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Résumé – Le problème traité est l’approximation parcimonieuse sous contrainte de positivité. Nous proposons une implémentation récursive
de l’algorithme Non-Negative Orthogonal Matching Pursuit (NNOMP) basée sur la résolution de sous-problèmes de moindres carrés par
l’algorithme des contraintes actives. Nous proposons de plus une amélioration de NNOMP, appelée SNNOMP, basée sur le rétrécissement
du support lorsque les coordonnées du vecteur parcimonieux s’annulent. Les algorithmes proposés sont comparés avec les implémentations
existantes de NNOMP pour un problème de déconvolution impulsionnelle qui met en jeu un dictionnaire mal conditionné.

Abstract – This article addresses least-squares minimization under sparsity and non-negativity constraints. We propose a recursive imple-
mentation of Non-Negative Orthogonal Matching Pursuit (NNOMP) based on the active set method for solving least-squares subproblems. We
further propose an improvement of NNOMP, named support-Shrinkage NNOMP (SNNOMP), based on the shrinkage of the support of iterates
when some coordinates vanish. SNNOMP is compared with the existing versions of NNOMP for a sparse deconvolution problem.

1 Introduction
Sparse approximation under non-negativity constraints nat-

urally arises in several applications such as image process-
ing, optical spectroscopy and non-negative matrix factoriza-
tion [1,2]. Many sparse solvers such as Matching Pursuit (MP),
Iterative Hard Thresholding, FISTA can be directly extended to
the non-negative setting. It is not the case of OMP [3], which
is a well-known extension of MP. Its principle is to gradually
update the sparse solution support by selecting a new dictio-
nary atom at each iteration. When dealing with non-negative
constraints, the orthogonal projection computed at each OMP
iteration is replaced by a non-negative least-squares (NNLS)
subproblem whose solution is not explicit. Therefore, the usual
recursive (fast) implementations of OMP [4] do not apply. The
NNOMP algorithm was first proposed by Bruckstein et al. [5].
This algorithm was later renamed as CNNOMP by Yaghoobi
et al. [6]. Within NNOMP, the atom selection and the NNLS
subproblem are two separate tasks. The NNLS subproblems
in NNOMP are solved independently by calling an NNLS sub-
routine, which makes NNOMP computationally inefficient. [6]
introduced a faster implementation, named Fast NNOMP (FN-
NOMP), which combines the atom selection and the NNLS
subproblem in only one task. By this alternative approach, FN-
NOMP recursively approximates the sought solution by mak-
ing use of QR factorization without solving NNLS subprob-
lems. Therefore, FNNOMP may not yield the NNOMP output.

We introduce an exact and recursive implementation of
NNOMP based on the active set algorithm for solving the
NNLS subproblems [7]. We further propose an improvement of
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NNOMP called support-Shrinkage NNOMP (SNNOMP). The
NNOMP and SNNOMP implementations are recursive in the
sense that their current iterate is used as a warm start for ini-
tializing the next call to NNLS. It is noticeable that the struc-
ture of the active set algorithm [8] for solving NNLS shares a
strong similarity with OMP (without constraint) [9]. The active
set iterations [8] are based on an atom selection step similar to
that in OMP, followed by a support shrinkage. This similarity
was not further exploited in [9], whereas it is a keypoint of our
contribution.

2 Problem statement and prerequisites
Given a data signal y ∈ Rm and a dictionary H ∈ Rm×n

whose columns are normalized, the aim is to find a K-sparse
non-negative vector x ∈ Rn yielding an accurate approxima-
tion y ≈ Hx. This leads to solving the following problem:

min
x≥0,‖x‖0≤K

‖y −Hx‖22 (1)

where ‖·‖0 is the `0-“norm” counting the number of non-zero
elements. Note that the NNOMP scheme in [5] actually aims to
minimize ‖x‖0 s.t. x ≥ 0 and y = Hx (i.e., in the noise-free
case) wherein H has more columns than rows. The structure
of NNOMP remains unchanged in the noisy case, where the
stopping condition reads ‖y − Hx‖22 < ε or ‖x‖0 ≤ K [6].
Hereafter, we denote by S the support of x (S = {i : xi 6= 0}),
S the complement of S, HS the subdictionary indexed by S
and xS the solution restricted to S.

