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Résumé – Dans cet article, nous mettons en oeuvre deux réseaux de neurones, l’un à valeurs complexes et l’autre à valeurs
réelles, de dimensions équivalentes, pour la segmentation d’images Polarimetric Synthetic Aperture Radar (PolSAR). Ces réseaux
sont basés sur des architectures convolutives de type U-Net. Une comparaison statistique exhaustive entre ces réseaux est présentée
pour l’image PolSAR de Flevoland, en prenant en entrée la matrice de cohérence. Les résultats montrent une meilleure classification
par le réseau de neurones à valeurs complexes.

Abstract – In this paper, we implement two capacity equivalent neural networks, one complex-valued and the other one real-
valued for Polarimetric Synthetic Aperture Radar (PolSAR) image segmentation. An exhaustive statistical comparison between
these two networks are done over the Flevoland PolSAR dataset using the coherency matrix as input. Results show a better
generatlization for the complex-valued architecture.

1 Introduction

Deep learning algorithms are becoming increasingly po-
pular and have been applied to the classification of Polari-
metric Synthetic Aperture Radar (PolSAR) images [1, 2].
Because radar data is typically complex-valued due to
In Phase and Quadrature (I-Q) channels, many publica-
tions employ Complex-Valued Neural Network (CVNN) as
an alternative to traditional Real-Valued Neural Network
(RVNN) for radar applications [3, 4]. [5] uses a Complex-
Valued MultiLayer Perceptron (CV-MLP) to implement
one of the earliest experiments on PolSAR image catego-
rization using deep learning. These findings are also confir-
med by [6]. Following that, Complex-Valued Convolutio-
nal Neural Network (CV-CNN) are presented for perfor-
ming PolSAR classification [7,8]. In particular, [9] achieves
97.66% validation accuracy (test accuracy not mentioned)
whereas [10] obtains 96.2% performance for a CV-CNN
model architecture on the same dataset used for this work.
Also, [11] implements a 3D-CV-CNN and obtained 93.74%
accuracy.

Because CNN models demand a constant input size to
categorize each object, pixel-wise classification of Synthe-
tic Aperture Radar (SAR) images, also known as semantic
segmentation, has got a lot of attention in the previous de-
cade as a way to get rid of the input size constraint in the
classification process. Complex-Valued Fully Convolutio-
nal Neural Network (CV-FCNN), based on U-net architec-
ture [12], is specifically intended to segment SAR pictures
in the latest advancement of neural networks. Indeed, such
networks achieve state-of-the-art performance [13,14].

In this paper we undertake an extensive comparison for

the Flevoland PolSAR dataset, between a pair of CVNN
and RVNN state-of-the-art inspired architectures. For each
model, we run multiple iterations in order to deduce sta-
tistical metrics that allow us to claim a performance dif-
ference.

The dataset and the pre-processing approaches are pre-
sented in section 2. The model architectures utilized for
the experiments are detailed in section 3. Finally, in sec-
tion 4, the neural networks peformances are compared.

2 PolSAR Dataset
PolSAR images are acquired from single look complex

data measured in the horizontal (H) and vertical (V) trans-
mit/receive polarimetric channels known as the Sinclair
scattering matrix :

S =

[
SHH SHV

SV H SV V

]
. (1)

For each pixel of the Synthetic Aperture Radar (SAR)
image, the 4 components are usually expressed in Pauli
basis as one complex vector k ∈ C3 [15], so that

k = 2−1/2
[
SHH + SV V , SHH − SV V , 2SHV

]T
. (2)

The Hermitian coherency matrix can then be built as

T =
1

n

∑n

j
kj k

H
j where the operator H stands for com-

plex conjugate operation and where n is the number of
neighboring pixels chosen in a boxcar around the consi-
dered one. The coherency matrix is then used as input to
the networks. For the real-valued network, both real and
imaginary parts are injected separately to the network.



Here we perform our networks comparison on NASA/Jet
Propulsion Laboratory (JPL) AIRSAR dataset over Fle-
voland (figure 1a), an agriculture area on the Netherlands.
The ground truth is obtained from [16]. The dataset pre-
sents fifteen classes as it can be seen on figure 1b.

(a) Flevoland image (b) Ground truth

Figure 1 – Flevoland image and ground truth. A
Steambeans ; B Peas ; C Forest ; D Lucerne ; E
Wheat ; F Beet ; G Potatoes ; H Bare Soil ; I Grass ;
J Rapeseed ; K Barley ; L Wheat 2 ; M Wheat 3 ;
N Water ; O Buildings

We operate a sliding window on the image [17] to gene-
rate the dataset with the parameters used in [14] for stride
and window size. With this method, we obtain smaller
images patches of size 128 × 128. 80% of the generated
patches are used as training and 10% for each validation
and test sets.

3 Network Architectures
Difficulties in deploying CVNN models in practice have

hampered the field’s growth to this point [18]. For this
study, an open-source and well-documented tool has been
built that permits and facilitates the creation of a wide
range of CVNN architectures for the community to fur-
ther utilize [19]. This tool also allows to instantiate a real-
equivalent model in terms of trainable parameters from
a complex-valued network model while maintaining the
same architecture with a consistent aspect ratio as defi-
ned in [6].

