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Résumé – Les signaux acoustiques transmis dans des environnements dispersifs peuvent être difficile à analyser et à localiser. Le signal propagé
dans un environnement dispersif est par sa nature non-stationnaire. Même si à l’émission le signal a une forme simple, ses caractéristiques
seront considérablement modifiées et il sera composé, à la réception de plusieurs composantes modales. Dans ce papier, nous présentons une
méthode pour la décomposition du signal reçu dans un environnement dispersif sur des fonctions modales issues de la fonction de transfert de
la propagation des ondes acoustiques. Les fonctions de base pour la décomposition sont obtenues en variant les paramètres du modèle physique
(profondeur et distance) du canal dispersif. Cette approche peut être définie comme la généralisation de la décomposition polynomiale adapté à
la classe des signaux étudiés. Le fonctionnement de la méthode est illustré à travers des simulations numériques.

Abstract – The acoustic waves transmitted in dispersive environments can be quite complex for decomposition and localization. A signal
which is transmitted through a dispersive channel is usually non-stationary. Even if a simple signal is transmitted, it can change its characteristics
during the transmission through an underwater acoustic dispersive communication channel. Due to the propagation, the received signal often
consists of more components. Only the form of the received signal is known. In this paper, we present a decomposition of received signal based
on modal functions obtained from the transfer function of underwater acoustic wave propagation. Basis functions for decomposition are obtained
by varying the parameters which characterize the model (depth and range) of the dispersive channel. It can be considered as a generalization of
polynomial based decomposition, adjusted to the considered class of signals. The method is numerically tested.

1 Introduction

Underwater channels are usually dispersive channels. The
dispersive phenomena of underwater propagation is a challen-
ging topic of the research in recent years. There are two main
problems in the analysis of dispersive underwater acoustic chan-
nels. One problem is that such a systems produces nonlinear
transformations of a signal [1–6]. The signal propagation through
underwater media is characterized by nonlinear frequency and
phase shifts. As a result, different frequency components of a
signal are propagated with different speeds, resulting in dif-
ferent time delays at the receiving point. Other problem is that
the dispersive channel is usually characterized by a multipath
propagation producing multicomponent signals. The multipath
propagation often occurs because of the scattering of acoustic
signals on the sea bottom.

Signal analysis and processing tools can help in detection
and decomposition of received signals. The received signal in
a dispersive channel is different from the transmitted signal.
The received signal is commonly a complex, multicomponent,
non-stationary signal. Typically high frequencies are less dis-
turbed than the lower frequencies in the signal [3, 4]. Because
of the non-stationarity of these signals, the time-frequency si-
gnal analysis is a suitable tool for their analysis.

Common time-frequency tools for the analysis of this kind of
signals are the short-time Fourier transform, its polynomial ex-
tensions, the local polynomial Fourier transform, and the dual
polynomial Fourier transform [7]. In this paper, we assume that
the form of the received signal components is of general form
of modes (impulse responses) obtained by solving the transfer
function of the underwater acoustic wave propagation. We can
decompose the signal using these modes with varying depth
and range. The values of the varying parameters are obtained
by maximizing the resulting distribution concentration in the
transformation domain.

The paper is organized as follows. In Section 2 the signal
received from a dispersive channel will be modelled. The dual
polynomial Fourier transform is presented in Section 3. The
signal decomposition based on the assumed model is presented
in Section 4. Numerical results are given in Section 5.

2 Modelling of the Received Signals
from Dispersive Channels

Let us assume that an underwater acoustic wave is trans-
mitted. We will consider the propagation model as proposed



1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

100

200

300

400

500

600

T i me

F
r
e
q
u
e
n
c
y

R e s p on s e o f a d i s p e r s i v e c h an n e l

FIGURE 1 – Time-frequency representation of the impulse res-
ponse of five modes

in [3, 6]. The transfer function for this propagation model is

H(f) =

+∞∑
m=1

gm(zs)gm(zr)
exp(jkr(m, f)r)√

kr(m, f)r
(1)

≈
+∞∑
m=1

A(m, f)√
r

exp{jkr(m, f)r}, (2)

where gm(z) are the modal functions of the mth mode and
kr(m, f) are the horizontal wavenumbers. Values zs and zr are
the depths in meters of the transmitter and receiver, respecti-
vely. Value r represents the distance between the transmitter
and receiver. The modal functions are the solutions [6] of

