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Résumé – Dans le domaine des interfaces cerveau-ordinateur (ICO), les modèles d’apprentissage sont typiquement 

entrainés sur chaque sujet et chaque session séparément, comme les données ne sont pas alignées entre sessions et 

entre sujets. Ici nous proposons une méthode pour l’apprentissage de groupe, c’est-à-dire pour l’apprentissage 

simultané à l’aide de plusieurs sujets et/ou sessions, après les avoir alignés de façon conjointe. Notre méthode s’inspire 

de la littérature sur la séparation aveugle de source. Comme démonstration, nous entrainons un modèle unique 

d’apprentissage sur une base de données de 22 sujets et nous appliquons ce modèle de groupe pour prédire les données 

de test de façon analogue pour tous les sujets. Nous observons une augmentation moyenne conséquente de 6.8 points 

de précision comparé à un paramétrage entrainement-test individuel classique. Notre méthode est générique et peut 

être employée dans n’importe quelle application. Elle peut aussi être utilisée pour entrainer des modèles 

d’apprentissage qui requièrent un très grand nombre de données, tel que les réseaux de neurones profonds.   

Abstract – In the brain-computer interface (BCI) field the machine learning models are usually trained for each subject 

and each session separately, since data are misaligned between subjects and between sessions. In this article we 

propose a method for group learning, that is, for learning from many different subjects and/or sessions after jointly 

aligning them. Our method is inspired from the literature on joint blind source separation. As a demonstration, we fit 

a unique machine learning model on a 22-subject BCI database and we apply such a group model to predict test data 

on all subjects alike. We observe a highly significant average 6.8-point accuracy increase as compared to the classical 

individual train-test setting. Our method is general and may be applied in any applications. For instance, it may be 

used to fit machine learning models requiring very large amount of data, such as deep neuronal networks. 

 

1 Introduction 

A Brain-Computer Interface (BCI) is a computerized 

system for on-line prediction of cognitive states and 

intentions of the user [1]. In this article we focus on BCIs 

based on electroencephalography (EEG), a modality that 

is completely non-invasive, safe and silent, but also 

affordable to the large public due to recent advances in 

micro-technology. Typical BCIs operate in two phases : 

in the training phase the classifier is calibrated in a 

supervised fashion, that is, with examples of EEG data 

corresponding to labeled classes ; the actual use of a BCI 

is named the test phase and must be unsupervised, that is, 

the BCI must classify EEG data to infer the classes they 

belong to. In general, a training phase precedes every 

actual use of the BCI because the machine learning (ML) 

model cannot be generalized to subsequent sessions of 

the same user and, even less so, to other users. However, 

the calibration phase is time consuming and tiring, hence 

highly impractical both for healthy and clinical users [2]. 

For this reason, recent research has focused on transfer 

learning (also named domain adaptation) methods in 

order to transfer the ML model from one session/subject 

to another. In this field the domain we ought to use for 

learning is referred to as the source and the domain we 

want to apply the learning to as the target. Recently, there 

have been significant advances in transfer learning 

methods thanks to the inception in the BCI field of 

Riemannian geometry [3]. In this framework EEG 

segments are encoded in the form of symmetric positive-

definite (SPD) matrices and manipulated as points in 

their natural Riemannian manifold [4]. The first 

proposition aimed at parallel-transporting all points for 

both the source and target domain so as to recenter them 

around the identity [5]. This amounts to whitening the 

observations, a well-known pre-processing step in the 

signal processing community. Similarly, in [6] the 

authors recentered to the midpoint between the centers of 

mass of the source and target data.  

The above recentering procedures acts as translations. 

Inspired by Procrustes analysis, the authors in [7] 

proposed to add two more matching steps following 

recentering: a stretching operation to match the 

dispersion of the points of the source and target sets and 

a rotation, reminiscent of the well-known whitening + 

rotation procedure used in signal processing for blind 

source separation.  

The methods described so far carry out the transfer 

learning on the manifold. Usually the data are then 

projected onto the tangent space for classification 

purposes, since the tangent space is Euclidean and 

powerful ML algorithms can be applied therein. In [8] a 

recentering on the manifold is followed by the projection 
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onto the tangent space, where the tangent vectors are 

submitted to a principal component analysis (PCA), 

independently for the source and target data sets. The two 

PCAs being unrelated, this method proves insufficient for 

aligning the source and target tangent vectors and suffers 

from an unsolvable sign ambiguity. In [9] the present 

authors proposed to align the tangent vectors using 

Procrustes Analysis in the tangent space. Under certain 

conditions this is equivalent to aligning the source and 

target tangent vectors by Maximum Covariance Analysis 

(MCA), which does align the data and does not suffer 

from sign ambiguities. 