A key ingredient to address (1) is to solve the NNLS sub-
problem minz≥0 ‖y − Az‖22 with A ← HS . Assuming A to



Algorithm 1: active set algorithm for solving NNLS [7]
input : y, A, z0

output: z, nonnegative minimizer of ‖y −Az‖22
1 z ← z0 ;
2 S ← supp(z) ;
3 while not stop do
4 p← A†Sy − zS ;
5 α← 1 ;
6 if S 6= ∅ and p 6= 0 then
7 j ← argmin{−zi/pi : i ∈ S, pi < 0} ;
8 α← min{1,min{−zi/pi : i ∈ S, pi < 0}} ;
9 zS ← zS + αp ;

10 end
11 if α = 1 then
12 r ← y −ASzS ;
13 λ← −AT

S
r ;

14 if λ ≥ 0 or S = ∅ then
15 stop
16 else
17 S ← S ∪ {`} with `← argmini λi ;
18 end
19 else
20 S ← S \ {j} ;
21 end
22 end
23 zS ← 0 ;

be full column rank, the NNLS subproblem is strictly convex,
and since it is a quadratic problem, it admits a unique solu-
tion. One of the widely used NNLS algorithms is the active
set method [7, 8]. The active set is defined as the set of indices
of the inequality constraints that become equalities at the cur-
rent point. In the case of NNLS, the active set coincides with
S = {i : xi = 0}. Therefore, we can rewrite active set al-
gorithms in terms of support. The algorithm in [7] is rewritten
in Algorithm 1. Observe the analogy with the OMP selection
rule [9] in lines 12-13 and 17.

3 Active set implementation of NNOMP

3.1 Principle of NNOMP

NNOMP (Algorithm 2 without line 9) shares the structure
of OMP. The latter starts from the empty support; at each it-
eration, it selects the atom having the highest correlation with
current residual; it adds the atom index to the support and then
computes the projection of y onto the subspace induced by
the current support. Because of the non-negativity constraint,
NNOMP exhibits two essential differences with OMP. First, the
selection rule (line 5) involves the inner product without abso-
lute value. Second, the orthogonal projection computed at each
iteration in OMP is replaced by an NNLS subproblem (line 7)
whose solution is not explicit. Hence, an iterative algorithm is
required to solve the NNLS subproblem.

Besides, OMP and NNOMP are forward greedy algorithms

Algorithm 2: NNOMP (without line 9) and SNNOMP
(with line 9) for solving (1)

input : y, H,K
output: x

1 z ← 0 ;
2 S ← ∅ ;
3 r ← y ;
4 while |S| < K and maxHT

S
r > 0 do

5 `← argmaxi∈S 〈r, Hi〉 ;
6 S ← S ∪ {`} ;
7 z ← argminz≥0 ‖y −HSz‖22 ;
8 r ← y −HSz ;

9 S ← S(supp(z)) ;

10 end
11 xS ← zS ;xS ← 0 ;

which gradually add atoms to the support. When studying
NNOMP, we noticed that because of the non-negativity con-
straint, some coefficients xi (i ∈ S) are likely to vanish, i.e.,
S = supp(x) is not always true. NNOMP and FNNOMP
choose to keep the related atoms in the current support whereas
in the proposed SNNOMP algorithm, we choose to deselect
them so that S = supp(x) is always true. The difference be-
tween SNNOMP and NNOMP is emphasized in line 9 of Algo-
rithm 2: the current support S is shrinked to the support of the
NNLS solution. This is a backward move in which atoms are
deselected, however the squared error is unchanged (contrary
to the forward-backward extensions of OMP [10, 11] wherein
atom deselections are allowed provided that the increase of
squared error is small enough). Therefore, the shrinkage step
helps correcting potential wrong selections. At the same time,
the squared error keeps decreasing after each iteration. Be-
cause a given support cannot be explored twice, the algorithm
terminates after a finite number of iterations.

