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Résumé – Nous nous intéressons dans ce travail au problème de la segmentation de tumeurs dans des images 3D Ultrasonores Hautes
Fréquences. L’objectif principal est de présenter une méthode alternative à la méthode très largement utilisée, dite de Level Sets, introduite
par Osher et Sethian. Pour cela, nous considérons un modèle de séparation de phases dont l’énergie, de Cahn-Hilliard, fait intervenir explicite-
ment un potentiel à double puits. Cette énergie est bien connue pour être un bon modèle de transition dans des contextes physiques et chimiques
variés de par le fait qu’elle prend en considération l’ensemble de la dynamique des processus d’évolution. L’énergie de Cahn Hilliard est couplée
à une fonction de coût mesurant la dissimilarité des distributions d’intensité à l’intérieur et à l’extérieur de la tumeur (terme d’attache aux
données). Les résultats obtenus montrent que cette approche est performante comparée à celle des Level Sets.

Abstract – We address in this work the problem of tumor segmentation in 3D High Frequeny Ultrasound images. The aim is to describe
an alternative method to the widely used Level Set method introduced by Osher and Sethian. For this, we consider a separation phase model
the energy of which, the Cahn Hilliard energy, involves a double well potentiel. This energy is well known to be a relevant transition model
in various physical or chemical applications due to the fact that it takes into account the entire evolution process. The Cahn Hilliard energy is
coupled with a cost function measuring the dissimilarity of intensity distributions inside and outside the tumor (data attachment term). Results
show that this approach is relevant compared to the Level Set one.

1 Introduction

High frequency ultrasounds (> 20 MHz) are a promising
tool for diagnosis and surgery of skin tumors, for the cosmetic
industry and for the imaging of organs in small animals. Ultra-
sound imaging uses the high-frequency sound waves to view
inside the body. Ultrasound images are produced based on the
reflection of the waves off of the body structures. This image
acquisition mode is simple to deal with allowing frequent mea-
surements and a good estimate of tumor growth. The acquisi-
tion process of ultrasound images is simple and take advantage
of following the evolution of tumors. However, such images
have two major intrinsic characteristics : their important noise
(speckle) and their low and heterogenous contrast. Efficient
segmentation of ultrasound images is designed relying on the
local distribution of the signal envelope. Many successful ap-
proaches rely on the link between local scatterers properties
and the statistics of the final ultrasound image envelope. It is
generally assumed that the intensity distribution follows pa-
rametric distributions such as Rayleigh distributions [1], Ri-
cian distributions, K-distributions, Nakagami distributions [1,

2] or Fisher-Tippett distributions [7]. Unfortunately, all these
approaches are limited to images displaying a broader variety
of distributions. Worst still, heterogeneity can lead to more costly
implementation, ill-founded approach or to considering bimo-
dal distributions [3].

To tackle this problem, approaches involving non parame-
tric distributions are introduced so as to divide the reference
volume into two maximal distinct regions without any a piori
assumption. Among others, let us mention methods using Par-
zen estimation and density dissimilarity measures such as Bhat-
tacharyya distance, Kullback-Leibler divergence or log likeli-
hood [14]. Due to the lack of contrast, 3D Ultrasound images
do not exhibit strong contours. This explain why to use the well
known Level Set method based on the statistics of the envelope
signal in this context. An approach using both Level Sets and
log likelihood has been recently applied for skin tumors seg-
mentation in [3].

We propose here an alternative approach based on a coupling
involving phase filed dynamic instead of Level Sets. We refer to
[11, 12] for examples of application of the phase filed method
to image segmentation. The main originality of this contribu-



tion is to evaluate the performance of this method dealing with
High Frequency 3D Ultrasound images and to compare results
with those obtained by Level Sets. It appears that our approach
is simple for implementation and that its accuracy is compa-
rable with the Level Set approach. The paper is organized as
follows : we first describe the mathematical model, then we
propose experiments on synthetic and clinical data.

2 Log-likelihood distance between inten-
sity distributions

We rapidly describe the data attachment cost function that
is coupled with the Cahn Hilliard energy. In the following, Ix
denotes the intensity of the ultrasound image where x is the co-
ordinates of the voxels. This is the normalized log-compressed
envelope, which is the standard quantity used in the display of
ultrasound images.During the segmentation process, the image
volume is divided into the region of interest ΩA and the back-
ground ΩB with intensity distribution PA(I), PB(I). The log-
likelihood distance is defined as :

LL =
∑
x∈ΩA

log P̂A(Ix) +
∑
x∈ΩB

log P̂B(Ix) (1)

The distribution PA(I) in region ΩA is estimated from the dis-
crete set of voxel intensities {I(x), x ∈ ΩA} using a Parzen
estimation [13] :

P̂A(I) =
1

|ΩA|

∫
ΩA

Kλ(Ix − I)dx (2)

where |ΩA| is the volume of ΩA and the Kernel Kλ is chosen
to be a normal distribution of width λ.

