
Towards sequential decoding of intramuscular EMG signals: Parallel
computing implementation

Tianyi YU1, Konstantin AKHMADEEV2, Eric LE CARPENTIER1, Yannick AOUSTIN2

Laboratoire des Sciences du Numérique de Nantes, UMR CNRS 6004
1 rue de la Noë , BP 92101 F-44321 Nantes Cedex 3, France

1Ecole Centrale de Nantes • 2Université de Nantes
(Tianyi.Yu|Konstantin.Akhmadeev|Eric.Le-Carpentier|Yannick.Aoustin)@ls2n.fr

Résumé – La décomposition d’un signal électro-myographique intra-musculaire en composantes élémentaires, les trains d’impulsion des mo-
toneurones, permet de reconstruire le message émis par le système nerveux central pour commander la contraction musculaire. En 2014, un
algorithme récursif en temps a été proposé, fondé sur un modèle de Markov dont l’état est estimé par filtrage bayésien. On propose ici une
implémentation sur processeur parallèle, en vue d’une décomposition temps-réel.

Abstract – The decomposition of the intramuscular electromyographic signals in some elementary components, the spike trains of motor
neurons, allows to rebuild the original order emitted by the spinal cord to activate the muscle contraction. In 2014, a time-recursive algorithm
was proposed. It is based on an hidden Markov model whose state is estimated by a Bayes filter. This paper proposes an implementation on a
parallel processor, in order to achieve an online decomposition.

1 Introduction
The idea to control active prosthetic devices for amputees

through electromyographic (EMG) signals was proposed by N.
Wiener in [1]. EMG signals represent the activity of muscle
fibers, as driven by the population of spinal motor neurons
(MN) innervating the muscle. Recent research works rely on
the conjecture that retrieving the activity of individual motor
neurons will help to improve the control of prosthetic devices
[2–4]. In [5], a potentially online decomposition method of
iEMG signals was proposed. The iEMG signals are modeled
as a sum of independent convolved spike trains. The sparsity
and the regularity of the spike trains is taken into account by a
stochastic model. This leads to an Hidden Markov Model (part
2). The decomposition algorithm is a reasonable approxima-
tion of the Bayes filter (part 3). Compared with the previous
decomposition methods, this one can decode iEMG signals se-
quentially and analyses perfectly the superimposed MUAPs. It
has a parallel structure which makes it suitable to be imple-
mented on a parallel processor such as a Graphics Processor
Unit (GPU) to reach a real time implementation (part 4). The
results are shown in part 5.

2 Markov model
We consider a model of EMG signal proposed in [6]:

Y [n] =

nMN∑
i=1

(hi ∗ Ui)[n] +W [n] (1)

where Y [n] is the EMG signal at discrete time index n, nMN is
the number of active motor neurons, hi is the response (motor
unit action potential, MUAP) of the motor unit innervated by
the i-th motor neuron, Ui is a sparse 0-1 sequence representing
the spike train emitted by this motor neuron, W [n] is a white
gaussian noise, and ∗ denotes convolution.

We introduce the sawtooth sequence (Ti[n]) representing the
time passed since the last spike [5]:

Ti[n] =

{
0 if Ui[n] = 1 (the MN fires)
Ti[n− 1] + 1 if Ui[n] = 0

(2)

In the sequel, exponent n is used for sequences until time index
n (e.g. Tn

i = [Ti[1], ..., Ti[n]). With the assumption that inter-
spike intervals are independent and identically distributed, (Ti[n])
is a Markov chain; given Tn

i and Θi:

Ti[n+ 1] =

{
0 w.p. rΘi(Ti[n] + 1)

Ti[n] + 1 w.p. 1− rΘi
(Ti[n] + 1)

(3)

where rΘi
is the parameterized hazard rate [7] of the inter-spike

interval probability distribution. As a distribution of inter-spike
intervals, we choose the discrete Weibull one [8] which fits well
the real process [5] and whose hazard rate expression is sim-
ple. Discrete Weibull distribution has three parameters Θi =
[t0, β, tR]: t0 is a scale parameter, β is a shape one and tR is
a shifting one. The latter represents the minimum interval be-
tween two consecutive spikes, which is a physiological param-
eter with known bounds. We assume that it is bigger than the
maximum length `IR of MUAPs, so that consecutive responses
of one motor unit do not intermingle.