Our FCNN architecture utilizes the above described
toolbox and is influenced by the models in reference [14]
for both real- and complex-valued models, as these are the
higher claimed accuracy for this application. The model
architecture is composed of a downsampling or feature ex-
traction part and the upsampling part. The downsampling
part presents two sub-modules which are represented on
figure 2 in green and red colours whereas the upsampling
part, in term, has a combination of other two sub-modules,
the second one being the same green sub-module present
on the downsampling section. The first sub-module (yel-
low) is a max-unpooling module as explained on [20]. The
green sub-module is a combination of a convolution layer,
a BatchNormalization (BN) (complex adaptations explai-
ned on [21] sections 3.2 and 3.5) and Rectified Linear Unit

(ReLU).
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Figure 2 – Chosen Complex-Valued Fully Convolutional
Neural Network architecture.

The number convolutional filters for each layer is shown
in figure 2, being all 3 × 3 in size. For the real case, the
number of kernels is multiplied by

√
2 and rounded to

the nearest integer number to produce a real model, as
reported on [6], where it was demonstrated this method
generates a real-valued capacity equivalent model in terms
of real-valued trainable parameters. As a result, we can do
an accurate comparison between CVNN and RVNN.

The red sub-module is a max pooling layer, whose main
objective is to shrink the image into smaller ones by kee-
ping only the maximum value within a small window, in
our case, of size 2 × 2. For the complex case, the abso-
lute value of the complex number is used for compari-
son as proposed in [10]. This layer complements with the
max-unpooling sub-module (yellow) which receives the lo-
cations where the maximum value was found. The max-
unpooling layer enlarges the input image by placing their
image pixels according to the locations received from the
corresponding max-pooling layer represented by the da-
shed arrow in figure 2 [20].

The complex-valued activation function CReLU(.) con-
sists in applying the well known real-valued function ReLU(.)
to both the real and imaginary part separately. Softmax
activation function is used for the output layer also ap-
plied to both the real and imaginary part separately for
the complex case.

Categorical cross-entropy is implemented as the loss
function which, for the complex network is computed twice,
using first the real part and then the imaginary part as
the prediction result. An average of the two error values
is then calculated to be optimized using Adam optimi-
zer with a learning rate of 0.01. It is worth noticing that
pixels without labels (black areas on Figure 1b) are not
taken into account either for loss computation or for the
accuracy metric.



4 Experiment results

CV-FCNN RV-FCNN

OA
median 99.80 ± 0.02 99.67± 0.03

mean 99.79± 0.01 99.66± 0.02
IQR 99.74− 99.84 99.58− 99.74

full range 99.58− 99.91 99.38− 99.88

AA
median 98.55 ± 0.38 98.25± 0.44

mean 98.35± 0.19 97.87± 0.23
IQR 97.84− 99.52 97.08− 99.10

full range 94.20− 99.87 93.07− 99.75

Table 1 – FCNN test accuracy results (%).

Simulations on both CV-FCNN and RV-FCNN archi-
tectures, are performed 50 times each in order to infer
statistical analysis over the results. On each iteration, the
train, validation and test sets are randomly sampled so
no two simulations have the same dataset split. Each trai-
ning includes 1000 epochs. The median error is computed
as in [22] which claims that if median intervals do not
overlap, there is a 95% confidence that their values dif-
fer. The confidence interval of the mean is calculated for
a confidence level of 99%.
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Figure 3 – Validation evolution per epoch

Statistical indicators of both the Overall Accuracy (OA),
which is the ratio of the number of correctly predicted
pixels with respect to the total pixels, and the Average
Accuracy (AA), which is an average of the accuracy for
each class independently, are summarized in Table 1 for
the test set. Although high accuracy makes performance
difference between the models seem small, confidence in-
tervals remains far apart which allows to conclude that
CV-FCNN generalizes better than RV-FCNN. 75% of CV-
FCNN simulations achieve more than 99.74% OA whereas
only 25% of RV-FCNN iterations achieve it.

The validation accuracy progression over epochs is shown
in Figure 3, for the accuracy, only the first 300 epochs are
depicted as the graph does not change much after that. It
can be appreciated that complex-valued models converge
quicker than the real-valued ones.
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(a) Test overall accuracy box plot
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Figure 4 – Test accuracy box plot

Figure 4 shows the box plot for both OA and AA. This
plots allow to better appreciate the outliers which is not
possible to appreciate on table 1. Finally, 5 shows the me-
dian OA of both models correctly predicted pixels in white
and the wrong predictions in red.



(a) CV-FCNN

(b) RV-FCNN

Figure 5 – Median overall accuracy models predictions

5 Conclusions
In this work, we propose two complex- and real-valued

FCNN architectures equivalent in terms of training para-
meters, implemented using our open-source toolbox [19].
We illustrate the semantic segmentation performance of
these models on well-known open-source Flevoland Pol-
SAR database. The experimentation results highlight a
better performance of CV-FCNN compared to its equiva-
lent-RV-FCNN.
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