3 Phase field model
There exists a wide litterature concerning phase transition

and phase boundary evolution models. These models find many
applications in physics or chemistry. Among them, one of the
most simple and well known in the image processing commu-
nity is the so-called Level Set method, [4]. It is usually consi-
dered as a reference method. Besides this method, many other
approaches can be considered. We deal in this work with the
so-called phase filed method [5], and consider only isotropic
deformation of the interface. The chosen Allen-Cahn reaction-
diffusion equation reads :

∂u

∂t
= ∆u− 1

ε2
W ′(u) (3)

and can be derived as the L2-gradient flow of the Cahn-Hilliard
energy :

Jε(u) =

∫
Ω

(
|∇u|2

2
+

1

ε2
W (u)

)
dx (4)

where the symbol u is used to denote the space time function
u(x, t) with t is the variable in time, W is double well po-
tentiel and W ′ represents the derivative of W with respect to

u. The symbol ∆ is the Laplace operator. ε can be conside-
red as the width of the transition interface. A classical choice
for this potentiel is the polynomial W (u) = u2(1 − u)2/2 the
two global minima of which, 0 and 1, correspond to the two
phases equilibria. The dynamic governed by the equation (3)
can be interpreted as follows. At earlier times the reaction term
given by the double well potentiel separates the two phases
and creates rapidly a sharp interface or transition layer when
ε → 0.Then the diffusion term given by the Lapalacian opera-
tor balances the action of the reaction term and stops the de-
veloppment of the interface. Pratically, the region of interest is
defined by ∀t ≥ 0, ΩA = {x : u(x, t) ≥ 1/2}, the background
region is defined by ΩB = {x : u(x, t) < 1/2} and the transi-
tion layer, or active contour, or moving interface, is defined by
Γt = {x : u(x, t) = 1/2}. One can prove, [6], that the energy
(4) Γ−converges (when ε→ 0) to cWP where P (u) =

∫
Γ

1dσ
and cW =

∫ 1

0
W (s)ds. This means that minimizing the Cahn-

Hilliard energy is equivalent to minimizing the perimeter of the
active contour.

4 Cahn-Hilliard log-likehood model
We set

Eε(u) = −LL(u) +
α

cW
Jε(u) (5)

the cost function, minus the log-likelihood, being minimum
when the distance between distributions is maximum. Note that
this functional is non-convex, precluding the use of algorithms
relying on this property. To minimize (5), we use the gradient
flow descent ∂tu = − δEδu that reads :

∂tu = 2u log P̂A(Ix) + 2(u− 1) log P̂B(Ix)

+
α

cW

(
∆u− 1

ε2
W ′(u)

) (6)

Using Lie splitting method, our numerical scheme is divided
into three parts as shown by the algorithm 1. In this one, δt
denotes the time step. Un is the approximated value of u(x, tn)
where tn = nδt. U0 is the initial condition. FFT and IFFT
denote respectively the Fast Fourier Transform and Inverse Fast
Fourier Transform.

Algorithme 1

For : n = 0, ..., convergence (‖Un+1−Un‖2/‖Un‖2 ≤ 10−6)
1. DATA : Entrance : U0, δt, ε and I
2. Computation of the diffusion part : ∂u∂t = α

cW
∆u

UnFourier = FFT [Un]

U
n+1/4
Fourier[k] = e−4απ2|k|2δt/cWUnFourier[k]

Un+1/4 = IFFT [U
n+1/4
Fourier]

(7)

3. Computation of the data attachment part : ∂u∂t = u log P̂A(I)+

(u− 1) log P̂B(I)

Un+1/2 = Un+1/4 + δtUn+1/2 log P̂A(Ix)+

δt(U
n+1/2 − 1) log P̂B(Ix)

(8)



4. Computation of the reaction part : ∂u∂t = − α
cW ε2W

′(u)

Un+1 = Un+1/2 − δt α

ε2cW
W ′(Un+1/2) (9)

End for

The exact solution of the diffusion is computed by mean of FFT
assuming periodic boundary conditions [8]. One can also deal
with Dirichlet or Neumann conditions [5, 9]. Beside this easy
to implement algorithm exist other possibilities leading to in-
conditionaly stable schemes : by replacing the reaction explicit
scheme computing the exact solution or by using a hybrid FEM
to solve the Allen-Cahn equation [10]. We choose here to use
the simple to reproduce proposed algorithm dealing with FFT
and the simple resolution of two ODEs (8) and (9).

Let us mention a major difference between Level Set and
phase filed methods : from a methodological standpoint, the le-
vel set method is a computational approach in which the inter-
face motion is numerically approximated using artificial smoo-
thing function while the phase filed is based on a physical ap-
proach which incorporates the phases and the interface between
them into the free energy function of the system. It means that
the phase filed method not only transports the interface with
the flow but ensures that the total energy of the system is mi-
nimized correctly. The evolution of the interface therefore is
self-consistent in the phase filed method and does not need the
re-initialization in the level set method. Moreover, in the phase
field model one has to take care of the choice of the order pa-
rameter in order to control the interface motion. The proposed
algorithm complies with the maximum principle for the heat
equation. The Euler explicit scheme (9) comes with the stabi-
lity condition δt < cW ε

2/α. The parameters α and ε are cho-
sen to be respectively O(δ2

x) and O(δx) with δx the width of a
spaced grid cell.

