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Résumé – Un bruit impulsif est observé dans de nombreux systèmes de communication modernes. Il peut souvent être modélisé par une
distribution α-stable. Actuellement, la capacité des canaux à bruit additif α-stable n’est pas bien comprise, à l’exception du cas α = 1 avec une
contrainte logarithmique. Dans cet article, nous considérons le canal à bruit additif α-stable symétrique avec α ∈ (1, 2], soumis à une contrainte
du moment de la valeur absolue. Nous présentons un nouveau débit atteignable et proche de la capacité. Nous étudions son comportement pour
des valeurs modérées de la contrainte (analogue au rapport signal sur bruit), ainsi que la probabilité de coupure pour un canal bande étroite de
Rayleigh.

Abstract – Impulsive noise arises in many modern communication systems and is often modeled by the α-stable distribution. At present, the
capacity of α-stable noise channels is not well understood, with the exception of α = 1 with a logarithmic constraint. In this paper, we consider
additive symmetric α-stable noise channels with α ∈ (1, 2] subject to an absolute moment constraint. We present a new and tight achievable rate
and investigate its behavior for moderate values of the constraint (analogous to medium signal-to-noise ratio), as well as the outage probability
with Rayleigh fading.

1 Introduction
Impulsive noise arises in underwater [1], wireless [2], power
line [3] and molecular [4] communications. Characterized by
a higher probability of large amplitude noise, impulsiveness is
not well captured by Gaussian models.

General models of impulsive noise are due to Middleton [5],
which were derived for interference in wireless networks from
a statistical physics perspective. As it has proven difficult to
characterize the capacity of channels with Middleton’s noise
models, approximate models have been introduced. A key class
of these models are the symmetric α-stable distributions, which
can be viewed as generalizations of zero-mean Gaussian mod-
els (α = 2) and preserving stability for independent random
variables. This approach leads to the additive symmetric α-
stable noise (ASαSN ) channel, where the scalar output Y is
given by

Y = X +N, (1)

with input signal X and symmetric α-stable noise N .
A challenge for the design of communication systems in the

presence of impulsive noise is that the capacity of the ASαSN
channel is not well understood. The difficulty in characterizing
the capacity of ASαSN channels is in part due to the fact that

a power constraint E[X2] ≤ P is typically imposed and, unlike
the Gaussian case, the second moment of α-stable distributions
is infinite for α < 2. At present, Fahs and Abou-Faycal [6]
have studied the structure of the optimal input distribution for
logarithmic and fractional moment constraints. However, there
are currently no characterizations of the capacity for ASαSN
channels with 0 < α < 2.

In this paper, we study the capacity of the ASαSN chan-
nel subject to an absolute moment constraint. In particular, we
consider the constraint

E[|X|] ≤ c, c > 0. (2)

A key feature of this constraint is that it admits tractable achiev-
able rates for α ∈ (1, 2]. More precisely, the capacity of the
ASαSN channel is lower bounded by

C ≥ 1

α
log2

(
1 +

(
c

E[|N |]

)α)
, (3)

obtained by matching the input, X , and noise, N as α-stable
distributions. Numerical comparisons with the capacity ap-
proximations from the Blahut-Arimoto algorithm show that the
bound is tight, particularly for α ≈ 2.

To understand how the achievable rates in (3) behave for dif-
ferent values of α—particularly for the Gaussian case (α =



2)—we investigate its behavior for moderate values of the con-
straint (analogous to the medium signal-to-noise ratio regime).
This is achieved by computing the bend point, introduced in
[7]. The bend point provides insight into the beginning of the
high c region, analogous to the signal-to-noise ratio (SNR) for
the Gaussian channel. We also derive an upper bound on the
outage probability in the presence of Rayleigh fading and the
input distribution parametrization. This analysis suggests that
our capacity lower bound may be useful as a performance met-
ric for systems with symmetric α-stable noise.

The remainder of the paper is organized as follows. In Sec-
tion 2, we summarize the α-stable random variables and we
show the achievable rates. In Section 3, we study further ap-
plications of our lower bound. In particular, we derive medium
c properties and an outage probability bound in the presence
of fading. In Section 4, we conclude and provide avenues for
future work.