Furthermore, we assume that the Weibull parameters remain
constant along time and that MUAPs are known. Then, vector
T[n] = [T1[n], ...TnMN [n]] and vector Θ[n] = [ΘT

1 , ...Θ
T
nMN

]
are the state vectors of a Markov chain. The Markov model is
completed with the observation equation:

Y [n] = [ϕ(T1[n]) · · ·ϕ(TnMN [n])]︸ ︷︷ ︸
Φ(T[n])

H +W [n] (4)

ϕ(Ti[n]) is a regression vector of `IR size, for all i ∈ nMN,
every position is 0, except the component in the position of
Ti[n] + 1 is 1, if 0 ≤ Ti[n] ≤ `IR. Note that the state vector is
composed of both discrete and continuous variables.

3 Bayes filter
The Bayes filter recursively computes the posterior probabil-

ity of Tn and Θ given the observed sequence Y n along time.
In [5], an approximated Bayes filter is proposed, in which the
expected value of the hazard rate with respect to every possible
value of the Weibull parameter is replaced by the hazard rate of
the estimated Weibull parameter obtained using a recursive im-
plementation of a quasi-Newton optimization of the maximum
likelihood criterion.

It is impossible to process all possible values of Tn, since
their number increases exponentially as time index n grows.
The npath most probable paths are kept at every time index,
where npath is chosen according to the available computation
power.

The state vector can be estimated in the following recursion
for all n ≥ 1:
Task 1 Data transmission: Observed signal Y [n]
Task 2 Posterior probability of sawtooth sequences Tn:

Ŵ
|n
tn = Y [n]− Φ(t[n])H

P|n(Tn = tn) ∝ P|n−1(Tn = tn) g(Ŵ
|n
tn , V̂

|n−1
tn−1)

(5)

where |n means that Y n is known, P|n−1(Tn = tn) is the prior
probability at time index n-1 and g(., V̂

|n−1
tn−1) is the Gauss prob-

ability density function with zero-mean and variance V̂ |n−1
tn .

Selection of the npath most probable paths.
Task 3 Estimation of the variance of the noise:

V̂
|n
tn = (1− 1

n
)V̂
|n−1
tn−1 +

1

n
(Ŵ
|n
tn)2 (6)

Task 4 Update the discrete Weibull distribution parameters [9]:

θ̂tni = θ̂tn−1
i
− 1

n
G−1

tni
Q′tni (θ̂tn−1

i
)

Gtni
=

1

n
[Q′tni (θ̂tn−1

i
)][Q′tni (θ̂tn−1

i
)]T + (1− 1

n
) Gtn−1

i

(7)

where Q′tni (θ) is the gradient of Qtni
(θ) with

Qtni
(θ) =

{
−ln r(ti[n] + 1, θ) if ti[n+ 1] = 0

−ln (1− r(ti[n] + 1, θ)) if ti[n+ 1] = ti[n] + 1

And theQ′tni (θ̂tn−1
i

) is the approximate gradient vector andGtni

is the approximate Hessian matrix of the maximum likelihood
criterion at the current estimate.
Task 5 Data transmission: Discrete Weibull distribution pa-
rameters Θ̂[n] and the most probable sawtooth sequences T[n]
Task 6 Bifurcation of sawtooth sequences and calculation of
the priori probability:

P|n(Tn+1 = tn+1) = P|n(Tn = tn)×

nMN∏
i=1


r(ti[n] + 1, θ̂tni) if ti[n+ 1] = 0

1− r(ti[n] + 1, θ̂tni) if ti[n+ 1] = ti[n] + 1

0 otherwise
(8)

4 Parallel computing model
The estimation of state sequence computed recursively in

Bayes filter can be interpreted as a loop-based pattern [10]. The
performance of a loop-based pattern implemented in the paral-
lel computing structure varies in terms of the dependencies be-
tween loop iterations and the work partition between the avail-
able processors. Since the calculation of the posterior prob-
ability of sawtooth sequences P|n(Tn = tn) at time index n
depends on the results of the prior probability P|n−1(Tn = tn)
and the sawtooth sequences T[n−1] at time index n-1, it is im-
possible to remove the dependencies between loop iterations.
Therefore one must calculate them in strictly sequential man-
ner. In contrary, each iteration can be broken into a number of
single tasks executed in parallel. In the following sections of
this article we are going to analyse the structure of this algo-
rithm to minimize communication between processors and to
maximize the use of on-chip resources.

4.1 Parallelism analysis
Data parallelism is a form of parallelization based on data.

It focuses on the distribution of data in the different processors
that execute the same operation in parallel [10].

Paths on parallel: Before the bifurcation of sawtooth se-
quences T[n], there are npath paths which are mutually inde-
pendent. After the bifurcation, all new paths remain indepen-
dent. So calculations in all paths could be implemented in the
parallel structure with less communication between them.

Motor units on parallel: According to the hypothesis of the
Markov model, there is no dependency between any two motor
units. And therefore, in every path, the calculation of all motor
units can be executed simultaneously.