5 Test on synthetic and clinical 3D data
We propose first a quantitative test of our segmentation pro-

cedure using a synthetic ultrasound image. The image size in
pixels is 216× 252× 168. The target image is the red contour.
The parameters are fixed asα = 8×10−5, ε = min(δx, δy, δz) =
0.004, δt = 0.8cW ε

2/α, we take 100 values of I ∈ [0, 1] for
the Parzen estimation. The result of the segmentation is shown
in figure 1. To quantify the precision of the segmentation re-
sults, the Dice coefficient and the mean absolute distance MAD
are introduced. The Dice coefficient D(Ω, R) is computed for
each segmented volume Ω with respect to the target volume
R, i.e. D(Ω, R) = 2|Ω ∩ R|/(|Ω| + |R|). We also compute
the mean absolute distance MAD, which measures the accu-
racy of the boundary. For any voxel x in the boundary ∂Ω of
Ω, we call dR(x) the distance of x to the closest point in R
in pixels (1 pixel = 53 µm). N∂Ω is the number of voxels in
the ∂Ω. The mean distance is MAD =

∑
x∈∂Ω d

R(x)/N∂Ω.
For this synthetic example, we have D(Ω, R) = 0.8944 and
MAD = 1.8752 pixels. We note that the parameters ε, α,

(a) (b)

FIGURE 1 – Slice of the segmented volume of the synthetic
image : (a)Target volume (red) and segmented volume (yel-
low). (b) The phase separation.

δt, even initial condition and its position may be changed if
contrast of image is low. We evaluate now the performance of
the proposed segmentation algorithm on a lesion image. The
comparison is made using manual expert segmentation (refe-
rence 1 and 2). The skin tumor image has been acquired at the
Melanoma Skin Cancer Clinic (Hamilton Hill, Australia) on a
Dermcup 50MHz ultrasound imaging system (Atys Medical,
Soucieu-En-Jarrest, France). The size in pixels of this ultra-
sound image is 832 × 299 × 300 and the size of the region of
interest in pixels is 454× 210× 242.

For the experiment, we fixed δz = 0.0022, δy = 0.0048 and
δx = 0.0041. As mentionned before, to obtain good results,
it is necessary to adjust the order paremeter ε carrefully. Fi-
gure 2 shows the dependance of the Dice Index as a function of
ε, the parameter α being fixed α = 6 × 10−5 = O((δz)2)
and δt = 0.8cW ε

2/α. The figure 2 shows the optimal va-
lue of ε : ε = 0.0022. For the very small values of ε (ε <

FIGURE 2 – Dice Index as a function of ε with fixed α = 6 ×
10−5 (blue, reference 1 - red, reference 2)

0.022), the active contour do not move. While the big values
of ε (ε > 0.0022) make the segmented volume inaccurate. Fi-
gure 3 shows the segmented volume and the segmented contour
compared to the two references. Tables 1 and 2 show the com-
parison of the results obtained by the Level Set method [3] and
by the phase filed approach.The parameters are chosen to maxi-
mize the Dice coefficient for each method. In these tables Rm1

and Rm2 denote the manual expert references. We observe that
the Dice coefficient for both methods is similar and that it is
slightly better for the phase filed approach. We observe also
that the MAD coefficient is better for the proposed method.

The Cahn-Hilliard log-likehood model reveals to be an ac-
curate tool for the segmentation of ultrasound image of clini-
cal data. The simple implementation we propose, based on Eu-



(a) (b)

(c)

FIGURE 3 – (a) Segmented volume (green) with the volume
of reference 1 (blue). (b) Segmented volume (green) with the
volume of reference 2 (blue). (c) Slice : the segmented contour
(yellow), the contour of reference 1 (pink) and the contour of
reference 2 (green)

TABLE 1 – Dice coefficient : Level set and phase filed

Coefficient D(Ω, Rm1) D(Ω, Rm2)
Level set 0.8500 0.8798

Phase filed 0.8786 0.9100

TABLE 2 – MAD (in pixels) : Level set and phased filed

Coefficient MAD(∂Ω, ∂Rm1) MAD(∂Ω, ∂Rm2)
Level set 4.6642 3.7974

Phase filed 3.8145 2.8652

ler explicite and implicite scheme and using the first order Lie
splitting is, as we have mentioned before, not optimized and
takes time to deal with big data such as 3D ultrasound images
containing millions of voxels.

6 Conclusion
We proposed in this work a new method for 3D Ultrasound

images segmentation. Our approach is based on a phase field
model using a regularization term coming from the Cahn-Hil-
liard energy and a data attachment term taking into account the
dissimilarity of pixel distributions. It provides a good alterna-
tive to the well known Level Set method and shows results on
clinical data slightly better than this latter. There exist many
possibilities to improve to speed of the method : by using hy-
brid FEM schemes, by replacing the schemes by the exact so-
lutions of the reaction part and the data attachment part or by
using Multi-grid method. There exist also many possibilities to
extend the proposed approach by mean of more sophisticated
phase field models taking into account anisotropy or surface
tension for instance.
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