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Résumé – Afin de résumer l’information d’une famille finie de mesures de probabilité, il est naturel de considérer leur moyenne de Fréchet
par rapport à la distance de Wasserstein-2, c’est-à-dire le barycentre de Wasserstein. Nous définissons de manière analogue un barycentre basé
sur le transport optimal faible, qui correspond à un coût barycentrique quadratique de transport [8], [4]. Nous adressons l’interprétation de ces
barycentres faibles au moyen de l’ordre convexe entre mesures de probabilité et nous montrons que, plutôt que de moyenner les géométries d’un
ensemble de distributions (comme le fait le barycentre de Wasserstein classique), les barycentres faibles extraient une information géométrique
commune à toutes les mesures, et celle-ci peut être encodée par une variable aléatoire latente sous-jacente.

Abstract – A natural method for averaging a finite family of probability measures is to compute their Fréchet mean with respect to the
Wasserstein-2 distance, that is the Wasserstein barycenter. We define, in a similar way, a barycenter based on optimal weak transport, which
corresponds to quadratic barycentric transport costs [8], [4]. We discuss the interpretation of these weak barycenters in the light of convex ordering
between probability measures and we show that, rather than averaging the input distributions in a geometric way (as the Wasserstein barycenter
based on classic optimal transport does), weak barycenters extract common geometric information shared by all the input distributions, encoded as
a latent random variable that underlies all of them.

1 Introduction
This article 1 explores theoretical features and potential ap-

plications to machine learning of barycenters of probability
measures analogously defined in terms of optimal weak trans-
port (OWT, see [8]), or more precisely quadratic barycentric
transport costs. In a nutshell, for a source measure µ and a target
measure ν, the OWT problem aims to transport mass so that
the conditional spatial mean of target support points y, given
their source support points x, is close to x in average. This
amounts to finding an intermediate measure η, possibly more
concentrated than ν in the sense of convex ordering of proba-
bility measures, which is close to µ with respect to (wrt) the
Wasserstein-2 distance.

Our main motivation is to investigate the effect and meaning
of combining a family of probability measures using OWT
instead of OT. To that end, we will define the weak barycenter
of this family through an optimisation problem, and discuss
some of its properties. Importantly, we will see that, rather than
averaging the input distributions in a metric sense, solving a
weak barycenter problem corresponds to finding probability
measures that encode geometric or shape information shared
across all of them. In fact, the weak barycenter problem will

1. The content of this paper is published at NeurIPS 2021 [5].

be interpreted as finding a latent random variable common to
all the input distributions. Implications of this latent variable
interpretation, in terms of robustness to outliers, will also be
drawn in our work.

A second motivation is to develop and implement computatio-
nal methods for weak barycenters, capitalising on the fact that
the optimal weak coupling between any pair of distributions,
with finite second moments, is always realised by a unique op-
timal map. This property is in sharp contrast to standard OT,
where the absolute continuity (a.c.) wrt the Lebesgue measure
of the source or target measure is typically needed to grant the
existence and uniqueness of a map—the so-called Monge map—
realising the optimal coupling between them. This map is often
required in different ways to compute Wasserstein barycenters
(see [2], [12] or [9]).

2 Optimal –weak– transport and bary-
centers of distributions

2.1 Background on optimal transport

The optimal transport (OT) problem [11] aims to find the
lowest cost to transfer the mass from one probability measure



onto another, capitalising on their geometric information. In
particular, the Wasserstein-2 distance W2 metrises the space
P2(Rd) of probability measures on Rd with finite 2-moment.
Precisely, for µ, ν ∈ P2(Rd),

W2(µ, ν) =

(
min

π∈Π(µ,ν)

∫
Rd×Rd

∥x− y∥2dπ(x, y)
)1/2

, (1)

where π ∈ Π(µ, ν) is a transport plan, that is a probability
measure on the product space Rd × Rd with marginals µ and
ν. For µ a.c., the unique optimal plan π∗ is concentrated on the
graph of an unique measurable map T ∗ and Eq. (1) is equivalent
to Monge’s problem

W2(µ, ν) =

(
min

T∈T(µ,ν)

∫
Rd×Rd

∥x− T (x)∥2dµ(x)
)1/2

, (2)

where T(µ, ν) is the set of measurable functions T : Rd → Rd

such that 2 ν = T#µ. In that case we have π∗ = (id, T ∗)#µ.
Interestingly, T ∗ can be written as the barycentric projection of
π∗, that is T ∗(x) =

∫
Rd ydπ∗

x(y), where π∗
x is the disintegration

of the transport plan π∗ ∈ Π(µ, ν) wrt the first marginal µ i.e.