2 Achievable Rate Analysis
In the section, we present new achievable rates for the ASαSN
channel defined in (1). In order to obtain our result, we first re-
call the notion of symmetric α-stable random variables which
forms the basis of the noise, N . The achievable rates are then
obtained as lower bounds for the capacity of the ASαSN chan-
nel, for which a precise definition can be found in [8, Section
II]. We show that the achievable rates form tight lower bounds
of the capacity via a numerical comparison with the approxi-
mate capacity obtained using the Blahut-Arimoto algorithm.

2.1 The α-Stable Random Variables
The α-stable random variables are heavy-tailed probability den-
sity functions [9]. The probability density function of an α-
stable random variable is parameterized by four parameters:
the exponent 0 < α ≤ 2; the scale parameter γ ∈ R+; the
skew parameter β ∈ [−1, 1]; and the shift parameter δ ∈ R. As
such, a common notation for a general α-stable distributed ran-
dom variable is N ′ ∼ Sα(γ, β, δ). In the case β = δ = 0, the
random variable N is a symmetric α-stable random variable
denoted by N ∼ Sα(γ, 0, 0).

However, the additive symmetric α-stable noise, N ′ usually
does not have a closed form. Instead, they are represented by
their characteristic function, given by

E[eiθN
′
]

=

{
exp

{
−γα|θ|α(1− iβ(signθ) tan πα

2 ) + iδθ
}
, α ̸= 1

exp
{
−γ|θ|(1 + iβ 2

π (signθ) log |θ|) + iδθ
}
, α = 1

.

(4)

In turn, the channel considered in this paper given by (1) is re-
stricted to the additive symmetric α-stable distributed random
variable N denoted by

E[eiθN ] = exp (−γα|θ|α) , θ ∈ R. (5)

2.2 Achievable Rates
Achievable rates of the ASαSN channel are given by the fol-
lowing theorem presented in (3). The result is obtained by us-
ing a codebook consisting of codewords distributed according
to the symmetric α-stable distribution; that is, the input X is
matched to the noise N . For full details, see [8].

Theorem 1. Achievable rates of the ASαSN channel sub-
ject to an absolute moment constraint E[|X|] ≤ c with N ∼
Sα(γ, 0, 0) and 1 < α < 2 is given by [8]

C ≥ 1

α
log2

(
1 +

γα
X

γα
N

)
≥ 1

α
log2

(
1 +Mα

(
c

γN

)α)
, (6)

where

Mα =

(
π

2Γ
(
1− 1

α

))α

, (7)

using the constraint in (2).

To validate the tightness of the achievable rates, Fig. 1 com-
pares our bound and the numerical capacity approximation us-
ing the Blahut-Arimoto algorithm for α = 1.9. This provides
strong evidence that the achievable rates are in fact tight for
α near 2, although this behavior is not observed when small
values are used, with more distant rates as long as α decreases.
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Figure 1: Plot of our capacity lower bound for varying c, with
α = 1.9, γN = 1, β = 0 and δN = 0

3 Behavior of the Achievable Rates
We now study the behavior of the achievable rates for moderate
values of the constraint, c, and in the presence of fading. The
tractability of the achievable rate means that it is an attractive



performance metric in settings based on the ASαSN channel,
and can play a role similar to the power constrained capacity in
settings based on the Gaussian channel.

3.1 Medium c Behavior
For moderate values of the constraint, c, a useful notion is
the bend point. Introduced in [7] in the context of Gaussian
noise channels, the bend point quantifies the transition of the
achievable rates. The bend point corresponds to the point on
the achievable rate curve where the rate of change of the slope
is maximized (analogous to the medium signal-to-noise (SNR)
regime). For the ASαSN channel, we define the bend point as
follows.

Definition 1 (Bend point). Consider the achievable rates in
Theorem 1, given by

CLB =
1

α
log2

(
1 +Mα

(
c

γN

)α)
, (8)

where Mα is given by (7).
The bend point, cbend, is then the cdB = 10 log10 c such that

the second derivative of (8) is maximized.

As such, it can be viewed as the transition between high and
low c as the rate of change of the slope tends to zero as cdB →
−∞, reaches its maximum value at the bend point, and then
tends to zero as cdB → ∞.

A key observation in [7] is that the bend point is intimately
related to the intersection of high and low SNR asymptotes in
the capacity of power constrained Gaussian channels. We now
investigate the bend point in the context of the ASαSN chan-
nel.

