
Exact biconvex reformulation of the `2 − `0 minimization problem
Arne BECHENSTEEN1, Laure BLANC-FÉRAUD1, Gilles AUBERT2
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Résumé – Nous étudions dans ce travail la minimisation du critère des moindres carrés sous une contrainte de parcimonie. Inspirés par des
résultats récents, nous reformulons le pseudo-norme `0 comme une minimisation convexe par rapport à une variable auxiliaire. Nous proposons
une reformulation biconvexe et exacte du problème de départ. Nous montrons qu’il y a une correspondance entre les minimiseurs du problème
original et ceux du problème reformulé. La biconvexité suggère d’appliquer un algorithme de minimisation alternée. Ces résultats sont appliqués
sur un problème d’imagerie super-résolue de molécules individuelles et nous comparons les résultats avec ceux donnés par l’algorithme IHT.

Abstract – We focus on the minimization of the least square loss function under a k-sparse constraint. Based on recent results, we reformulate
the `0 pseudo-norm as a convex minimization problem by introducing an auxiliary variable. We then propose an exact biconvex reformulation
of the `2 − `0 constrained problem. We give correspondence results between minimizers of the initial function and the reformulated one. The
reformulation is biconvex which allows efficient alternating minimization methods to be used. The reformulation is tested numerically on Single
Molecule Localization Microscopy and compared to IHT.

1 Introduction
In this paper, we are interested in the `2 − `0 constrained prob-
lem with a positivity constraint. We search for x̂ ∈ RN that
minimizes the cost function Gk:

Gk(x) :=
1

2
‖Ax− d‖22 + ι·≥0(x) s.t. ‖x‖0 ≤ k (1)

where the observation d ∈ RM , the matrix A ∈ RM×N , with
N > M . ‖ · ‖0 is the counting function, and is, by abuse of
terminology, referred to as the `0-norm. The indicator function
ιX is defined for X ⊂ RN as +∞ if x /∈ X and 0 if x ∈
X , and we assume that the observation, d, is affected by some
additive white Gaussian noise. The non-negativity constraint is
commonly used as a priori in imaging problems.

The above problem is not continuous, nor convex and the
problem is known to be NP-hard due to the combinatorial na-
ture of the `0-norm. However, it has been greatly studied due to
its countless applications such as sparse reconstruction of sig-
nals, variable selection, and single-molecule localization mi-
croscopy to cite a few. Among the approaches to solve the
problem, we find greedy algorithms (see [10] and references
therein), relaxations on the penalized problem (see [8] and ref-
erences therein) and Mixed Integer Programming (MIP) on rel-
atively small dimension problem. A more recent approach is
Mathematical Program with Equilibrium Constraint (MPEC)
(see [2, 11, 5, 9]).

The aim of this paper is to present and study a MPEC method
for optimizing the constrained `2 − `0 problem (1). We start in

section 2 by introducing a reformulation of the `0-norm by a
variational characterization. The norm is rewritten as a convex
minimization problem by introducing an auxiliary variable, and
we can reformulate (1) as a MPEC problem. Then we define a
Lagrangian cost function Gρ : RN ×RN → R which is bicon-
vex, and thus easier to minimize than (1). Theorem 1 shows
that minimizing Gρ is equivalent, in the sense of minimizers,
as to find a solution to the initial constrained problem.

Notations: Unless otherwise stated, for a matrixA ∈ RM×N ,
we denote ‖A‖ the spectral norm of A defined as ‖A‖ = σ(A),
where σ(A) is the largest singular value of A. The subgra-
dient of the convex function f at point x is the set of vec-
tors v such that ∀z ∈ dom(f), f(z) ≥ f(x) + vT (z − x).
For a vector x ∈ RN we denote |x| ∈ RN , a vector con-
taining the absolute value of each component of the vector x.
The notation −1 ≤ u ≤ 1 is a component-wise notation, i.e,
∀ i, −1 ≤ ui ≤ 1.

2 Exact reformulation

In this section we focus on a reformulation of the `0-norm given
in [9, 2]. The `0-norm can be rewritten as a convex minimiza-
tion problem by introducing an auxiliary variable.