3.2 Implementation

On the one hand, CNNOMP [6] solves NNLS subprob-
lems independently by calling the Matlab function lsqnonneg.
lsqnonneg is a non-recursive implementation of the Lawson &
Hanson active set algorithm [8] which starts with the empty
support. Therefore, CNNOMP is highly time-consuming when
the expected solution support is large. On the other hand, FN-
NOMP avoids solving NNLS subproblems by recursively up-
dating the QR decomposition [6]. When dealing with highly
correlated dictionaries, we found that FNNOMP has limitations
since it often returns negative coefficients.

While studying active set implementations of NNLS, we no-
ticed that although [7] and [8] obey the same rules, the for-
mer accepts any feasible initial solution (i.e., a warm start to
speed up convergence) whereas the latter starts from the zero
solution. Using warm starts is a key to an efficient recursive
implementation of NNOMP. By using the previous NNLS so-
lution as a warm start for the current NNLS subproblem, it is



expected that the active set algorithm will terminate after a few
subiterations only.

In our implementation of NNOMP, the NNLS subproblem is
solved at each iteration by calling Algorithm 1 with inputs: y,
A = HS , z0 = [zT , 0]T , where z is the NNLS solution found
in the previous iteration. In our experiments, the convergence
of NNLS was reached after no more than 2 subiterations. In
addition, the computation of the orthogonal projection A†Sy in
line 4 of Algorithm 1 can be accelerated by using either the ma-
trix inversion lemma, the QR decomposition or the Cholesky
factorization as in OMP [4]. The SNNOMP implementation
was done similarly except that z0 = [ẑT , 0]T , where ẑ is the
NNLS solution at the previous iteration restricted to its support.

4 Comparison in sparse deconvolution

4.1 Data generation
In our simulations, the model y = Hx∗ + n is considered

where x∗ and n stand for the ground truth and noise, respec-
tively. The matrix H has normalized columns. The signal-to-
noise ratio (SNR) is defined by SNR = 10 log10 (PHx∗/Pn)

where PHx∗ = ‖Hx∗‖22 /m is the average power of the noise-
free data and Pn is the noise variance.

We consider a convolution problem whose kernel h is a zero-
centered Gaussian function of standard deviation σ. The sam-
pling frequency of x is twice that of the data signal y, so that
the dictionary H has roughly twice more columns than rows.
Note that H is not a Toeplitz matrix since the sampling fre-
quency of x differs from that of y. The ground truth support S∗

of cardinalityK∗ is randomly generated so that the distance be-
tween consecutive support elements cannot be less than some
fixed value to ensure that HS∗ is (in)coherent enough. The
non-negative coefficients x∗S∗ are randomly generated using a
folded Gaussian distribution1. Finally, the data y are obtained
by adding Gaussian noise to Hx∗.

4.2 Process and test result
The FNNOMP implementation downloaded from the au-

thor’s webpage2 is compared with our NNOMP and SNNOMP
implementations. The CNNOMP implementation [6] is not
considered since it is not recursive. The maximum support
cardinality is chosen as K > K∗ to compensate for the fact
that the vector z found at line 7 in Algorithm 2 might have
zero amplitudes. In other words, more than K∗ iterations are
necessary to reach a K∗-sparse iterate. For each algorithm,
the “best” k-sparse iterate (that is, the iterate having the low-
est residual among all iterates satisflying ‖x‖0 = k) is stored
for all k ∈ {0, . . . ,K}. A single solution is chosen afterwards
by using a model order selection method (recall that the model
order is ‖x∗‖0 = K∗). Following [12], we noticed that Min-
imum Description Length (MDL) is more efficient for sparse

1defined as x∗S∗ = |t| where t obeys a Gaussian distribution.
2http://www.mehrdadya.com

Table 1: [Noise-free case] Average CPU time, Recall and Pre-
cision w.r.t. model order.