Theorem 2. The bend point is given by

cbend =
10

α
log10

(
γα
N

Mα

)
. (9)

Proof. The third derivative of (8) in Theorem 1 is given by

C ′′′
LB =

Mα

(
α
10 log 10

)3
αγα

N log 2

10αcdb/10
(
1− Mα

γα
N
10αcdB/10

)
(
1 + Mα

γα
N
10αcdB/10

)3
 ,

(10)

which satisfies C ′′′
LB = 0 when cdB = 10

α log10

(
γα
N

Mα

)
. Note

also that the second derivative of (6) is given by

C ′′
LB =

Mα

(
α
10 log 10

)2
αγα

N log 2

 10αcdb/10(
1 + Mα

γα
N
10αcdB/10

)2
 , (11)

and is symmetric around cdB = 0 and decreasing for cdB > 0,
which proves the theorem.

Now, define the asymptote (as cdB → ∞) of the lower bound
as

Casymp =
1

α
log2

(
10αcdB/10

)
+

1

α
log2

(
Mα

γα
N

)
. (12)

Note that this asymptote describes the behavior of the achiev-
able rate for large values of cdB (equivalently, c). Observe
that although the asymptote varies as α changes, the achievable
rate curve is linear when plotted against cdB which is consis-
tent with the capacity of the power constrained Gaussian noise
channel.

A further observation is that Casymp = 0 when cdB =
10
α log10

(
γα
N

Mα

)
, which agrees with the bend point cbend, from

Theorem 2. This means that as for the power constrained Gaus-
sian channel, the intercept asymptote of the achievable rate
curve for the ASαSN channel agrees with the bend point;
however, unlike the power constrained Gaussian channel, the
bend point does not always occur at cdB = 0.

Fig. 2 plots the capacity lower bound for varying α. Observe
that the bend point cbend is reduced as α increases. This sug-
gests that using the asymptotic approximation is more accurate
for Gaussian channels than for the ASαSN channel at lower
values of c. As asymptotic approximations are widely used,
this implies that approximations that are valid in the Gaussian
case are likely to be less accurate for other values of α.
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Figure 2: Plot of our capacity lower bound, CLB for varying
α, with γN = 1, β = 0 and δN = 0. The dot on each curve is
the corresponding bend point.

3.2 The Effect of Fading
Fading plays an important role in many Gaussian channels. In
the case of the additive α-stable noise, we obtain the channel
model given by

Y = gX +N, (13)

where g represents the real-valued fading coefficient. For a
fixed g, the capacity constraint in (2) is lower bounded by

C ≥ 1

α
log2

(
1 + |g|αMα

cα

γα
N

)
, (14)

which follows from Theorem 1, where Mα is defined in (7).



In the case of slow fading (g varies slowly, but randomly
according to a fixed distribution Fg), the transmission quality
is often characterized by the outage probability, which is given
by

Pout = Pr(C ≤ R0)

≤ Pr

(
1

α
log2

(
1 + |g|αMα

cα

γα
N

)
≤ R0

)
. (15)

A common choice for the distribution of g2 is Fg2(x) = 1 −
e−λx, corresponding to Rayleigh fading. The outage probabil-
ity is then bounded by

Pout ≤ Pr

(
|g| ≤ γN

M
1
α
α c

(
2αR0 − 1

) 1
α

)

= 1− exp

[
−λ

(
γ2
N

M
2
α
α c2

(
2αR0 − 1

) 2
α

)]
= PLB (16)

Fig. 3 demonstrates the effect of R0 on the outage upper
bound. The simulated curves are based on Monte-Carlo simu-
lations over 1000 realizations of the fading channel. The exact
curve is obtained from (16). Observe that for small R0 the out-
age probability upper bound is heavily influenced by α.
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Figure 3: Plot of the outage probability upper bound (16) for
varying R0 and α, with β = 0, c = γN = 1, δN = 0, and
λ = 1.

4 Conclusion
Impulsive noise plays a key role in many communication sys-
tems, ranging from wireless to molecular. Important models
for impulsive noise are the symmetric α-stable distributions.
In this paper, we use a tractable lower bound for the ASαSN
channel, with α ∈ (1, 2]. We have investigated its behavior in
the medium c regime and the effect of fading.

There are several avenues for future work. In particular, the
case of 0 < α ≤ 1, and asymmetric α-stable noise distributions

remain open. The tractability of our lower bound and its close
relationship to the capacity of Gaussian noise channel with a
power constraint also suggests that it may be able to play an
analogous role in more applications. For instance, this opens
the question of the behavior and design of algorithms for par-
allel and MIMO additive α-stable noise channels.
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