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Résumé — Cet article s’intéresse 2 la classification automatique de cellules de 1’épithélium pavimenteux pour le depistage cancer du col de
I’utérus en s’appuyant sur les outils de 1’apprentissage profond. Nous étudions differentes architectures sur un jeu de données public nommé
Herlev qui consiste classifier des images de cellules, issues d’un frottis du col de I'utérus, au regard de I’anormalité qu’elles représentent.
De plus, nous utilisons et adaptons une méthode d’attribution afin de mettre en lumiere les caratéristiques cytomorphologiques discriminantes
qui sont utilisées pour la classification. A travers ce papier, nous détaillerons les methodes et architectures qui nous permettent d’atteindre des
performances optimisées: 75% de précision pour la classification de la sévérité et 97% pour la classification de la normalité.

Abstract — This article adresses the problem of automatic squamous cells classification for cervical cancer screening using Deep Learning
methods. We study different architectures on a public dataset called Herlev dataset, which consists in classifying cells, obtained by cervical pap
smear, regarding the severity of the abnormalities they represent. Furthermore, we use an attribution method to understand which cytomorpho-
logical features are actually learned as discriminative to classify severity of the abnormalities. Through this paper, we show how we trained a
performant classifier: 75% accuracy on severity classification and 97% accuracy on normal/abnormal classification.

1 Introduction 2 Related Work

Since 2012 and the success of AlexNet on Imagenet Chal-
lenge [4], deep CNN have provided high accuracy results in
large range of different tasks. Over the years, several architec-
tures have been given a lot of attention. For example, Resnet-
101 [5] proposes to use skipped connections over blocks to
avoid de-learning on more abstract features.

Previous works have applied CNN models to the Herlev data
set using binary normal and abnormal categories. In [11] they
reach a 0.78 F1 scoring using a support vector machine. In [12]
they use a unsupervisely trained Feature Selection model af-
ter a CNN feature extractor to reach a F1 score of 0.90 and an
accuracy of 94%. In [6, 7], they used, respectively, an Alexnet-
like and a Resnet architecture and trained them on Herlev data-
set using normal vs abnormal to provide a model that reaches
binary classification accuracy of 98.3%.

The World Health Organization (WHO) states [1] that around
90% of cervical cancer could be avoided if they were detected
and treated earlier. At 500 x 10 new cases at year, screening
for cervical cancer needs to be efficient and precise.

With the recent emergence of machine learning using deep
Convolutional Neural Networks (CNN) and its success on a
large panel of tasks, a lot of work as been done to assist doctors
and medical practices [2, 3] using such methods. In the case of
cervical cancer, the Herlev public dataset enables to compare
different methods on this specific task by providing images of
single cells and organizing them into classes regarding the ma-
lignancy they represent.

In this paper, we will firstly exploit the ordinal nature of the
WHO classification present in the Herlev dataset, by designing
a loss function that leads to a training paradigm that closely

3 Herlev Severity Classification using Re-
gression Constraint

resembles the medical task at hand. Finally we will apply attri-
bution methods to determine what cytomorphological features
are associated with the classification model. This will not only
give us confidence in the training process and prove that the
model learned relevant features but also show the potential for
weak localization tasks.

3.1 Herlev Dataset

The Herlev Dataset is a cytology image set composed of 917
images gathered in 7 classes : normal columnar, normal in-
termediate, normal superficial, light dysplastic, moderate dys-
plastic, severe dysplastic, and carcinoma in situ. The three first
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FIGURE 1 — Resnet-101 confusion matrix on Herlev severity
test set

classes belong to the category of normal cells and the last four
are abnormal ones (in order of severity, carcinoma in situ hin-
ting at the presence of an actual cancer). Images are between
50 and 400 pixels wide. Previous work processed the set in a
binary classification problem of normal vs abnormal classes.
Here, we merged normal images into a single class in order to
study the medical severity only, thus building a 5 classes da-
taset, we call Herlev severity consiting of : normal, light dys-
plastic, moderate dysplastic, severe dysplastic, and carcinoma
in situ.