Lemma 1. [9, Lemma 1] For any x ∈ RN

‖x‖0 = min
−1≤u≤1

‖u‖1 s.t ‖x‖1 =< u, x > (2)



The introduction of the auxiliary variable u increases the di-
mension of the problem, but the non-convex and non-continuous
`0-norm is now written as a convex minimization problem. In
this paper, we study the `2 − `0 constrained problem (1) using
the reformulation of the `0-norm, then written as:

min
x,u

1

2
‖Ax− d‖2 + I(u) + ι·≥0(x) s.t. ‖x‖1 =< x, u > (3)

where I(u) is:

I(u) =

{
0 if ‖u‖1 ≤ k and ∀ i, −1 ≤ ui ≤ 1

∞ otherwise
(4)

which is equivalent to problem (1). We note S = {(x, u); ‖x‖1
=< x, u >}, and define the functional G as

G(x, u) =
1

2
‖Ax− d‖2 + I(u) + ι·≥0(x) + ι·∈S(x, u) (5)

The functional (5) is continuous but non-convex due to the
equality constraint. However it is biconvex: the minimization
of (5) with respect to x while u is fixed is convex, and con-
versely. Based on Lagrange Multipliers method, the equal-
ity constraint in (5) is relaxed by introducing a penalty term,
ρ(‖x‖1− < x, u >). Note that it is not necessary to add
the absolute value to this penalty term since ∀ i , |ui| ≤ 1 and
therefore the penalty term is never strictly negative.

The Lagrangian cost function Gρ(x, u) : RN × RN → R is
defined as

Gρ(x, u) =
1

2
‖Ax−d‖2+I(u)+ι·≥0(x)+ρ(‖x‖1− < x, u >)

(6)
In this paper we are focusing on exact penalty methods, mean-
ing that any minimizer of (6) is also a minimizer of (5). The
following theorem ensures this.

Theorem 1. Assume that ρ > σ(A)‖d‖2, and A is of full rank.
Let Gρ and G be defined respectively in (6) and (5). We have:

1. If (xρ, uρ) is a local (respectively global) minimizer of
Gρ, then (xρ, uρ) is a local (respectively global) mini-
mizer of G.

2. If (x̂, û) is a global minimizer of G, then (x̂, û) is a
global minimizer of Gρ.

This theorem differs from [5, Corollary 3.2] as their ρ may
be arbitrarily large in the case of the `2 data fitting term, and we
can calculate ρ exactly. Furthermore, they work with a slightly
different reformulation of the `0-norm and not explicitly with
problem (1) since they assume their loss-function to be Lips-
chitzian.

Multiple lemmas are needed to prove Theorem 1. The proofs
of Lemma 2, 3, 5 are omitted since they are obvious. For the
proofs, see [12, Appendix].

Lemma 2. Let A ∈ RM×N , let ai denote the ith column of
A. Defining ω to be a set of indices, ω ⊆ {1, . . . , N}. Let
the restriction of A to the columns indexed by the elements of
ω be denoted as Aω = (aω[1], . . . , aω[#ω]) ∈ RM×#ω . Then
‖Aω‖ ≤ ‖A‖.

Lemma 3. Given the problem

argmin
x

1

2
‖Ax− d‖2+ < w, |x| > +ι·≥0(x) (7)

where A ∈ RM×N is a full rank matrix and w a non-negative
vector. Let x̂ be a solution of problem (7). Then ‖Ax̂ − d‖2 is
bounded independently of w:

‖Ax̂− d‖ ≤ ‖d‖ (8)

Lemma 4. Let f(x) = 1
2‖Ax − d‖

2
2+ < w, |x| > +ι·≥0(x),

A be a full rank matrix and w is a non-negative vector. If
wi > σ(A)‖d‖2 then the optimal solution of the following op-
timization problem:

x̂ = argmin
x

f(x) (9)

is achieved with x̂i = 0.

Proof. It is clear from Lemma 3 that σ(A)‖d‖2 ≥
∣∣(AT (Ax̂− d))

i

∣∣.
A necessary and sufficient condition for x̂ to be a minimizer of
f on RN+ is that

0 ∈ AT (Ax̂− d) + ∂ < w, |x̂| > +NRd+(x̂)

where

(∂ < w, |x̂| >)i


= wi if x̂i > 0

= −wi if x̂i < 0

∈ [−wi, wi] if x̂i = 0

and

(NRd+(x̂))i

{
= 0 if x̂i > 0

∈]−∞, 0] if x̂i = 0

Since x̂i ≥ 0 we get

−AT (Ax̂− d)i

{
= wi if x̂i > 0

∈ [−wi, wi]+ ]−∞, 0] if x̂i = 0

If wi > σ(A)‖d‖2, then wi > |AT (Ax̂ − d)i| and x̂i cannot
be strictly positive, furthermore x̂i cannot be strictly negative
since we work in the non-negative space. Therefore x̂i = 0.