π∗(dxdy) = π∗
x(dy)µ(dx).

In fact, one can construct the barycentric projection from any
transport plan π ∈ Π(µ, ν) :

Sν
µ(x) :=

∫
Rd

ydπx(y)
also
= E(Y |X = x), with (X,Y ) ∼ π.

Finally, the classical Wasserstein barycenter problem for a
set of probability measures ν1, . . . , νn ∈ P2(Rd) with weights
λ1, . . . , λn in the simplex (i.e. λi ≥ 0 and

∑n
i=1 λi = 1) is

defined [1] by

argmin
µ∈P2(Rd)

n∑
i=1

λiW
2
2 (µ, νi). (3)

2.2 Optimal weak transport
The OWT introduced in [8], and especially the case of bary-

centric transport costs, is defined for µ, ν ∈ P2(Rd) by

V (µ|ν) = inf
π∈Π(µ,ν)

∫
Rd

∥x−
∫
Rd

ydπx(y)∥2dµ(x). (4)

The following results from [3] (stated for our specific setting)
lay the ground for our proposed weak barycenters. We de-
note by η ≤c ν the convex order of measures, meaning that∫
ϕdη ≤

∫
ϕdν for any convex function ϕ that is nonnegative

or integrable wrt η+ν. The optimisation problem in Eq. (4) can
then be reformulated thanks to the Brenier-Strassen theorem [7],
[3], through the notion of convex ordering.

Theorem 1 ([3], Th. 1.2 & Th. 1.4). Let µ ∈ P2(Rd) and ν ∈
P1(Rd), then the OWT problem (4) admits a unique minimiser.
Moreover, there exists a unique η∗ ≤c ν such that

W 2
2 (µ, η

∗) = inf
η≤cν

W 2
2 (µ, η) = V (µ|ν). (5)

2. The pushforward operator # is defined such that for any measurable set
B ⊂ Rd, ν(B) = µ(T−1(B)).

Additionally, there exists a convex function ψ : Rd → R of class
C1 with ∇ψ being 1-Lipschitz, such that ∇ψ#µ = η∗. Finally,
the optimal coupling πµ,ν ∈ Π(µ, ν) verifies

∫
ydπµ,ν

x (y) =
∇ψ(x) µ-a.s.

This strongly differs from the classical OT setting, for which
the uniqueness of an optimal transport plan is not guaranteed
for arbitrary measures. Note that V is no longer a distance : it
is not symmetric, the homogeneity property is not verified i.e.
V (µ|ν) does not imply µ = ν, but it is still positive and finite.

Fig. 1 illustrates the differences between the distributions
SOT#µ and SOWT#µ constructed respectively from an OT
plan in Eq. (1) and the optimal weak plan in Eq. (4) between
two measures µ and ν. The measure SOT#µ reasonably fits the
target distribution ν, and SOWT#µ ≤c ν.
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FIGURE 1 – Examples of pushforward measures constructed
from barycentric projections for two measures µ and ν in two
dimensions (left) and one dimension (right).

Computation of OWT. For two discrete measures µ =∑r
i=1 aiδxi

and ν =
∑m

j=1 bjδyj
, the OWT problem boils

down to solving the following quadratic programming problem
with linear constraints :

min
π∈Rr×m

{
r∑

i=1

ai

∣∣∣xi − (πy
a

)
i

∣∣∣2 , πij ≥ 0, π1 = a, πT
1 = b

}
,

which can be solved using a solver such as cvxpy. We also
propose to solve the OWT problem with a proximal algorithm.
The optimal barycentric projection is then constructed as πy

a .

2.3 Weak barycenters
As in the OT framework, and based on OWT in Eq. (4), we

define weak barycenters as follows.