Task parallelism is another parallelization contrasting to
data parallelism [10]. Rather than simultaneously computing
the same function on lots of data elements as data parallelism,
task parallelism involves doing two or more completely differ-
ent tasks in parallel. In the structure of decoding intramuscular
EMG signal, the simultaneous execution of tasks limited by the
dependences between tasks.

In every iteration, the data transmission takes place two times:
data transmission of observed signal Y [n] from host (CPU) to

device (GPU) (task 1); data transmission of Weibull parameters
Θ̂[n] and sawtooth sequences T[n] from device to host (task
5). CUDA supports simultaneous kernel execution and the two
types of memory copy. As a result, to overlap the data trans-
mission, both of them are executed simultaneously with kernel
functions.

In addition, the Nvidia’s GPUs whose micro-architecture is
issued after ”Fermi” supports concurrent kernel execution [11,
12], where different small kernels of the same application con-
text can be executed at the same time to utilize the whole GPU.
Therefore, in every loop, the estimation of the variance of noise
(task 3) and the calculation of the prior probability (task 6) are
executed at the same time. Scheme illustrating these two appli-
cations of task parallelism is figure 1.

Figure 1: Structure of task parallelism

4.2 Task analysis
In every iteration, tasks 1 and 5 are data transmissions. Task

3 (estimation of the variance of the noise) and task 4 (update the
discrete Weibull distribution parameters) are ordinary small-
size parallel computing problems, whereas task 2 consists of
posterior probability calculation of sawtooth sequences T[n]
and selection of the npath most probable paths which is related
to a classic parallel sorting problem. Task 6 (bifurcation of
sawtooth sequences) which change the size of parallel structure
also deserves consideration.

Task 2: selection of the npath most probable paths After
the bifurcation of sawtooth sequences, with respect to the tran-
sition distribution presented in (2), there are usually npath×2nMN

paths in maximum where nMN is the number of motor units.
The size of sorting problem in parallel varies from npath to
npath × 2nMN . In our parallel model, it assumed that there are at
most 4 motor units in the iEMG signal. Therefore, it’s a small
size sorting problem. For small sequences, bitonic sort is usu-
ally considered as the fastest traditional sort [13]. The work
complexity of bitonic sorting is O(n log2

2 n). In the parallel
environment, the time complexity of bitonic sorting network is
O(log2

2 n). The most important operation of the bitonic sorting
is the arrangement of a bitonic sequence into a sorted sequence
which implements perfectly in the parallel computing.

Task 6: bifurcation of sawtooth sequences Path T[n] bi-

furcates in at most 2nMN different ways giving an overall num-
ber of npath × 2nMN of new paths. To avoid the memory initial-
isation and allocation of each bifurcation originated from one
path, indexing is used. We note that each old path occupies
a separate memory block Nb and all its bifurcations receive
a separate thread. Here is an example for two active motor
neurons, which gives a two-dimensional vector T[n] and four
possible bifurcations (used values are arbitrary):

if T[n] =

[
450
635

]
, T[n+1] ∈

{[
451
636

]
,

[
0

636

]
,

[
451
0

]
,

[
0
0

]}
(9)

Each i-th motor unit can either not fire at time n+ 1 (Ti[n+
1] = Ti[n] + 1) or fire if ready (Ti[n + 1] = 0). Therefore, to
each configuration in T, a binary code can be associated.

T[n+ 1] 7→
[
1 0 1 0
1 1 0 0

]
; (10)

This code is unique for each bifurcation and it covers all serial
numbers of thread Nt from 0 to 2nMN − 1. These numbers and
the serial numbers of block Nb are then used as indexes for
threads dedicated to each bifurcation. Its state T [n+ 1] can be
decoded using T[n] in Nbth path, for each motor neuron i:

Ti[n+ 1] = (Ti[n] + 1)×

{
1 if Nt

2i mod 2 = 0

0 otherwise
(11)

Single-precision floating-point operations were used on GPU.
Because the difference of resultats calculated by the type of
float and double is not distinguishable by eyes. And single-
precision floating-point saves space of shared memory and reg-
ister to accelrate the programme. To avoid the round-off error
accumulating in sums of many elements, Kahans Summation
formula [14] was used.

5 Results
The algorithm was evaluated on simulated iEMG signal, gen-

erated using the Markov model described earlier, with sam-
pling frequency of 10 kHz and duration 3 s. MUAP shapes
were taken from a real iEMG signal decomposed by hand. There
were four active motor units. The value of the shifting parame-
ter of Weibull distribution was chosen to be 30 ms; the location
parameter t0 of inter-spike interval ranged from 60 ms to 90
ms; and the concentration parameter β ranged from 1 to 10.
The SNR (Signal to Noise Ratio) was set to 20 dB.

