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Résumé – Une collection de 149 photographies de F. Holland Day a été constituée par des conservateurs de photographies, spécialistes de
cet artiste. Des échantillons d’environ un centimètre carré de textures des papiers photographiques correspondants ont été numérisés et mis à
dispositions d’équipes de traitement d’images, avec pour objectif l’évaluation de l’intérêt et de la pertinence d’une classification non supervisée
automatisée. Une procédure, combinant représentations anisotropes multiéchelles et clustering spectral, déjà mise en oeuvre dans plusieurs
challenges de classification automatique de papiers photographiques, a été complétée ici par la conception d’un indice quantifiant la robustesse
de la classification. La comparaison de la classification obtenue à celle réalisée a priori et indépendamment par les conservateurs par inspection
visuelle des papiers a permis d’intéressantes réflexions interdisciplinaires.

Abstract – Photograph conservators assembled a collection of 149 photographs by F. Holland Day. Digitized one-squared centimeter samples
of textures of the corresponding papers were made available to image processing teams, with the aim of assessing the potential interest and
efficiency of automated unsupervised clustering. A procedure combining anisotropic multiscale representations and spectral clustering, already
used in art photographic paper clustering challenges, was complemented with the design of a clustering robustness index. Comparisons of
the achieved automated clustering against an a priori and independent grouping performed by visual inspection of the textures by photograph
conservators triggered fruitful interdisciplinary interactions and discussions.

1 Introduction

F. Holland Day (1864-1933) was a leader in the art photogra-
phy movement known as Pictorialism (1885-1915), which had
its founding at the turn of the nineteenth century [5, 4]. This
movement was the first to promote photography as an artis-
tic medium on par with other graphic and visual arts. While
Day was an important figure in photography, his career span-
ned roughly 20 years, and due to a studio fire in 1904, much
of his work does not survive. The Library of Congress is in
possession of the largest collection of Day photographic prints
in the world, totaling some seven hundred items, spanning the
history of his career. These prints having unquestionable pro-
venance are ideal for study and the focus of on-going research
to define Day’s working methods.

One fundamental aspect of photography is the paper, which
imparts expressive texture to the final image. Understanding
and being able to differentiate the textures of papers used throu-
ghout Day’s career would provide key information on the choices

he made in the darkroom, and further contribute to the dating
and attribution of his work. Art photographic classification is
commonly achieved by photograph conservators through visual
inspection, which proved difficult and extremely time consu-
ming over such a large collection, as visual memory for tex-
ture is limited and easily confused. Automation is thus seen
as essential to the viability of texture comparison as a reliable
method, as it is expected to be more objective, less time consu-
ming, and to enable to compare objects across institutions. Re-
lations between automated clustering and photograph conser-
vator grouping constitute the core of the present work.
Related works. In 2007, a project conducted at the Museum
of Modern Art made a pioneering attempt in automated clas-
sification of art photographs. Several image processing teams
were invited to perform unsupervised clustering based on art
art photographic paper texture similarity assessment on a sub-
set of around 2000 digitized samples from the Yale Lens Media
Lab (LML) Reference Collection of Photographic Papers [8].
These methods have demonstrated great promise on controlled
data sets [2, 7, 9, 12, 1, 3].



Goal, contributions and outline. The present work elaborates
of these first successes by comparing the automated clustering
obtained from one of the image processing tools [2] against
a grouping performed by the photograph conservators as well
as in reporting both the photograph conservator comments and
reactions to the automated clustering and issues in these inter-
disciplinary interactions. The data set assembled by the photo-
graph conservators involved in the present work together with
the grouping procedure are described in Section 2. The aniso-
tropic multiscale representation and spectral clustering used for
automated classification are recalled in Section 3. An original
noise-assisted procedure assessing the robustness of the clus-
tering is devised and studied in Section 4. Finally, automated
clustering and photograph conservator grouping are compared
and discussed in Section 5.

