High Quality JPEG Compressor Detection via Decompression Error
Jan BUTORA, Patrick BAS

Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

{jan.butora,patrick.bas}@cnrs.fr

Résumé — Dans ce travail, nous allons rechercher quel compresseur JPEG a été utilisé pour développer des images JPEG compressées avec un
facteur de qualité de 100. Nous le faisons en inspectant les erreurs d’arrondi de I’'image décompressée. Sous quelques hypotheses simples, nous
pouvons dériver une distribution probabiliste de ces erreurs d’arrondi et détecter si le signal d’une image JPEG donnée suit une telle distribution.
Toutefois, la compression JPEG peut étre mise en ceuvre de nombreuses fagons différentes, ce qui peut affecter considérablement les hypotheses
formulées. Cela peut conduire a une sous-performance importante d’un détecteur forensique qui peut étre sensible au compresseur. Nos résultats
sur le jeu de données Alaska montrent que nous pouvons créer un détecteur d’apprentissage profond qui, avec une précision proche de 100%,
détermine quel compresseur JPEG a été utilisé pour la compression de I’image.

Abstract — In this work we will investigate which JPEG compressor was used to develop JPEG images compressed with quality factor
100. We will do this by inspecting the rounding errors of the decompressed image. Under a few simple assumptions, we can derive a
probabilistic distribution of such rounding errors and detect whether this signal from a given JPEG image follow such a distribution. However,
JPEG compression can be implemented in many different ways, which can greatly affect the assumptions made. This can lead to severe
underperformance of a forensic detector that is not aware of possible differences caused by different compressors. Our results on Alaska dataset
show that we can create a deep learning detector, which will with accuracy close to 100% correctly classify the JPEG compressor used for the

image compression.

1 Introduction

Many digital image forensic tools greatly rely on the
knowledge of the processing pipeline of a given image. If a
processing pipeline is estimated poorly or is not considered
at all, the forensic tool can suddenly suffer from many errors,
simply because it is not aware of possible exceptions in the
processing. This affects in particular the extremely popular
JPEG image format. Even though the JPEG compression
pipeline is theoretically fixed, for practical purposes there
exists many different versions of implementing the DCT
transformation and the final rounding operation [2] . These
differences can lead to exploitable properties of the JPEG
files, for example the JPEG dimples [1] caused by a bias
introduced in the compressor. This can be used for forensics
purposes, such as detecting copy-paste forgeries or double-
compression. Unfortunately it can also create a lot of potential
issues, especially if the detector does not consider possible
differences in the compressors and the signal of interest is
dependent on the actual implementation of the compression
pipeline. It is therefore very useful to be able to distinguish
which version of the JPEG compressor was used to create a
given JPEG file. In this work we limit ourselves only on JPEG
images compressed with Quality Factor (QF) 100, as this is
the most sensitive scenario due to much smoother quantization,
which keeps the compressor artifacts intact.

In the next section we remind the reader of the specifics of
the JPEG compression and recall a model we can derive from

this compression pipeline. Section 3 then points out several
compression operations as well as steganography as a potential
source of corruption of the derived model. In Section 4 we
build a classifier which correctly predicts among several JPEG
compressor with accuracy near 100%. Finally, the paper is
concluded in Section 5.

2 JPEG compression

The JPEG format is a widely used image format, because
the JPEG compression provides very good trade-off between
image quality and size of the compressed file. The compression
is fairly simple and can be summarized in several steps :

1. Transform the RGB color representation of the image
into YCbCr (only the luminance channel Y is considered for
grayscale images). The Y, Cb, and Cr components resulting
from the color conversion are each processed independently.

2. Optionally subsample the two chrominance channels Cb
and Cr, and round every pixel to integer value.

3. Subtract 128 from every pixel in order to ensure zero
mean.

4. Divide every channel into 8x8 non-overlapping blocks.

5. Perform 2-D DCT transform on every 8x8 block.

6. Quantize every DCT block with a quantization matrix
defined by JPEG Quality Factor (one matrix for luminance
channel and one matrix for the two chrominance channels)

7. Round the quantized DCT coefficients into integers.

Subsampli

Compression DCT ici } } } } }

Discrete

Cosine Quantization
Transform (Q table)

(DCT)

Rounding N A

FIGURE 1 — Typical JPEG compression pipeline.

