB(c,r)(xj) = |(x̃j + ej)
T c|+ r‖xj‖2

≤ |x̃T
j c|+ ‖ej‖2‖c‖2 + r‖xj‖2. (8)

Both ‖xj‖2 and ‖ej‖2 can be precalculated and stored in me-

mory, leading to the definition of the following test on x̃j

µ̃B(c,r)(x̃j) = |x̃
T
j c|+ ‖ej‖2‖c‖2 + r‖xj‖2 (9)

Clearly, it is a safe test, since
(

µB(c,r)(xj) ≤
)

µ̃B(c,r)(x̃j) < 1 =⇒ β̂j = 0 (10)

Safe regions with approximate dictionaries Although ma-

nipulating an approximate version of the Lasso problem (1),

we seek to define regions which are safe with respect to the

exact problem (i.e. contain the dual solution θ̂ of the exact dual

problem (2) and not necessarily the dual solution of its approxi-

mate version), because we want the variable elimination to be

done with respect to the exact atoms.

We now show how to obtain dual feasible points like (6)

using the approximate dictionary X̃. A feasible point requires

that ‖XTθF ‖∞ = maxj
(

|xT
j θF |

)

≤ 1. If we suppose, once

again, a feasible point in the form θ̃t= α̃tρ̃t proportional to

the current residuals ρ̃t = y − X̃βt, we have

|xT
j θ̃t| ≤ |α̃t|

(

|x̃T
j ρ̃t|+ ‖ej‖2‖ρ̃t‖2

)

. (11)

Therefore θ̃t is a feasible dual point for the original problem,

i.e. |xT
j θ̃t|≤1 ∀j, as soon as

|α̃t|≤
1

maxj

(

|x̃T
j ρ̃t|+ ‖ej‖2‖ρ̃t‖2

) (12)

which leads to the following definition for θ̃t














θ̃t = α̃tρ̃t,

α̃t =

[

yTρt

λ‖ρt‖
2
2

]

1

maxj(|x̃T
j

ρ̃t|+‖ej‖2‖ρ̃t‖2)

− 1

maxj(|x̃T
j

ρ̃t|+‖ej‖2‖ρ̃t‖2)

(13)

This implies that B(y/λ, ‖θ̃t − y/λ‖2) is a safe region for the

original problem. Combining it with the approximate test (9),

we obtain a safe test analogous to DST1 that uses an approxi-

mate version of the dictionary instead (we will call it A-DST1).

Revisiting the intuition that a certain “security margin” would

be necessary to a safe rule that uses an approximate dictionary,

we can identify two locations where a margin was added : to

adapt the test µB(c,r), and to calculate a feasible point θ̃t.

Naturally, these “relaxed” rules often lead to fewer screened

atoms, as will be illustrated in Section 5.



4 Algorithm and complexity

Algorithm 1 implements an iterative soft-thresholding (ISTA)

optimization technique for the Lasso problem combined with a

dynamic screening using an approximate dictionary. We denote

STu(x) = sign(x)(|x| − u)+ the soft-thresholding operation

and X[A] a sub-matrix of X composed of the columns indexed

by A. Similarly, β[A] is a vector containing the elements of β

indexed by A. The step-size Lt is set using the backtracking

strategy as described in [8]. In practice, the screening can be

performed at regular intervals instead of every iteration.

Algorithm 1 β̂ = FastDynamicScreening(X, X̃,y, λ)

1: Initialize : t = 0, A0 = {1, . . . ,K}, X̃0 = X̃, β0 = 0

2: while switching criterion not met do

3: —– ISTA update —–

4: ρ̃t+1 ← y − X̃tβt

5: βt+1 ← STλ/Lt
(βt +

1
Lt
X̃T

t ρ̃t+1)
6: —— Screening ——

7: Set θ̃t using (13)

8: At+1 ← {j∈At : µ̃B(y/λ,‖θ̃t−y/λ‖2)
(x̃j) ≥ 1}

9: X̃t+1 ← (X̃t)[At+1], βt+1 ← (βt+1)[At+1]

10: t← t+ 1
11: end while

12: —— Switch to original X ——

13: Repeat loop in lines 2-10 until convergence using X̃t =
X[At] and µB(y/λ,‖θt−y/λ‖2)(xj) with θt set using (6).