2 Data Set

Data set. A collection of N = 149 photos by F. Holland Day,
was assembled by photograph conservators (experts in Days
work and platinum paper), with the aim of differentiating the
textures of papers used throughout Day’s career [5, 4].
Data. For each photography, 1.00 × 1.35 cm2 paper surface
samples were digitized both recto and verso. Samples are digi-
tized at 153.6 pixel/mm, thus producing 1536 × 2080 images
(each pixel corresponding to 6.512 ' 42.4µm2), using a ra-
king light imaging system, referred to as the TextureScope, and
extensively described in [7].
Visual-inspection based grouping. In the present work, groups
of papers were assembled based on similarities in texture as es-
tablished through visual inspection. Sorting was best done by
establishing a key set, consisting of one image of each texture
type, from which all others would be compared. This proce-
dure resulted in a classification in nine groups, very different in
size, labelled with letters A, B E, F, H, M, Q, S, and hereafter
referred to as photograph conservator (PC) groups.

3 Multiscale Analysis/Spectral Clustering

The image processing tools used for automated art photogra-
phic paper characterization clustering have already been detai-
led in [2], and are hence here only briefly recalled.
Multiscale Analysis. Anisotropic multiscale analysis, propo-
sed for the characterization of scale-free textures in [10], is
implemented using the Hyperbolic Wavelet Transform (HWT).
Expanding of the classical 2D-Discrete Wavelet Transform, HWT
compares, by means of inner products, the texture to analyzeX
against wavelet templates, dilated with horizontal and vertical
factors a1, a2 and translated at location k1, k2. Space averages
SX(a1, a2) of squared HWT coefficients at scales a1, a2 define
anisotropic multiscale features summarizing the key properties
of texture X . To ensure both independence on image inten-
sity and contributions from all scales, the SX(a1, a2) are log-

normalized as S̃X(a1, a2) = ln SX(a1,a2)∑
a′
1,a′

2
SX(a′

1,a
′
2)

. Given the

high-resolution images, a vector of 7 dyadic scales a1, a2 = 2j

is used, ranging from 2 pixels (6.51µm) to 27 (834µm), for a
total of 7 × 7 = 49 features S̃X(a1, a2, q). Distance between
two images i and j is computed using a L1 norm (or cepstral-
like) distance :

D(i, j) =

(∑
a1,a2

|S̃i(a1, a2)− S̃j(a1, a2)|

)
.

Clustering is achieved via Spectral Clustering (cf. e.g., [11,
6]), an unsupervised procedure aiming to reduce the dimen-
sionality of texture representation space. A non-linear transfor-
mation is applied to the N × N distance matrix D to produce
an affinity matrix A = exp(−D/ε), with ε a constant asses-
sing a typical closeness between images. The (random walk)
Laplacian operator of the graph underlying the structure of the
affinity matrix A, is diagonalized. The corresponding eigenva-
lues are sorted and the eigenvectors, {Fi,k}, corresponding to
the K � N smallest eigenvalues are assembled in a K × N
matrix S, defining the set of robust K coordinates. Ascendant
clustering (Ward linkage), applied to matrix S, yields a classi-
fication C = {Ck, k = 1 · · ·K} into K clusters (with Ck the
list of images in Cluster k).

4 Noise Assisted Robustness Index
To assess the robustness of the achieved clustering C into

K clusters, the following noise-assisted procedure is devised.
For each image i, Z = 10 surrogate-copies {F̃i,k} of the spec-
tral clustering features {Fi,k} are generated by adding inde-
pendently to each {Fi,k} a white Gaussian noise, with standard
deviation µσk, with σk the standard deviation of {F·,k} and µ
a tunable parameter. Ascendant clustering is then applied to the
K × (N × Z) matrix S̃ , as if the database consisted of N × Z
original images, while keeping fix the number K of clusters,
yielding classification C̃ = {C̃k, k = 1 · · ·K}. Then, for each
image i in the original database, an index is computed as inter-
section size of clusters to which image i belongs for original
and noise-blurred clusterings :

ri =
#{c̃ki

∩ cki
}

#{cki}
∈ [0, 1]

This is repeated for several noise levels and the final score ro-
bustness score ri is computed as average of the ri across noise
levels, tuned by selecting µ. The underlying intuition of the
proposed procedure is that when an image is robustly classi-
fied within a cluster, it remains insensitive to additive noise.
Conversely, when noise easily induces switches from one clus-
ter to another, it indicates that the corresponding image is not
robustly clustered.