∂2g(z)

∂z2
+

((2πf
c

)2
− k2r(m, f)

)
g(z) = 0. (3)

The sound speed c in the case of underwater communica-
tions is c = 1500 m/s. In general, the transfer function of a
dispersive channel consists of several components. The com-
ponents depend on the wavenumber and their frequencies. The
variableAm = A(m, f)/

√
r. is the attenuation rate. It depends

on gm, kr(m, f) and r. The response to a monochromatic si-
gnal, exp(j2πf0n), can be written as

sm(n) ≈ Dm exp(j2πf0n− jkr(m, f0)r), (4)

whereDm is the depth of the channel. An ideal time-frequency
representation of the impulse response of a dispersive channel
environment is shown in Fig. 1. It would ideally track the fre-
quency changes in time.

3 Dual Polynomial Fourier Transform
The dispersive channels are non-stationary. Therefore, the

most suitable tool for their consideration is the time-frequency
analysis. Several techniques were developed for the localiza-
tion in the underwater dispersive channels. Most of them are
based on the parametric modeling and short time Fourier ana-
lysis, like the technique using the phase continuity of the si-
gnals, [3]. In the underwater signals the phase changes in the
frequency domain (along with the group delay) are of primary
interest. It is the reason why the local polynomial Fourier trans-
form in the frequency domain is more appropriate tool for the

analysis that the standard time domain polynomial Fourier trans-
form. We will explain here the procedure of decomposition
using the dual polynomial Fourier transform (DPFT) from [8].

The idea of the DPFT is to find the parameters where the
signal transformation is maximally concentrated. If the energy
is preserved, maximally concentrated distribution produces the
maximum of transformation amplitude value as well. Note that
the considered underwater signals have significant frequency
changes in the spectral content within a short time interval. In
that case, the dual PFT is more appropriate tool than its coun-
terpart with parameters in time domain. Using the frequency
domain form of the polynomial Fourier transform we can ex-
tract the signal components and localize their positions [7].

The discrete DPFT is defined as :

xβ2,β3...,βN
(n) =

∫
f

X(f)ej(2πn+β2f
2+...+βNf

N )df. (5)

The maximum of DPFT, defined by Eq.(5), is achieved when
(b̂2, b̂3, ..., b̂N ) = arg max

(n,β2,...,βN )
|xβ2,...,βN

(n)|. (6)

where β2, β3, ..., βN are the parameters.
Assume that the analyzed signal is a polynomial phase signal

(PPS) of the N -th order

X(f) = A exp
(
− j
∑N
l=1 blf

l
)
.

The signal will be highly concentrated in the PFT space of
parameters where the maximum of the transform is achieved
(where the transform of this signal is the best concentrated),
Eq. (6). That is, the DPFT of a signal X(f) will have the best
concentration when (β2, ..., βN ) = (b2, ..., bN ) and the goal to
estimate b̂2 ≈ b2, . . . , b̂N ≈ bN is achieved.

4 Model-based Decomposition
We have found that the DPFT is more appropriate tool for

considered signals that the transform with parameters in the
time domain. However, this transformation is quite general and
it does not take into account the specific propagation form of
the underwater signals. Since we may assume that the compo-
nents take the form of modal functions, a signal adapted ap-
proach to decomposition would be to use the parametrized mo-
dal functions in decomposition. Parameters would be the modal
index, distance and depth as the unknown parameters.

Therefore, in this paper, we will use the idea as in the DPFT
to vary the parameters of the modal functions as the decompo-
sition functions. The goal is to vary the parameters of the trans-
fer function model in the way we would vary the frequency
parameters in the DPFT. The received signal x(n) will be then
decomposed as :

X(m, r,Dm) =

∫
f

X(f) exp (−jkr(m, f)r)df =

=

∫
f

X(f)Hm(f, r,Dm)df (7)

=

∫
f

X(f) exp (−j(
(
2πf/c

)2 − ((m− 0.5)π/Dm

)2
)r)df,
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FIGURE 2 – Absolute impulse response of the dispersive chan-
nel modes

where X(f) is the Fourier transform of the received signal and
kr(m, f) is defined by

kr(m, f) =
(
2πf/c

)2 − ((m− 0.5)π/Dm

)2
. (8)

The ideal time-frequency representation of modal (here decom-
position) functions is presented in Fig. 1.