If the optimization loop (lines 2 to 8) was carried out until

convergence, the solution of the approximate problem would

be obtained. That’s why, at some point, it is necessary to switch

back to the dictionary X which guarantees the convergence to

a solution of the original Lasso (1). At this point, the screening

obtained with X̃ can be safely applied to X. For now, we do not

specify any particular criterion to define the switching moment.

This topic is further discussed in Section 4.2.

4.1 Complexity analysis

The screening test introduces only a negligible computatio-

nal overhead because it relies primarily on the matrix-vector

multiplications performed in the optimization algorithm update

(namely X̃T ρ̃, line 4) or that can be precalculated (X̃Ty). The

other required calculations for the conventional screening add

up to a total of 4N+2|At| operations (see [3] for more details).

Considering that the norms ‖xj‖2, ‖ej‖2 and the products

‖ej‖2‖c‖2 (with c = y/λ) are precalculated, the approximate

screening entails an additional cost of only |At| operations due

to the products ‖ej‖2‖ρt‖2 in the calculation of α̃t.

As desired, the screening represents a rather low overhead

O(|At|+N), compared to the optimization update which costs

O(|At|N). Without screening, this cost raises to O(KN).
In Table 1 we show the number of operations of a complete

iteration in Algorithm 1 (ISTA update + screening), following

[3]. We denote flopsX the iteration cost with the conventional

screening, flopsX̃ with the approximate screening and flopsN

without screening. The Relative Complexity (RC) [6] quanti-

fies the proportional complexity reduction entailed by the ap-

proximate dictionary, meaning that its multiplication by a vec-

tor costs RC×NK with 0<RC≤1 instead of NK . To simplify

the analysis, we neglect the fact that screening may even further

reduce the multiplication cost of the approximate dictionary.

TABLE 1 – Complete iteration complexity

flopsN (K + ‖βt‖0)N + 4K +N

flopsX (|At|+ ‖βt‖0)N + 6|At|+ 5N

flopsX̃ (RC×K + ‖βt‖0)N + 7|At|+ 5N

4.2 Switching strategy

At an early optimization stage, the complexity gain provided

by the fast dictionary X̃ is very appealing. However, as more

atoms are eliminated by the screening, this advantage may gra-

dually fade. At a given point, the number of active atoms |At|
may become so small that the use of X̃ does not pay off any-

more. This inspires a first criterion, which consists in switching

as soon as the approximate screening reaches the threshold

|At| < RC K N
N−1 . (14)

However, since the approximate screening rules lead to less

atom eliminations than the conventional screening, such a swit-

ching can be delayed by some iterations (or even not happen at

all, depending on the approximation error) as will be shown in

Section 5 (Fig. 1a). We refer to this criterion as naive criterion.

As a more efficient heuristic, we propose to run two scree-

ning tests in parallel : a) the approximate test on the approxi-

mate atoms, µ̃R(x̃j), to screen the matrix-vector computations ;

b) the conventional test on the approximate atoms, µR(x̃j),
whose screening level |A′

t| is used in equation (14) to decide

when to switch. Although being unsafe with respect to the ori-

ginal problem in X, it serves as a fairly good heuristic estima-

tion of the original screening ratio. As will be shown in Section

5 (Fig. 1b), this new switching criterion, referred to as impro-

ved criterion, is much more robust to the approximation error.

It has no impact on the safety of screening, which is performed

with the first test, that is safe.