The procedure is assessed using synthetic data. Spectral clus-
tering and the noise-assisted robustness procedure are applied
to features {Fi,k}i=1,...,80,k=1,...,49, randomly generated accor-
ding to a 4-class Gaussian mixture model, spanning the data
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FIGURE 1 – Robustness indices for each image per cluster.
Synthetic data.

into 4 equal size clusters. Spectral clustering easily identified
the relevant number of clusters,K = 4. Figure 1 reports robust-
ness indices for each image per cluster. For Cluster 2, images
1 and 21 to 26 are misclassified and interestingly have low ro-
bustness indices. In each of the 4 clusters, one image is obser-
ved to have a low robustness index despite actually belonging
to the cluster. Detailed examination of the realization shows
that these image are just by chance (features are randomly drawn)
far from the center of the cluster they belong to (hence a low
robustness index). These observations validates the relevance
of the proposed clustering robustness index.

5 Automated Clustering vs. Photograph
Conservator Grouping

5.1 Automated clustering and robustness indices

Matrix Dr (resp. Dv), of size N × N , is computed as dis-
tances between theN = 149 recto (resp., verso) samples. Final
distancesD between images i and j are computed as average of
recto and verso distances. Figure 2 (left) shows the resulting af-
finity matrix, obtained setting ε to the standard deviation of dis-
tances between all pair of images. Sorted eigenvalues, and their
successive differences reported in Fig. 2 (middle) indicates that
clustering with K = 2, 4 or 6 clusters are relevant. For ease
of comparisons to photograph conservator grouping, K = 4
is retained here, and the corresponding dendrogram shown in
Fig. 2 (right). Robustness indices are reported in Fig. 3, avera-
ged across 20 different noise levels.
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FIGURE 2 – F. Holland. Day’s Photograph paper clustering.
Affinity matrix (left). Spectral clustering sorted eigen values
(middle). Dendrogram (right).
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FIGURE 3 – Robustness indices for each image per cluster.
F. Holland. Day’s Photograph papers.

5.2 Photograph conservator grouping

Table 1, that compares the four clusters obtained using HWT
features (hereafter clusters) to the nine groups obtained by pho-
tograph conservators (hereafter groups), permitted constructive
discussions between image processing teams and photograph
conservators.

Table 1 shows an overall satisfactory agreement between clus-
ters and groups, with clusters either globally matching Groups
or gathering together several Groups. For instance, Cluster 1
corresponds to Group E, but for samples 267, 321, 513, 519.
This is very satisfactory as photograph conservators indicated
a posteriori that Group E corresponds to pebbly textured papers
that were used by a different artist (Frederick Evans), making
copy prints of Day’s work, at different time, and on different
continent. Further, and interestingly, three of the four misclas-
sified samples (267, 321 and 519) have low robustness indices
(cf. Fig. 3), thus indicating a weak belonging to Cluster 1.

Cluster 2 combines Groups F and S and some papers of
Group A, and shows for each sample within that cluster high
robustness indices, indicating a significant consistency of the
cluster. This is confirmed by photograph conservators, who un-
dertook a new visual inspection of papers in Groups A and S
and agreed on significant visual similarities, with similar peb-
bled surfaces, except that S has a linear element. Also, papers
from Groups A and S are used over a long period of time.

Table 1 also shows that some of the groups are split amongst
different clusters. For instance, Group B, that remained grou-
ped together when a two cluster automated classification is
achieved (not shown here), is split into Clusters 3 and 4. A new
inspection of Group B by the photograph conservators actually
confirmed that samples from Group B that fall into Cluster 3
have smoother textures than those in Cluster 4.