8. Losslessly encode the resulting structure into a JPEG file.

We assumed for simplicity that the original image is of
dimensions that are divisible by 8. If that is not the case, the
image can be symmetrically padded to comply with the desired
format. To retrieve the decompressed image, the compression
steps are performed in reverse order. Since steps 2 and 7 in the
compression pipeline are lossy operations, we cannot retrieve
the original uncompressed image, but we can reconstruct a very
close estimate.

2.1 Model

In this Section, we express the Steps 3-7 mathematically in
order to derive some properties of the JPEG images. We would
like to point out at this point, that the input to step 3 is integer-
valued, which will be important later. For better readability,
everywhere in this paper, 4, j will be strictly used to index in
pixel domain and k, [will be indexing in DCT domain. Given
a 8 x 8 block of pixels x, the JPEG compression transforms
these pixels into a block of unquantized DCT coefficients

d = DCT(x — 128),

where DCT(+) represents the 2-D DCT transformation. These
coefficients are then quantized into integer values ¢ = [d @
q), where @ represents element-wise division and q is the
quantization matrix specified by the Quality Factor used for
the compression. Note that due to the rounding operation, the
JPEG compression is lossy, because we cannot retrieve the
DCT errors that the rounding produces u = d @ q — c. As
a consequence, when we decompress the DCT coefficients ¢
back to spatial domain by reverting the compression steps, we
obtain a different pixel representation

y =DCT '(c®q) + 128 # x,
where © represents element-wise multiplication and

DCT '(-) is the inverse 2-D DCT transformation. The
compression pipeline is visualized in Figure 1.

3 Reverse JPEG Compatibility

In practice we cannot say much about the error we introduce
in the spatial domain with respect to the uncompressed image
Yy — X, because we cannot retrieve the uncompressed image x
from a given JPEG file. However, assuming that the original
uncompressed pixels are integer-valued', we can derive a
model for the spatial domain rounding error e = y—[y]. In fact,
we can further assume that the DCT rounding errors uy; are
i.i.d. and follow a uniform distribution uy; ~ U(—1/2,1/2).
This is a reasonable assumption easily verifiable as long
as the DCT coefficients during compression are rounded to
the nearest integer. In such case a recent paper aimed at
steganalysis of JPEG images compressed with QF 100 [5]
shows that for JPEG images compressed with Quality Factor
100, the spatial domain errors follow the so-called Wrapped
Gaussian Distribution

eij ~ Nw(0,1/12) (D

(see Figure 2). However many situations destroying this
property can arise. We will point out a few of them in the
following.

3.1 Effect of Steganography

As the main motivation of this work, we first mention
the effect of steganographic embedding on the rounding
errors. Indeed, since (1) is a natural behaviour of JPEG
images, it can be used for very accurate steganalysis because
changing the DCT coefficients increases the variance of
the Wrapped Gaussian distribution ej; ~ Ny (0,1/12 +
v;5) [5], where v;; depend on the size of the secret message
and efj are spatial domain rounding errors coming from a
stego image. This increase in variance is very exploitable
even for very small steganographic messages, because the
Wrapped Gaussian distribution is very sensitive to changes
in variance (see Figure 2). Interestingly, the same arguments
apply for any method changing the DCT coefficients, not only
steganography. However this property can only be exploited
if we are sure that the decompression errors of cover images
follow (1). If it is not the case, any decision making can
possibly introduce a lot of errors.

3.2 Final Compression Rounding

We cannot always assume that the DCT errors are uniformly
distributed. For instance, many imaging devices use rounding
towards zero (trunc quantizer) as the final step of JPEG com-
pression, which changes the properties of the DCT errors [6].
For example, let cx; be a DCT coefficients that was quantized to
zero. Then we can model its DCT error as ug; ~ U(—1,1) and
easy calculation reveals that in an extreme case when a DCT
block consists of zero coefficients only, the errors e;; would

1. To the best of our knowledge, every publicly available JPEG compressor
converts the pixels into integers before compression.