When λ is much smaller than λmax, the screening level may

remain forever above the threshold (14) simply because the

Lasso solution β̂ (of both original and approximate problems)

may not be sparse enough. Then, even with the approach just

described, the switching would never take place. In order to

avoid converging to the solution of the approximate problem,

a convergence-based switching criterion can be used. The lon-

ger X̃ is kept, the more the convergence to the truly sought

solution might be delayed, especially for a high approximation

error. Bearing that in mind, the following switching criterion,

which leads to an earlier switching in the case of a higher ap-

proximation error, was set empirically as

|Pt−Pt−1|
Pt

< 10−2max
j

(‖ej‖
2), (15)

where Pt :=
1
2‖X̃βt − y‖22 + λ‖βt‖1 is the primal objective

of the approximate problem at iteration t.
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FIGURE 1 – Top : Evolution of number of active atoms with ite-

rations, for λ=0.6λmax. Bottom : flops per iteration. (a) naive

switching (b) improved switching. ‘x’ indicates the switching

point. Dashed lines show the cumulative number of flops.

5 Simulation results

In this section, we provide some experiment results on syn-

thetic data as a proof of concept for the proposed approach. We

use a N ×K dictionary with columns drawn i.i.d. uniformly

on the unit sphere (100× 500 in Fig. 1 and 1000× 5000 in

Fig. 2). We generate unit-norm observations y = Xβ, with

β a sparse vector with Gaussian entries and active set determi-

ned by a Bernoulli distribution with probability p = 0.02. The

ISTA algorithm stops when the relative variation of the cost

function
|Pt−Pt−1|

Pt
is lower than 10−10. We mimic accelera-

tion with a structured approximate dictionary assumed to have

RC = 0.5, and focus on evaluating the impact of the level of

approximation error. For this we generate X̃ = X − σE with

E a matrix with columns drawn i.i.d on the unit sphere, and

σ = ‖ej‖ = 10−1, 10−2, 10−3 respectively. As a reference,

with approximation errors around 10−2, accelerations of about

10 times are obtained in [6] for large MEG gain matrices.

Fig. 1 compares the naive and improved switching criteria.

The top graphs show the number of remaining atoms across

iterations for the screening rule DST1 (which manipulates X)

compared to its approximate counterparts (which manipulate

X̃), and the bottom graphs show the associated complexity cost

by iteration (flopsX and flopsX̃). The cumulated complexity is

given by the area below the solid curve and is displayed as a

dashed curve. As we can see before switching, the number of

screened atoms at a given iteration is smaller for higher ap-

proximation errors σ. The improved switching brings consi-

derable complexity savings in that it avoids the switching from

being delayed, specially at high approximation errors σ. In par-

ticular, for σ = 10−1, the naive criterion is never met.

Fig. 2 shows the normalized number of flops summed over

all iterations (
∑

it
flops

X∑
it

flopsN
or

∑
it

flops
X̃∑

it
flopsN

) as a function of λ/λmax.

The medians among 10 runs are plotted and the shaded area

contains the 25%-to-75% percentiles.

The proposed approach is always advantageous with respect

to the conventional dynamic screening, specially for low and

intermediate λ/λmax values where an acceleration of up to 35%

is reached. At high λ/λmax values, the screening takes place

FIGURE 2 – Normalized number of flops as a function of

λ/λmax. Lower values correspond to smaller complexities.

within very few iterations and the approximate dictionary is

quickly replaced by the original one. Finally, for the highest

approximation error (σ = 10−1) the advantage of the proposed

approach is considerably mitigated, but it remains consistently

better than the conventional screening.

6 Conclusion

We provided means to combine two accelerating strategies

for the Lasso problem : screening rules and fast approximate

dictionaries. Consistent complexity gains over existing tech-

niques were observed in simulations. Although we restrained

ourselves to sphere regions and a specific screening rule (DST1),

the same approach can be adapted to other existing rules and

region types. Future works include extending the GAP safe

rule [4], handling multiple approximate dictionaries with dif-

ferent associated complexity gains as well as using real fast

dictionaries (e.g. FAµST [6, 9]).
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