Generative model order 5 10 15 20 25 30

Time (ms)
NNOMP 10 9 10 12 14 17
FNNOMP 7 5 6 8 8 10
SNNOMP 12 18 28 23 24 28

Recall (%)
NNOMP 100 78 35 23 24 30
FNNOMP 100 63 36 25 22 25
SNNOMP 100 99 96 60 47 52

Precision (%)
NNOMP 95 47 20 14 16 21
FNNOMP 95 27 16 13 12 16
SNNOMP 95 61 48 30 26 32

deconvolution than Akaike and cross-validation criteria [13],
which often over-estimate the expected order. Specifically, the
corrected MDL (MDLc) [14] version dedicated to short data
records (when the number of data pointsm is moderately larger
than K) is defined as

min
k

{
log ε(xk) +

log(m)(k + 1)

m− k − 2

}
(2)

where xk is the k-sparse solution and ε(xk) denotes the corre-
sponding squared residual norm. Broadly speaking, as the first
term in (2) is a non-increasing function of k and the second
term always increases as k increases, (2) tends to return the
cardinality from which the squared residual almost stops de-
creasing, that is, when the residual signal mostly contains the
observation noise. We next present our tests for noise-free and
noisy cases. In both cases, the dictionaryH is the same, σ = 5,
m = 150, n = 270, the mutual coherence of H ≈ 0.99, and K
is set to K∗ + 20.

4.2.1 Noise-free case

The same test is repeated for K∗ = 5, 10, 15, 20, 25, and 30.
For each K∗, we generated 30 trials, and then computed the
average value of CPU time, Recall and Precision for each algo-
rithm. We recall that “true positives” (TP) and “false positives”
(FP) are the number of good detections and wrong detections,
respectively. Recall and Precision are the rate of good detec-
tions among the expected support (i.e., TP/K∗) and among
all detections (i.e., TP/(TP + FP)), respectively. As shown
in Table 1, NNOMP takes more time than FNNOMP but often
has higher Recall and Precision. SNNOMP takes the longest
time due to the shrinkage step but also has the highest Recall
and Precision. In the noise-free case, FNNOMP often returned
some negative coefficients; the average rate of negative coordi-
nates amounts 0, 41, 32, 29, 25 and 21 %, respectively.

4.2.2 Noisy case

The same process as above is repeated for SNRs ranging in
[0, 40] dB. We observed that SNNOMP often performs better
than competitors at high SNRs. For SNRs lower than 20 dB,
the three algorithms return similar results. FNNOMP may re-
turn a few negative coefficients, especially for large SNRs. A
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Figure 1: [SNR = 30 dB] (a) Kernel h. (b) Data y and approxi-
mationsHx. (c, d, e) Ground truth (GT) and sparse recoveries
found using the MDLc rule. (f) Noise level (‖n‖22) and squared
residuals w.r.t. ‖x‖0.

typical situation wherein SNR = 30 dB and K∗ = 10 is illus-
trated in Figure 1. In Fig. 1(b), the SNNOMP and NNOMP
approximations are both superimposed with the data y, con-
trary to the FNNOMP approximation, which is less accurate.
From Figs. 1(c)–(e), it appears that SNNOMP yields more ac-
curate detection of the spike locations and amplitudes (e.g.,
around index 100) than NNOMP and FNNOMP. The latter re-
turns one negative coefficient. The decrease of the NNOMP
and SNNOMP squared error w.r.t. ‖x‖0 is faster than that of
FNNOMP (Fig. 1(f)).

5 Conclusion
Addressing least-squares minimization with sparsity and

non-negativity constraints, we introduced a recursive imple-
mentation of NNOMP using an active set algorithm for solv-
ing NNLS subproblems. We also proposed to introduce a sup-
port shrinkage step to improve the practical performance of
NNOMP, leading to the so-called SNNOMP algorithm.

Other greedy algorithms, e.g., Orthogonal Least Squares and

its forward-backward extensions could also lend themselves
to non-negative versions, with the same requirement of recur-
sively solving many NNLS subproblems. We expect that these
more involved algorithms will improve the effectiveness of the
NNOMP-like algorithms.
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