1.4+

134

124

114

1.04

0.9

0.8

0.7 1

0.6

FIGURE 2 - Probability density function of the Wrapped
Gaussian distribution My (0, v) for different values of v.

follow Wrapped Gaussian distribution e;; ~ Ny (0,1/3),
which resembles uniform noise (see Figure 2). Since the vast
majority of the DCT coefficients are equal to zero (due to the
nature of DCT transformation), this prevents us from using the
errors e;; for reliable decision making.

3.3 Chrominance Subsampling

The chrominance subsampling can be implemented in two
main ways. First, the more obvious way subsamples in the
spatial domain by simple averaging the four neighbouring
pixels of the Cb and Cr channels (step 2 of the compression
pipeline in Section 2). Even though averaging 4 pixels can
end up in non-integer value, the compressors still round
the averages to integers before the DCT transformation. We
verified this only experimentally and indeed, if we disallow
the rounding of the averages to integers, our model on the
errors e is completely broken and resembles uniform noise
instead, which is expectable because only a quarter of all pixels
entering the JPEG compression have integer value after such
subsampling. This is a crucial observation, which will allow
us to detect different subsampling methods by inspecting the
decompression errors e.

Another way, used for example in libjpeg version 7 [3],
uses subsampling in the DCT domain. After step 5 of the
compression pipeline, the downsampling is performed on 2 x 2
neighbouring 8 x 8 DCT blocks, combining only their low-
frequency components, see the details in Section 2B in [8].
In this scenario, the resulting downsampled DCT block is a
combination of 4 original neighbouring blocks. Consequently,
this breaks the model we assume for the spatial domain
rounding errors and they will follow uniform distribution
instead.

4 Experiments

We took 25,000 color TIFF images of size 256 X 256
from ALASKA?2 dataset [7] and JPEG compressed them with
four different compressors causing different behaviour of the

FIGURE 3 — Histograms of rounding errors e coming from the
blue channel Cb compressed with different compressors. Same
image was used for every compressor.

errors e. First, we computed the DCT coefficients manually by
performing steps 1-7 from the compression pipeline (without
chroma subsampling) and with the trunc quantizer as the final
rounding operation. This method will be referred to as Trunc.
For the other three pipelines, we used libjpeg library with
a Python wrapper that supports version selection.? For all
three compressors, we used the slow DCT method (in fact
all available methods produce the same results at QF 100 for
a fixed libjpeg version). Once, we did not use any chroma
subsampling, which again produces the same results for every
libjpeg version. For the other two compressors, we used libjpeg
6b and 7 with default 4 :2 :0 chroma subsampling, which
subsamples both chrominance channels by a factor of two in
both dimensions. These three methods will be referred to as
Full, 6b, and 7. It was shown in [3] that for QF 100 with
the default chroma subsampling, only two possible clusters of
compressors exist and the selected versions are their respective
representatives. Furthermore we observed that mozjpeg [9]
produces the same DCT coefficients as libjpeg 6b, but it uses
progressive JPEG instead. Since that will not have any effect on
the errors e, we excluded mozjpeg from our experiments, since
the progressive method can be read form the header. Also note
that all the libjpeg versions provide the same results for the
luminance channel. We then divide our images into training,
validation, and testing sets of sizes 22,000, 1,000, and 2,000.
To train a detector distinguishing a JPEG compressor via the
errors e, we used a multi-class EfficientNet-BO [10]. On input
we provide the rounding errors of decompressed chrominance
channels e“?, e“" stacked as two channels of an image. Since
some of the compressors perform chrominance subsampling,
we will upsample the inputs (if needed) to size 256 x 256.
Finally, because the EfficientNet requires three channel input
(it was pretrained on color images), we add a 1 x 1 convolution

2. https ://github.com/martinbenes1996/jpeglib

Trunc Full 6b 7
Trunc | 1994 6 0 0
Full 0 2000 O 0
6b 0 7 1993 0
7 0 0 0 2000

TABLE 1 — Confusion matrix of the multi-class EfficientNet

into the beginning of the network mapping two channel inputs
into three channels. The rest of the hyperparameters are kept as
in [4].