Lemma 5. Let (xρ, uρ) be a local minimizer of Gρ defined
in (6). Let Gxρ(u) = 1

2‖Axρ − d‖
2 + I(u) + ρ(‖xρ‖1− <

xρ, u >). We denote O as the indices of the k largest values of
{|(xρ)i|, i = 1...N}. Q , {i|(xρ)i > 0}, and S , {j|(xρ)j <
0}. Moreover, we define D , O ∩ Q, L , O ∩ S and W ,
{1, 2..., N}\{D ∪ L}. If #(D ∪ L) = k, that is, ‖xρ‖0 ≥ k,
then the minimum of Gxρ(u) will be reached with uρ such that

(uρ)i


= 1 if i ∈ D
= −1 if i ∈ L
= 0 if i ∈W

(10)

If #(D ∪ L) < k, that is, ‖xρ‖0 < k, then

(uρ)i


= 1 if i ∈ D
= −1 if i ∈ L
∈ [−1, 1] if i ∈W

(11)

with
∑
i∈W |ui| ≤ k −#(D ∪ L).



Lemma 6. Let ρ > σ(A)‖d‖2. Let (xρ, uρ) be a local or
global minimizer ofGρ(x, u) := 1

2‖Ax−d‖
2+I(u) + ρ(‖x‖1−

< x, u >) with I(u) defined as in (4). Let ω = {i ∈ {1, . . . , N};
(uρ)i = 0}. Then (xρ)i = 0∀i ∈ ω.

Proof. Let J denote the set of indices: J = {1, . . . , N}\ω. If
(xρ, uρ) is a local or global minimizer of Gρ then ∀(x, u) ∈
N ((xρ, uρ), γ), whereN ((xρ, uρ), γ) denotes a neighborhood
of (xρ, uρ) of size γ, we have Gρ(xρ, uρ) ≤ Gρ(x, u). By
choosing u = uρ and x = x̃ with x̃J = (xρ)J and x̃ω = xω ,
with (xω, (uρ)ω) ∈ N (((xρ)ω, (uρ)ω), γ), we get

1

2
‖Axρ − d‖2+ι·≥0(xρ) + ρ‖(xρ)ω‖1

≤ 1

2
‖Ax̃− d‖2 + ι·≥0(x̃) + ρ‖xω‖1

(12)

We want to show that (xρ)ω is zero. We have

‖Ax− d‖2 =
∑
i

(∑
j∈J

Aijxj)
2 + (

∑
j∈ω

Aijxj)
2

+ ‖d‖2

− 2

[∑
i∈J

xi(A
T d)i +

∑
i∈ω

xi(A
T d)i

]
Using the above decomposition simplifies (12), and ∀ xω:

1

2

∑
i

(
∑
j∈ω

Aij(xρ)J)
2 −

∑
i∈ω

(xρ)i(A
T d)i

+ ρ‖(xρ)ω‖1 + ι·≥0(xρ)

≤ 1

2

∑
i

(
∑
j∈ω

Aijxj)
2 −

∑
i∈ω

xi(A
T d)i + ρ‖xω‖1 + ι·≥0(xω)

Thus (xρ)ω minimizes

1

2

∑
i

(
∑
j∈ω

Aijxj)
2−
∑
i∈ω

xi(A
T d)i + ρ‖xω‖1 + ι·≥0(xω)

or, equivalently, is a solution of

argmin
xω

1

2
‖Aωxω − d‖2 + ρ‖xω‖1 + ι·≥0(xω) (13)

where Aω is the M × #ω submatrix of A composed by the
columns indexed by ω of A. With Lemma 2, we have that
σ(A) ≥ σ(Aω). If ρ > σ(A)‖d‖2 we apply Lemma 4 with
w = [ρ . . . ρ]T . We conclude that (xρ)ω = 0.

Lemma 7. If ρ > σ(A)‖d‖2, let (xρ, uρ) be a local or global
minimizer of

argmin
x,u

1

2
‖Ax− d‖2 + ι·≥0(x) + ρ(‖x‖1− < x, u >) + I(u)

with I(u) defined as in (4). Then ‖xρ‖1− < xρ, uρ >= 0.

Proof. From Lemma 5, we have that (uρ)i(xρ)i = |(xρ)i|∀ i ∈
J , and (uρ)i = 0∀i ∈ ω. It suffices to prove (xρ)i = 0∀i ∈ ω.
For that we use Lemma 6, and conclude that (xρ)ω = 0.

With the above lemmas we can prove Theorem 1

Proof. We start by proving the first part of the theorem. Let
(xρ, uρ) be a local minimizer of Gρ. Let S = {(x, u); ‖x‖1 =
< x, u >}. If ρ > σ(A)‖d‖2 then, from Lemma 7, (xρ, uρ)
verifies

‖xρ‖1 =< xρ, uρ > .