All the above studies have been concerned with 

transfer learning from one domain to another. In this 

article we take a more general route. Given M > 2 

domains, we wondered how they can be employed jointly 

for learning purposes. Rather than aligning a target data 

set to a source data set, or vice versa, we require to use 

many source domains and obtain group learning. As a 

matter of fact, we have now access to a large quantity of 

BCI data performed under similar, sometimes even 

identical, conditions. For example, for a given BCI 

system, all previous users of the system constitute a 

(possibly large) database. Not using such resource is, 

evidently, a waste in several respects. Motivated by this, 

we prepare now to present our method. 

2 Method 

We present and test the method for the case of BCIs 

based on event-related potentials (ERPs). Only the pre-

processing and encoding parts of the entire pipeline are 

to be adapted in case of other paradigms. We will 

describe the pre-processing steps only briefly as they are 

state-of-the-art procedures in the field of ERP-based 

BCIs. 

 

2.1 ERP-based BCIs 

In ERP-based BCI the user is confronted with a 

continuous stream of discrete sensory stimuli. Among 

them, the one the user wants to select (e.g., the flashing 

of a specific letter in a BCI speller) is salient and all the 

others (e.g., the flashing of all other letters) are non-

salient. All stimuli evoke stereotypical electric potential 

in the brain, lasting up to 1s [10]. The EEG stream is 

hence segmented in 1s-segments, named trials, starting 

at the exact moment the stimulations are delivered. The 

goal of such a BCI is to understand what stimulus is 

salient for the user at a given time, given several 

stimulations. This is possible because the ERPs are 

different for salient and non-salient stimuli. A 2-class 

(salient vs. non-salient) ML problem is posed. In the BCI 

data we analyze here the ratio between salient and non-

salient stimuli is 1:6, thus the classes are unbalanced.   

2.2 Pre-processing 

The EEG data is band-pass (1-16 Hz) filtered applying 

a second-order forward-backward Butterworth digital 

filter featuring linear phase response and segmented to 

extract the trials, as explained above. The trials with 

excessive artefacts are excluded from analysis by means 

of a data-driven amplitude-thresholding procedure.  

2.3 Encoding 

Let m{1,…,M} be the index of M subjects. Let 

XmlℝNT be the matrix holding the EEG data of the lth 

trial, where N is the number of electrodes and T the 

number of samples comprising one second. In this work 

we assume N and T be the same for all subjects, although 

this is not a requirement. First, the stereotypical ERP 

response for the salient stimuli is estimated using the 

weighted least-square estimation detailed in [10]. Only 

the first D=4 principal components of the stereotypical 

response for each subject, denoted PmℝDT, are retained. 

Then, the trials are augmented [11], such as 
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their covariance matrix is estimated using the linear 

Ledoit and Wolf shrinkage estimator [12] and normalized 

so as to have unit determinant. Let us denote those 

normalized covariance matrix estimators CmlℝN+DN+D. 

The center of mass Gm of all matrices Cml (i.e., of both 

salient and non-salient trials) is found for each subject as 

the weighted geometric mean according to the affine-

invariant (Fisher-Rao) metric on the Riemannian 

manifold of SPD matrices [4]. Being the classes 

unbalanced, the weights are chosen so as to give equal 

overall weight to the salient and non-salient trials. 

2.3.1 Tangent space projection  

The aforementioned recentering to the identity matrix 

(whitening) simplifies the projection onto the tangent 

space of the trials. Both operations are carried out as 
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where log(.) is the matrix logarithm of the argument. The 

upper (or lower) triangle of symmetric matrices Sml are 

then vectorized giving weight 1 to the diagonal elements 

and 2 to the off-diagonal elements, yielding the 

vectorized tangent vector vml; the weights ensure that the 

2-norm of vml is the same as the Frobenius norm of Sml 

[3]. Furthermore, we remove from vml the corresponding 

elements of Sml that depends only on Pm in (1) ; those 

elements are in fact identical for all trials, thus do not 

hold any discriminant information. The final vectors vml 

are therefore of dimension E=(N²+N+2DN)/2. In this 

study (N=16, D=4), E=200. 

2.4 Group Alignment 

Let k{1,…,K} be the index of K classes. In this study 

K=2, but in the sequel it may be any natural number. Let 



Tmk be the matrix formed by stacking horizontally a 

number of bootstrapped average estimations of vectors 

vml (section 2.3.1), for each subject and each class 

separately. In this work, E of such bootstraps are 

extracted, that is, as many as the dimension of the vectors, 

and each one is obtained averaging 10 vectors randomly 

drawn with replacement. The Euclidean metric is used 

for averaging. This yields a matrix of E column tangent 

vectors Tmk ℝEE. Now, let us define all cross-products  
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In order to align the tangent vectors of all subjects we 

require to find M matrices Bm such that the cross-

products in (3) transformed such as 
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are as diagonal as possible, according to some criterion. 