Definition 1. The set of weak barycenters of a finite family of
measures {νi}i=1,...,n ∈ P2(Rd) with weights {λi}i=1,...,n in
the simplex is defined as

argmin
µ∈P2(Rd)

n∑
i=1

λiV (µ|νi). (6)

A weak barycenter averages, wrt to the Wasserstein metric,
an optimally chosen set of probability measures {η1, . . . , ηn}
which are more concentrated than the corresponding νi, in the
sense that ηi ≤c νi for each 1 ≤ i ≤ n. The existence of a
solution is established in the next proposition (see proof in [5]).

Proposition 1. The weak barycenter problem in Eq. (6) admits
a minimiser µ ∈ P2(Rd).



In the following, we denote by X and Yi random variables
with respective laws µ and νi, and δa the Dirac measure suppor-
ted on a ∈ Rd. First intuitions are presented in the following.

Lemma 1. If µ is a weak barycenter of {νi}i=1...,n and µ′ ≤c

µ, then µ′ also is a weak barycenter. In particular, the Dirac
measure supported on Eµ(X) is always a weak barycenter.
Moreover, a Dirac distribution δω̄ is a weak barycenter if and
only if ω̄ =

∑n
i=1 λiEνi(Yi).

Proposition 2. A measure µ ∈ P(Rd) is a weak barycen-
ter of {νi}i=1...,n if and only if its mean satisfies Eµ(X) =∑n

i=1 λiEνi
(Yi) and µ̂ ≤c ν̂i holds for all 1 ≤ i ≤ n, where ν̂

denotes the centered version of a law ν.

For instance, in the case of one dimensional Gaussian distri-
butions νi = N (m,σ2

i ), the set of weak barycenters includes
{µ = N (m,σ2) | 0 ≤ σ2 ≤ σ2

i ∀i}. As for the Wasserstein
barycenter, it is given by N (m, (

∑
λiσi)

2).

2.4 Weak barycenters as latent variables
A weak barycenter encodes common geometric information

present in all the input measures, and this can be intuitively
and rigorously interpreted as being the distribution of a latent
variable underlying the realisations of random variables of laws
νi for all i = 1, . . . , n.

Theorem 2. Let µ be a weak barycenter of {νi}i=1...,n. Then,
for each 1 ≤ i ≤ n, a random variable Yi ∼ νi can be realised
as

Yi = X + (EYi − EX) + Ȳi,

where X ∼ µ and Ȳi = Yi−E(Yi|X) is centered conditionally
on X . Moreover, one has Sν

µ(X) = X + (EYi − EX) for all
i = 1, . . . , n. Finally, we have E(Yi−EYi|X−EX) = X−EX
or, equivalently, µ̂ ≤c ν̂i, with µ̂ and ν̂i the laws of X − EX
and Yi − EYi respectively.

That is to say, each Yi ∼ νi can be realised by sampling
a random variable X common to all i = 1, . . . , n and distri-
buted according to a weak barycenter µ, translating that value
by EYi − EX and adding a cluster-specific component Ȳi or
idiosyncratic noise, centered conditionally on X .

Robustness to outliers. The observations of each class can
be naturally interpreted as perturbations wrt the (translated) law
of the weak barycenter, or outliers wrt the associated latent ran-
dom variable. We illustrate this in Fig. 2. We consider two sets
of 50 observations sampled from 2D Gaussian measures, where
each observation may be corrupted by random translations (Ber-
noulli p = 0.1) thus producing outliers. We show the resulting
barycenters (right) for Wasserstein barycenter (red) and weak
barycenter (black), the latest shows robustness to outliers.

3 Algorithms and numerical experiments
Computation of weak barycenters. Akin to the fixed-point

methodology in the classical Wasserstein scenario, we define an
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FIGURE 2 – (Left) Empirical Gaussian distributions with corrup-
ted observations, and initialisation µ0 of the iterative procedure
presented in Section 3. (Right) The associated OWT (black)
and OT (red) barycenters.

iterative rule valid for arbitrary probability measures ν1, . . . , νn ∈
P2(Rd) based on the barycentric projection :

µk+1 = G(µk), with G(µ) =

(
n∑

i=1

λiS
νi
µ

)
#µ, (7)

where for each i = 1, . . . , n, the optimal barycentric projection
is given by Sνi

µ : x 7→
∫
ydπµ,νi

x (y), for πµ,νi ∈ Π(µ, νi)
achieving the minimum in the OWT problem in Eq. (4).