4.1 Results

To verify that there is a potential for detection through the
errors e, we will first take a look at their behaviour with respect
to the tested compressors. In Figure 3 we can observe the
histograms of rounding errors e“® coming from decompressed
Cb channel of a single image. We can observe what we
expected. With the trunc quantizer, the Wrapped Gaussian
distribution has a very large variance, therefore it almost looks
uniform. For compressors Full and 6b, we see a nice Wrapped
Gaussian shape, while for 6b the distribution is more noisy,
because we only have a quarter of all original pixels, due to the
subsampling. The biggest difference comes for libjpeg 7, where
we can observe uniform noise, which is due to the subsampling
in the DCT domain, as mentioned previously.

In Table 1 we can observe the results of our multi-
class EfficientNet trained only on the chrominance rounding
errors e“?, e“”. For images compressed with the Trunc
quantizer, only 6 images got misclassified, a fact that can
probably be avoided by adding the errors e¥ coming from
the decompressed luminance channel as additional input to the
network detector. The only other mistake the detector does is
misclassifying libjpeg 6b with subsampling as libjpeg without
subsampling. This is most likely due to upsampling of the
errors e“?, €7 before feeding them into the network. As this
was only done in order to have unified size of the network
inputs, we can clearly correct for these mistakes by taking the
original size of the chrominance DCT channels into account.
All in all, we can observe that inspecting only decompression
errors coming from the two chrominance channels gives almost
perfect prediction about the compressor used.

5 Conclusions

In this work we verified that JPEG images created by
various JPEG compressors produce very different decom-
pression errors and we build a near-perfect deep learning
detector distinguishing the compressors by inspecting these
decompression errors. Interestingly, we did not even have
to use all three color channels for the predictions, allowing
potentially even better performance, if we were to use also
the luminance channel. This compressor detection can be
particularly useful in steganalysis, if the steganalyst builds

a detector sensitive to changes in the distribution of the
decompression rounding errors. For instance, given an image
producing uniformly looking rounding errors does not necessa-
rily mean steganography was used, as was previously believed.
We have seen that this can be caused by different rounding
operation performed on DCT coefficients or by subsampling
of chrominance channels in the DCT domain. In our future
work, we plan on investigating the effect of steganography on
prediction of the JPEG compressor.

Références

[1] S. Agarwal and H. Farid. Photo forensics from JPEG
dimples. In IEEE Workshop on Information Forensics and
Security (WIFS), December 4-7, 2017.

[2] S. Agarwal and H. Farid. Photo forensics from rounding
artifacts. In C. Riess and F. Schirrmacher, editors, The 8th
ACM Workshop on Information Hiding and Multimedia
Security, Denver, CO, June 22-25, 2020. ACM Press.

[3] M. Benes, N. Hofer, and R. Béhme. Know your library :
How the libjpeg version influences compression and
decompression results. In The 10th ACM Workshop
on Information Hiding and Multimedia Security, Santa
Barbara, CA, June 27-29, 2022. ACM Press.

[4] J. Butora and P. Bas. Fighting the reverse JPEG
compatibility attack : Pick your side. In The 10th
ACM Workshop on Information Hiding and Multimedia
Security, Santa Barbara, CA, June 27-29, 2022. ACM
Press. Under review.

[5] J. Butora and J. Fridrich. Reverse JPEG compatibility
attack. IEEE Transactions on Information Forensics and
Security, 15 :1444-1454, 2020.

[6] J. Butora and J. Fridrich. Steganography and its detection
in JPEG images obtained with the “trunc” quantizer.
In Proceedings IEEE, International Conference on
Acoustics, Speech, and Signal Processing, Barcelona,
Spain, May 4-8, 2020.

[71 R. Cogranne, Q. Giboulot, and P. Bas. @ALASKA-
2 : Challenging academic research on steganalysis with
realistic images. In IEEE International Workshop on
Information Forensics and Security, New York, NY,
December 6-11, 2020.

[8] R. Dugad and N. Ahuja. A fast scheme for image size
change in the compressed domain. IEEE Transactions on
Circuits and Systems for Video Technology, 11(4) :461-
474, 2001.

[9] Mozilla Foundation. mozjpeg : Improved JPEG encoder.
https ://github.com/mozilla/mozjpeg, 2014.

[10] T. Mingxing and V. L. Quoc. EfficientNet : Rethinking
model scaling for convolutional neural networks. In
Proceedings of the 36th International Conference on
Machine Learning, ICML, volume 97, pages 6105-6114,
June 9-15, 2019.