3.2 Herlev Severity

This section descibes three pipelines that can be used to train
a severity model and the motivation that led to them.

3.2.1 C(lassification Pipeline

We started by retraining a Resnet-101 model pretrained on
ImageNet [10] on Herlev severity dataset. The computed per-
formances were a mean AUC of 0.9, with the highest AUC
being 0.95 on the carcinoma in situ class and lowest being 0.87
onsevere dysplastic with an overall accuracy of 70%, a binary
(normal/abnormal) accuracy of 91% and a binary F1 score of
0.94.

From the confusion matrix shown in Figure 1, we see that
the model tends to misclassify images from the normal and
carcinoma in situ classes. This was already reported in [6] and
identified to be due to the visual similarities between normal
columnar and carcinoma in situ cells. Obviously, missing a po-
tential highly abnormal diagnonis is something to avoid. Simi-
larly, due to the fact that 93% of pap smears are normal during
routine diagonis, misclassifying normal cells would require a
additional action by the attending cytotechnicians.

3.2.2 Regression Pipeline

Since the WHO classification used in the Herlev set have an
order of severity, this task can be interpreted as a regression
problem. regression loss will oblige the network to focus on

Ground Truth

FIGURE 2 — Confusion Matrix (left) and Scores Distribution
(right) given by Resnet-101 Regressor regarding Herlev Seve-
rity Classes

how to differentiate normal samples from malignant ones. We
relabel Herlev samples using a score from 1 (for normal ones)
to 5 (for carcinoma ones) and use a mean square error as loss to
optimize. Thus, we retrain the exact same Resnet-101 architec-
ture replacing, to have a single score output, the softmax layer
by a fully connected layer.

Figure 2 shows the distribution of scores predicted on the
test set and highlights that the model succeeded in assigning
scores regarding maligancy. Most importantly, it does not mis-
classify any normal samples or carcinoma in situ samples with
each other. A further point to note from the confusion ma-
trix deriving from this distribution, this model does more mis-
classifications than the categorical model, with an accuracy of
60.3%, however these misclassifcation are less severe in the
scope due to their relative prognosis distance. This is can be
more easily displayed by the overall MSE of 0.58 over the test
set. The binary accuracy was of 92% and the F1 score was 0.95.

3.2.3 Classification + Regression Pipeline

While the regression loss was more adapted than a classifi-
cation (cross entropy) loss to the severity task, it nonetheless
did not improve the performances per class. In this section we
combine the strength of both approaches into a single architec-
ture.

Figure 3 shows the additional layer to the classification ar-
chitecture. We simply sum the cross entropy loss and the MSE
loss. This would be equivalent to weighting loss regarding the
distance between the ground truth class index and the predicted
class index. We turn probabilities given by the softmax layer
into a score using a fixed weights fully connected layer corres-
ponding to the class score (or class index).

Noting p = (p1, - - -, p5) these class probability neurons, our
loss finally reads £(z) = CE(D; ya) + (Yo — 3ot (i +1).pi)?
where z is an image, y,. the label (one hot for cross-entropy and
score for the regression constraint) and C€ is the cross-entropy
loss.

On Figure 4, we can see that our Resnet-101, Classifier +
Regressor, makes less misclassifications than the classifier and
lower MSE than the regressor. Thus, we have an architecture
performing on classification task (mean AUC = 0.94) and on
scoring severity task (average MSE = 0.51). What is particu-
larly appreciated here is that the ’extreme’ classes (‘normal’
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FIGURE 4 — Resnet-101 Classifier + Regressor Scores Distri-
bution and Confusion Matrix on Herlev Severity Test Set

and ’carcinoma in situ’) have the best AUC (respectively 0.98
and 0.97). The overall accuracy of the order of 74.5% and the
binary accuracy was 94% with an F1 score of 0.96.