Photograph conservators also commented that Cluster 3 is
the less satisfactory as it gathers very different papers, from
several Groups (K, M and Q) as well as some samples from
Groups A and B. The lower consistency of Cluster 3 is some-
how indicated by robustness indices being globally lower for
Cluster 3 than for the other clusters (cf. Fig 3), thus indicating
less consistency for Cluster 3. Photograph conservators, howe-
ver, assessed that samples from Groups A and B gathered in
Cluster 3 are smoother that the other samples from Groups A
and B. Also, Groups K and M, though different, consists of
smooth papers. Cluster 3 thus shows global consistency in ga-
thering smooth textures. Group Q consists of a single sample,



HWT cluster 1 HWT cluster 2 HWT cluster 3 HWT cluster 4

Group A 513, 519, 268, 278, 338, 376, 379, 480, 481,
483, 499, 500, 503, 504, 508, 509,
520, 649, 659, 660, 662, 665, 674,
675, 677,

246, 380, 386, 393, 501, 507, 651,
666,

280, 372,

Group B 131, 142, 319, 323, 325, 359, 364,
367, 371, 490, 492, 497, 498, 502,
521, 648,

255, 259, 260, 264, 265, 270,
279, 336, 368, 374, 375, 383,
389, 390, 392, 395, 396, 475,
488, 495, 506, 511, 645, 655,
656, 657, 669,

Group E 147, 148, 149, 150, 151,
152, 153, 154, 155, 156,

Group F 251, 257, 269, 271, 378, 476, 522, 261,
Group H 317, 361, 365, 385, 391, 486, 487,
Group K 120, 121, 122, 123, 124, 125, 128,
Group M 130, 135, 137, 138, 139, 140,
Group Q 339,
Group S 267, 321, 249, 252, 253, 258, 272, 273, 274,

275, 276, 277, 281, 282, 312, 313,
316, 320, 324, 328, 329, 330, 331,
332, 360, 363, 387, 516, 517, 518,

250, 334,

1

TABLE 1 – Comparisons of the 4 automated HWT Clusters to
the 9 photograph conservators groups.

with paper very different from the rest of the collection. With
respect to clustering, it thus consists of an outlier that the spec-
tral clustering based ascendant (Ward linkage) classification
used here is not equipped to handle. However and interestin-
gly, its robustness index is the lowest of Cluster 3, indicating
a weak belonging to the cluster. This also provides a valuable
example of the relevance of the proposed robustness index.

6 Conclusions and Perspectives

The present work has shown that the clustering methodo-
logy for the classification of art photographic paper based on
HWT texture representation and spectral clustering dimensio-
nality reduction, proposed and assessed in [7, 2], permitted a
classification of photos by F. Holland Day that made sense to
photograph conservators and lead them to reconsider aspects of
their grouping methodology.

Additionally, a noise-assisted robustness index was devised
to quantify for each sample the strength of its belonging to the
assigned cluster. The relevance of that index was assessed by
several a posteriori comments by the photograph conservators.

The achieved automated clustering also triggered interac-
tions between the image processing teams and the photograph
conservators, a valuable outcome of the present work. For ins-
tance, the PC had performed a consolidation of their own grou-
pings to get to a manageable number of clusters that seemed
practical and useful while still maintaining the most significant
visual differences. Some of the distinctions recognized across
consolidated groups are actually re-emerging in some of the au-
tomated clusters. This was notably observed in the splitting of
Group A and into several clusters according to texture smooth-
ness, or the combining of Group S with some of the papers in
Group A.

Future work will aim towards two different directions. As-
sessing the robustness of the clustering in terms of both selec-
ting the relevant number of clusters and of assessing how much
a sample belongs to a cluster, needs to be further investigated.
Elaborating on Table 1, creating an interactive and dynamical
dialog platform to trigger a virtuous circle of feedback between
expert observers and automatic classifiers, constitutes a critical
challenge for successful interdisciplinary interactions and will
be at the core of future developments.
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