Furthermore, from the definition of a minimizer, we have

Gρ(xρ, uρ) ≤ Gρ(x, u) ∀(x, u) ∈ N ((xρ, uρ), γ)

and so we have

Gρ(xρ, uρ) ≤ Gρ(x, u) ∀(x, u) ∈ N ((xρ, uρ), γ) ∩ S

Since ∀(x, u) ∈ S, Gρ(x, u) = G(xρ, uρ), we have

G(xρ, uρ) ≤ G(x, u) ∀(x, u) ∈ N ((xρ, uρ), γ) ∩ S (14)

By the definition, (xρ, uρ) is also a local minimizer of G.
Now we prove part 2 of Theorem 1.
Let (x̂, û) be a global minimizer of G. We necessarily have
‖x̂‖1 =< x̂, û >. First, we show that

Gρ(x̂, û) ≤ minGρ(x, u).

This can be shown by contradiction. Assume the opposite, and
denote (xρ, uρ) a global minimizer of Gρ. We then have

Gρ(x̂, û) > minGρ(x, u) = Gρ(xρ, uρ) (15)

Lemma 7 shows that ‖xρ‖1 =< xρ, uρ >, so Gρ(xρ, uρ)
= G(xρ, uρ) and we have

G(x̂, û) = Gρ(x̂, û) >minGρ(x, u)

= Gρ(xρ, uρ) = G(xρ, uρ)

and more precisely, G(x̂, û) > G(xρ, uρ) which is not possi-
ble, since (x̂, û) is a global minimizer of G.

We have shown that Gρ(x̂, û) ≤ minGρ(x, u), and we have

Gρ(x̂, û) ≤ minGρ(x, u) ≤ Gρ(x, u) ∀(x, u)

(x̂, û) is thus a global minimizer of Gρ.

Theorem 1 shows that, for ρ large enough, minimizing (6) is
equivalent in terms of minimizers as minimizing (5).

Although Gρ(x, u) in (6) is non-convex, the formulation is
biconvex. An algorithm to minimize Gρ can be easily im-
plemented using Proximal Alternating Minimization algorithm
[1]. Good results have been obtained starting with a small ρ
(ρ0 = 1) and then resolve Gρ with an increasing ρ, using the
results from the previous iteration as initialization. We stop the
minimization when ρ = σ(A)‖d‖2.

3 Numerical results
We compare the minimization of the biconvex reformulation
to the algorithm Iterative Hard Thresholding [3] with an added
non-negativity constraint to x. They are applied to the problem
of 2D Single-Molecule Localization Microscopy (SMLM).

SMLM is a microscopy method which is used to obtain im-
ages with a higher resolution than what is possible with normal



Figure 1: From left to right: Sum of the 500 acquisitions, IHT
reconstruction and Biconvex constrained reconstruction.

optical microscopes (see [6]). SMLM exploits photoactivable
fluorescent molecules, and for each acquisition activates only
a sparse set of the fluorescent molecules in the sample. The
localization of each molecule with a high precision is possible
since the probability of two or more molecules to be in the same
diffraction disk is small. The localization becomes harder if the
density of emitting molecules is higher. Once each molecule
has been precisely localized, they are switched off and the pro-
cess is repeated until all the molecules have been activated. The
final superresolved image (as in Fig.1) is the sum of all the
sparse restored images (500 in the given example).

The localization problem of SMLM can be described as an
optimization problem such as (1), with A as the operator that
performs a convolution with the Point Spread function and a
reduction of dimensions. Therefore, the biconvex formulation
can be applied to the SMLM problem. The molecules are re-
constructed on an ML×ML grid which is finer than the ob-
served image d ∈ RM×M , with L > 1. For a complete lecture
on the mathematical model, see [4].

We compare the algorithms on a high-density dataset of tubu-
lins which are provided from the 2013 ISBI SMLM challenge
[7], where there are 500 acquisitions. Each acquisition is of
size 128 × 128 pixels and each pixel is of size 100 × 100
nm2. The FWHM is estimated to be 351.8 nm. We localize
the molecules on a 512× 512 pixel image, where each pixel is
of size 25× 25 nm2.

We set the sparsity constraint k = 140 for the two algo-
rithms. Figure 1 presents the reconstructions. We observe that
the proposed algorithm distinguishes each tubelin correctly. For
a more complete comparison with other state-of-the-art algo-
rithms see [13].

4 Conclusion

In this paper, we have presented a reformulation of the `2 − `0
constrained problem. We have proved in Theorem 1 the ex-
actness of the reformulation, that is, we can from a minimizer
of the reformulation obtain a minimizer of the initial problem.
Furthermore, the reformulation is biconvex. Numerically it
performs well on the SMLM problem. The reformulation can
also be applied to the penalized `2 − `0.
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