3.2.4 Pipeline Comparisons

Figure 5 shows the AUC distribution per class obtained trai-
ning the classifier pipeline and the classifier + regressor pipe-
line on 4 random folds. It brings to the fore how the regression
loss does not change much on the light dysplastic, moderate
dysplastic and severe dysplastic classes but improves ’extreme’
cases especially 'normal’ samples that were really impacted by
the ressemblance between 'normal columnar’ and ’carcinoma
in situ’ samples.

4 Explainability / Interpretability

Understanding how our model arrives to the severity of can-
cer progression is an important step in validating its use. Be-
sides giving the user assurances of its performance, it allows
us to understand and possibily build stronger models. We need
a method that provides meaningful explanations, which ideally
are related to the cytomorphological features and used by cyto-
technians and doctors during day-to-day routine. Gradient ba-
sed methods give the attribution to the classification associated
with each input feature given to the model, in the case of digital
images of cytology slides, the image pixels. This allows us to

FIGURE 5 — AUC Distribution for Classifier & Classifier + Re-
gressor Pipeline Comparison using 4 random folds

identify and localized regions that contribute to the severity of
the diagnosis. Integrated Gradient [8] is of particular interest
due to its model agnosticity and its baseline comparision.

In this section we are going to use an attribution method
to understand what has been learned by our models and on
what cytomorphological features it relies to assign a degree of
malignancy. The Bethesda guidelines [9] states that the main
cytomorphological features used to determine the severity are
mostly based on nucleus, we thus would expect the attribution
to be in the nucleus region.

Integrated Gradient For the attribution we utilize a model
agonistic methods, the integrated gradient. As with most attri-
bution methods it relies on the comparision between the image
and baseline (that is representative of the absence of the class of
the image) and computation of the gradient to the image. The
attribution map, Am/(z;; F, 2’) for an image z gives the contri-
bution of 7 — th pixel given a model F' and baseline image z’,

. n o / m  SF(2'+£ (z—2')) 1
Am(zg Foa') = (2 —x)). 300y — &

Baseline Design What we are interested in here is how our
model predicts the malignancy (i.e. regression result), this is
why we will try the Integrated Gradient method on malignant
samples i.e. dysplastic and carcinoma in situ samples. An ob-
vious abscence of object in Pap tests context is a white image
(since background of pap smears slides is white).

Qualitative Results Figure 6 shows examples of the attribu-
tion map from integrated gradient method, along with the an-
notated cytology features of the associated the images. This
highlights that the malignancy scoring seem to be mainly due
to the nucleus.

Quantitative Results Here we make use of the annotation
masks present in the Herlev set to create specific attribution
metrics. Given their role in the different consensus and guide-
lines, we measure the amount of attribution within the nucleus
and cytoplasm compared to total attribution (respectively de-
noted as Aty and At¢), these contributions are given by,



FIGURE 6 — Integrated Gradient Result on 5 images Herlev
set (top) using a white baseline and cytological feature masks
present in the dataset (middle). Attribution maps are shown
showing activated” pixels mostly in nucleus (bottom).
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FIGURE 7 - Integrated Gradient Result on Herlev Test set using
a white baseline and Associate Mask
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where N and C, refer to the nucleus and cytoplasm pixels res-
pectively and Am is the attribution map defined before. In or-
der to understand how much each region contributes to the mo-
del’s prediction, we also compute the ratio of nucleus and cy-
toplasm attribution.

Figure 7 shows the distribution for Aty , Atc, and their ratio
for each severity class. It emphasises the relevance of the nu-
cleus over the cytoplasm for the model as the severity increases.
Particularly, in the case of carcinoma in situ, the nucleus contri-
butes 2 times more than when classifying a normal case.

5 Conclusion

In this work, we have shown that a proper loss design, ba-
sed on the final goal of the medical exam under study, one can
construct a model that differentiates properly between normal
and abnormal cells reaching a severity accuracy of 74.5%, a
binary accuracy of 96.7% was achieved along wiht a F1 score
of 0.95. Furthermore, we adapted an attribution method that
can be used by doctors to check the relevance of the network’s
decision. These two contributions are essential in the construc-

tion of an automatic diagnostic assistance method that can be
trusted and accepted by doctors.
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