This is a generalization of the case K=1 and M=2, 

yielding a single cross-product R12, the left and right 

singular values of which provide the sought solutions B1 

and B2. Such solution, known as maximum covariance 

analysis, diagonalizes R12 exactly, with B1, B2 being 

orthogonal matrices. For the general case (M>2, K>1), 

which is of concern here, the diagonalizations of the 

cross-products Rijk is only approximate. Furthermore, we 

do not need to constraint the solution matrices to the 

orthogonal group.  

The same problem has been encountered by the signal 

processing community in completely different contexts, 

known as independent vector analysis and joint blind 

source separation [13]-[16]. To solve it, we adopt the 

widespread off-diagonal least-squares criterion and a 

known approximate joint diagonalization (AJD) gradient 

descent scheme. Possible sign and permutation 

ambiguities, which are inherent to non-crossed AJD 

problems, can be solved in our case finding signed 

permutation matrices for B1,…,BM so as to make the 

diagonal elements of cross-products (4) positive and sort 

in descending order their sum across m and k. We report 

here the Group Alignment Algorithm in pseudo-code ; for 

the cost function, the derivation of the gradient and the 

optimization scheme, the reader is referred to [15], [16].  

 

Once optimized matrices B1,…,BM, we jointly align 

all tangent vectors for all subjects, regardless their class, 

by means of the following non-orthogonal projection : 
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3 Results 

We have tested the proposed group learning approach 

on 22 subjects of the BCI BI.EEG.2012-GIPSA database 

[17]. EEG data were acquired at 16 scalp locations using 

silver/silver-chloride electrodes and sampled at 128 

samples per second. For details on the experimental 

procedure the reader is referred to [17]. 

 

For each subject we have divided in half the available 

salient and non-salient tangent vectors vml (section 2.3.1), 

allowing two data splits; one split is used for training and 

the other for testing, then vice versa. This splitting 

procedure is repeated 10 times; the accuracy we report is 

the average of the two training-test procedures repeated 

10 times (10 2-fold cross-validation procedure). 

Since the classes are unbalanced, we have employed 

the balanced accuracy as performance index. As ML 

model we have employed the lasso logistic regression 

with a fully automated cross-validation procedure to find 

the best parameters for fitting the data. As parameter P in 

the group alignment algorithm we have set four; this 

allows two discriminant dimensions per class, which is a 

typical value used when spatial filtering is applied to 

ERP-based BCI data. 

We have compared the balanced accuracy obtained 

with the group alignment method to the one obtained 

with a classical subject-wise train-test procedure. The 

training and test data are always identical in the 

comparisons; the only difference between the two is that 

in the case of group alignment only one ML model is 

trained using the training data of all subjects, whereas in 

Group Alignment Algorithm 
 
Input  
subspace dimension P<<E, 

matrices T
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end  m 
until convergence of all matrices U1,…,UM 

normalize all columns of matrix Um  m1:M  
-------------------------------------------------------------------------- 
Output 

m m m mB W U F   m1:M, 

with F1,…,FM signed permutation matrices (see text)  



the subject-wise case M models are trained, each one 

using only the training data of the subject under test. 

A laptop computer has been instructed to perform all 

computations using the Julia language [18]. The group 

alignment algorithm is available as function majd in the 

open-source package Diagonalizations.jl [19]. 

The results are shown in Figure 1. The group learning 

approach proves superior for all 22 subjects. The 

minimum(maximum) improvement in balanced accuracy 

is 0.028(0.108). The average(sd) is 0.068(0.023). The 

6.8-point average accuracy increase is impressive, first 

because the subject-wise accuracy is already high for 

these data, therefore it is difficult to improve further, and 

second because we did not optimize the pre-processing 

pipeline. 

 

 

FIGURE 1 – Results. See text for details 

4 Discussion and Conclusions 

We have presented an original method to jointly align 

the data of M subjects in the Riemannian tangent space. 

The same can be done for M sessions. Since our method 

acts onto a Euclidean space, it can be used to align all 

kinds of feature vectors, therefore it is general and by no 

means restricted to the BCI field. Since we have not 

searched for optimal hyper-parameters in the pre-

processing pipeline, there is likely room for 

improvement.  

The accuracy improvements we have observed is 

highly significant, however, before drawing firm 

conclusions the performance of the method should be 

confirmed on other databases and on different BCI 

paradigms, such as motor imagery and steady-state 

visually evoked potentials. If the performance is 

confirmed in future studies, this research may open the 

way to a renewed ML perspective in the BCI field : 

leveraging on the massive amount of available data to 

build powerful machine learning models. For instance, 

group learning may be used to fit ML models requiring 

very large amount of data, such as deep neuronal 

networks. 
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