A fundamental difference with the Wasserstein barycenter
[2] is that the optimal Monge map T ν

µ in the OT problem ve-
rifies T ν

µ#µ = ν, whereas the pushforward measure Sν
µ#µ in

the OWT setting still depends on µ. We will then prove that
the iterative algorithm in Eq. (7), based on the maps Sνi

µ , ad-
mits converging subsequences. For that purpose, we prove the
following fundamental result.

Theorem 3. The function µ 7→ G(µ) defined in Eq. (7) is
W2-continuous from P2(Rd) to P2(Rd).

Using an approach similar to [2] for the Wasserstein bary-
center, the proposed fixed-point procedure is built on the next
proposition.

Proposition 3. If µ is a weak-barycenter, that is, a solution of
problem (6), then G(µ) = µ, i.e., x =

∑n
i=1 λiS

νi
µ (x), µ(x)-

a.s.

The inverse implication of Proposition 3 is not necessarily
true, that is, some fixed points may not be weak barycenters.
However, a Dirac delta δω, ω ∈ Rd, that meets the fixed-point
condition δω = G(δω), is a weak barycenter (see Lemma 1).

Proposition 4. Let (µk)k be the sequence defined by the itera-
tive procedure µk+1 = G(µk) and starting from µ0 ∈ P2(Rd).
Then (µk)k is tight and every converging subsequence must
converge to a fixed point of G.

These results also hold for the Wasserstein barycenter of a.c.
measures {νi}i=1...,n such that at least one of them has a boun-
ded density. Moreover, the inverse implication, namely if µ is a
fixed-point then it is a barycenter, is not straightforward even in
the Wasserstein barycenter case. For that case one considers the
fixed-point equation given by µ = (

∑n
i=1 λiT

νi
µ )#µ, with T νi

µ
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FIGURE 3 – Two Gaussian mixtures point clouds ν1, ν2 and
their OWT (black) and OT (red) barycenters.
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FIGURE 4 – (Left) 10 distributions supported on spiral. (Right)
OWT (black) and OT (red) barycenters.

the Monge map verifying νi = T νi
µ #µ in Eq. (2). Indeed, [1]

and [12, Theorem 2] provide additional conditions for this to be
true by essentially invoking more smoothness on the distribu-
tions {νi}i=1...,n.

Case of a stream of distributions. We also propose a sto-
chastic iterative algorithm for computing a weak barycenter for
distributions obtained sequentially, that can be found in [5].

Numerical experiment. We compare weak and OT bary-
centers by running the iterative procedure in Eq. (7) for the
barycentric projections associated respectively to an optimal
weak plan in 4 and an OT plan in (1) as in [6, 10].

We present three experiments. In Fig. 3, we consider two
points clouds sampled from Gaussian mixtures (orange and
blue). The weak and OT barycenters clearly behaves differently :
the OWT barycenter shows the convex order property. In Fig. 4,
we have 10 empirical distributions supported on spirals (left),
with random ratio in (0, 3). The weak barycenter (right) seems
to better preserve the shape of the spiral than the OT barycenter,
which is in line with the latent variable interpretation of Theorem
2. In Fig. 5, we consider two noisy points clouds sampled from
distributions supported on ellipses. The OWT barycenter (black)
seems to be more robust to the noise coming from ν1 and ν2.

Open questions
We identify two main theoretical aspects for further research :
- General conditions on the family of input measures for the

existence of weak barycenters that are not Dirac masses.
- Conditions on input measures for a maximal weak barycen-

ter (in terms of convex ordering) to exist when d ≥ 2.

2 0 2 4 6

4

2

0

2

4

Initialisation 0
Measure 1
Measure 2
OT bar
Weak bar

FIGURE 5 – Two distributions supported on ellipses and their
OWT (black) and OT (red) barycenters.
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