In [8] the decomposition of the signal by varying the second
order DPFT parameters is shown. In this way we maximize
DPFT by varying the parameters β2,3. Here, we assume that the
channel depth and the range are parameters and the unknowns.
Instead of the polynomial coefficients β2,3 (as in the DPFT) we
will use the parameters r and Dm.

The speed and the frequency range in which the underwater
acoustic system operates are defined a priori. The values r̂ and
D̂m are arbitrarily varied in some expected range. The system
will have the highest concentration

(r̂, D̂m) = arg max
(r,Dm)

|X(m, r,Dm)| (9)

when these values are close to the true ones, i.e. D̂m ≈ Dm

and r̂ ≈ r. An example will be shown in the next section.

5 Numerical Results
Let us consider a dispersive underwater channel with five

modes. The frequency range f is between fmin = 250 Hz and
fmax = 500 Hz. The true channel depth and the distance bet-
ween the transmitter and receiver r are 20 m and 2000 m, res-
pectively. These two parameters are considered as unknown.

The impulse response of each mode independently is shown
in Fig. 2. The form of decomposition functions is

Hm(f, r,Dm) = Am exp (−jkr(m, f)r) =

Am exp (−j(
(
2πf/c

)2 − ((m− 0.5)π/Dm

)2
)r). (10)

where m represents the index of a mode.
The transmitted signal is considered to be a pulse with a short

interval, close to a delta function, whose spectrum is then equal
to 1, i.e. U(f) = 1. The received signal is the convolution
between the transmitted signal and the impulse response of the
system, with X(f) = H(f).

For the analysis we have used the model-based decomposi-
tion. Variables Dm and r are arbitrarily varied. The value for
depthDm is varied in the range between 0 to 100. The distance
value r is varied in the range between 1000 to 3000.
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FIGURE 3 – Decomposed modes in the time domain

It has been calculated that the maximal values are found at
the position Dm = 20.0357 m and r = 2000 m. The decom-
position of each component is shown in Fig. 3. The sum of the
received components and the sum of reconstructed components
are shown in Fig. 4.

The decomposition results are non-stationary single com-
ponent signals. They are shown in the time-frequency domain
using the discrete short-time Fourier transform (STFT) repre-
sentation of the signal. Since all analyzed modes (components)
are in a wide frequency range, we will analyze the signal in the
frequency domain using the dual STFT. It is defined by

STFT (k, n) =

Ns/2∑
m=−Ns/2

X(m−k)W (m)e−j2πmn/Ns (11)

where X(k) is the discrete Fourier transform of the conside-
red component and W (m) is the frequency domain analysis



window of size Ns. In this paper, a Hanning window of size
Ns = 21 is used.

The STFT representation of a sum of five modes is shown
Fig. 5 (top). Sum of the decomposed components and the am-
plitudes of individual components are given in Fig. 5 (bottom).
The mean squared error (MSE) in the decomposition is calcu-
lated as

e = 10 log

∑
k,n(|STFTR(k, n)| − |

∑
m STFTm(k, n)|)2)∑

k,n |STFTR(k, n)|2

where STFTR(k, n) denotes the STFT of the received signal
and STFTm(k, n) are the STFTs of mods (components) of
the received signal after the decomposition. The MSE value
is e = −33.897 dB. The method is not noise sensitive until
the threshold for the detections is reached, i.e. when the input
signal-to-noise ratio (SNR) is approximately −5 dB. When the
threshold is reached, the error sharply increases, since some
modes are not detected.

The method was compared with the second order dual poly-
nomial decomposition, [8]. Since the mode forms do not fully
coincide with the polynomial forms along the frequency, the
best means squared error that can be achieved with the second
order polynomial approximation was e = −22.2 dB.
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FIGURE 4 – Sum of the components : received (top) ; recons-
tructed (bottom)

6 Conclusions
Decomposition of acoustic signals in a dispersive environ-

ment based on the model form is shown. Knowing that the re-
ceived signal is dependent on the distance between the trans-
mitter and receiver and the channel depth, we can vary these
two values to decompose the signals. The decomposition in
such way was examined numerically and satisfactory results
are obtained.
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FIGURE 5 – Time-frequency representations of the received
(top) and the reconstructed signal (bottom)
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