Simulated iEMG signal was decomposed using parallel im-
plementation of the algorithm with 64 paths. As shown in
figure 2, the reconstructed signal without noise obtained by
Markov model coincides well with the simulated signal. The
performance of estimation of four spike trains is 100% correct.
And in the figure 3, it shows the discharge rate and the mean
value of four firing sources over 3 seconds. The discharge rate
depends on the Weibull parameters t0 and β that is sequen-
tially estimated in the decoding model. This value gradually
stabilises within one second after beginning of the decomposi-
tion for all active motor neurons.

Figure 2: Reconstruction of the simulated signal of the 2nd
second and Estimation of spike trains of four sources

Figure 3: Discharge rate and the mean value of four firing
sources over 3 seconds

The execution time of the algorithm in serial structure is
tested in the software MATLAB 2014b installed on a PC sys-
tem with Central Processing Unit: Intel(R) Core(TM) i7-3770
CPU @ 3.40GHz and RAM 8 Go. The parallel computing
is implemented in the software VISUAL STUDIO 2013 and
CUDA 7.5 installed on a laptop with Central Processing Unit:
Intel(R) Core(TM) i7-4700MQ CPU @ 2.40GHz and Memory
Installed RAM 16.00 Go; Graphics Processing Unit: Intel(R)
HD Graphics 4600 and NVIDIA GeForce GTX 780M.

The execution times of parallel and serial implementations
were respectively 57±3 s and 5214±133 s. The parallel signal
decomposition is 91.5 times faster than the serial computing of
decoding signal.

6 Conclusion
The implementation of sequential decomposition of intra-

muscular EMG signals via estimation of a Markov model in
the parallel environment has shown a considerable acceleration
of the calculations. The high velocity derives from the data
parallelism and task parallelism in every recurrence of state
vector estimation and the work partition between the available
processors. Though the proposed implementation is still not
a real-time one, the computation time is significantly reduced,
making the online implementation likely.

References
[1] N. Wiener. Cybernetics or control and communication in

the animal and the machine. MIT Press, 1948.
[2] Dario Farina et al. The extraction of neural informa-

tion from the surface emg for the control of upper-limb
prostheses: Emerging avenues and challenges. IEEE
Trans. on neural systems and rehabilitation engineering,
22(4):797–809, 2014.

[3] Francesco Negro, Silvia Muceli, Margherita Castronovo,
and Dario Farina. Multi-channel intramuscular and sur-
face emg decomposition by convolutive blind source sep-
aration. Journal of Neural Engineering, 13(2), 2016.

[4] Dario Farina et al. Man/machine interface based on the
discharge timings of spinal motor neurons after targeted
muscle reinnervation. Nature biomedical engineering, 1,
2017.

[5] J. Monsifrot, E. Le Carpentier, Y. Aoustin, and D. Fa-
rina. Sequential decoding of intramuscular emg signals
via estimation of a markov model. IEEE Trans. on neu-
ral systems and rehabilitation engineering, 22(5):1030–
1040, 2014.

[6] Dario Farina, A. Crosetti, and R. Merletti. A model for the
generation of synthetic intramuscular EMG signals to test
decomposition algorithms. IEEE Trans. on Biomedical
Engineering, 48(1):66–77, 2001.

[7] V. Barbu and N. Limnios. Reliability theory for discrete-
time semi-markov systems. In In semi-Markov Chains
and Hidden Semi-Markov Mdels toward Applications,
volume 191, pages 1–30, 2008.

[8] T. Nakagawa and S. Osaki. The discrete weibull distribu-
tion. IEEE Trans. on Reliability, R-24(5):300–301, 1975.

[9] J. Monsifrot, É. Le Carpentier, and Y. Aoustin.
Modélisation de trains d’impulsions à l’aide d’une loi de
Weibull discrète. Estimation hors-ligne et séquentielle des
paramètres. In 24e colloque GRETSI sur le traitement du
signal et des images, Brest, France, September 2013.

[10] Shane Cook. CUDA Programming A Developer’s Guide
to Parallel Computing with GPUs. Morgan Kaufmann,
2013.

[11] NVIDIA Corporation. Whitepaper NVIDIA’s Next Gen-
eration CUDA Compute Architecture: Fermi. NVIDIA
Corporation, 2009.

[12] Jason Sanders and Kandrot. CUDA by example: an
introduction to General-purpose GPU Programming.
Addison-Wesley Professional, 2010.

[13] A. C. Dusseau et al. Fast parallel sorting under logp: Ex-
perience with the cm-5. IEEE Trans. Parallel Distrib.
Syst., 7(8):791–805, 1996.

[14] Kahan William. Further remarks on reducing truncation
errors. Communications of the ACM, 8(1):40, 1965.

