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1 Introduction 

One of the major open questions in the domain of 

landslide hazard assessment and prediction is related to 

the timely and accurate detection of precursors, key 

indicators that precede failure or phases of large 

accelerations. Whilst in situ-methods, be these 

geotechnical, geodetic or geophysical, offer high level of 

accuracy at point locations or over restricted areas, they 

are often very costly in terms of instrumentation and 

manpower. Moreover, installation of in-situ networks 

requires previous knowledge of an instability. Therefore, 

despite the high accuracy they can achieve they do not 

contribute to the ability to detect previously unknown 

landslides that might be undergoing phases of 

destabilisation.  

In the last few decades, the increasing availability of 

satellite-based SAR imagery, characterised by large 

coverages and increasing temporal sampling, has allowed 

scientists to use InSAR techniques exploiting phase 

difference between successive images to identify 

previously unknown gravitational instabilities over 

inaccessible areas1, and to accurately quantify 

displacements2–4.  

In some cases, retrospective retrieval of time series 

revealed acceleration patterns precursory to failure5–7. 

This suggests that, the higher temporal sampling of new 

generation satellites, may indeed offer in the future the 

opportunity to detect motion precursory to failure with 

viable lead time for warning.  

However, the full potential of satellite based InSAR 

has not yet been realised for monitoring slope 

movements, owing to signal loss and a decrease in 

resolution caused by high noise levels due to vegetation, 

by high phase gradients due to large displacements over 

restricted areas, by unfavourable orientation and by the 

limitations of standard unwrapping procedures used to 

convert the wrapped measurement (radians) into 

displacements (mm)8,9. In addition, the incipient stages of 

deformation are rarely detected because they commonly 

develop over areas equivalent to a few pixels, 

challenging signal extraction with current available 

resolution.  

We show a methodology to retrieve signal associated 

with key precursors of destabilisation for landslides that 

present characteristics unfavourable to unwrapping and 

to time series inversion methods. This methodology 

entails detailed analysis and description of the 

interferometric phase signal obtained from raw, wrapped 

interferograms in combination with the analysis of 

interferometric coherence drops as marker for key 

geomorphological features. 

2 Methodology 

We generated 471 Sentinel-1 wrapped 

interferograms, covering the period between April 2015 

and March 2022, at medium spatial resolution (8 and 2 

looks in range and azimuth respectively, for a pixel of 

roughly 18 along range by 31 m in azimuth) over the 

Colca Valley in Peru. The interferograms were produced 

with the NSBAS processing chain, and the topographic 

contribution of the signal was removed with the SRTM 

digital elevation model (30 m resolution). Since 

landslides behaviour is often highly non-linear and is 

characterised by phases of quiescence and reactivation, 

for each investigated landslide we selected 

interferograms with short and constant temporal baseline. 

This is to ensure that the signal observed at each time step 

would not be affected by the length of time elapsed 

between the images used to form an interferogram. 

Various temporal baselines were tested: 12, 24 and 36 

days, for which 124, 139 and 120 interferograms are 

available, respectively. We observed that, for the 

landslide characteristics, vegetation, topography and 

rainfall in this study and with the wavelength of Sentinel-

1, the shortest available temporal baselines (12 and 24 

days) allow for an overall higher signal to noise ratio than 

longer ones. For each of the investigated landslides we 

visually mapped the landslide boundaries based on 
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geomorphological characteristics in geographical 

coordinates on optical images (Google Earth or Planet 

Lab imagery). We then projected the polygon outline in 

the geometry of the radar images and then performed a 

crop of all interferograms around the landslide polygon. 

 The size of the crop is selected in order to have a 

margin around the landslide of about the same size of the 

landslide. This allows a good size for the analysis as well 

as the presence of areas assumed stable and characterised 

by good temporal interferometric coherence (above 0.4) 

outside the landslide for reference. Interferometric 

coherence, 𝛾, is calculated over a 5 x 5 pixels window 

during the interferogram generation. It is calculated as:  

𝛾 =  
|⟨𝑆1∙𝑆2

∗⟩|

√〈𝑆1∙𝑆1
∗〉〈𝑆2∙𝑆2

∗〉
 (1)  

where 〈∙〉 indicates the averaging of the complex 

conjugation over the chosen window and 𝑆1and 𝑆2 are the 

complex values of two images composing an 

interferogram10.  

In the following sections, we illustrate the removal 

from the raw interferograms of a component of the phase 

signal proportional to perpendicular baselines, the 

analysis of the evolution of the phase signal in time and 

of coherence loss patterns.  

2.1 Topographic error correction of raw 

interferograms 

For each case analysed, an area assumed stable (not 

affected by ground displacements) was chosen outside 

the landslide boundaries. Different window sizes were 

tested and we selected a 5 x 5 pixels window: this is large 

enough to obtain more meaningful complex average 

phase values than for an individual pixel, whilst small 

enough not to include areas with too different reflective 

properties. The choice of the window was based on visual 

geomorphological analysis of the area surrounding the 

landslide as well as average temporal coherence, as a 

proxy for phase stability. The phase of each raw, wrapped 

interferogram was referenced to the average phase of the 

chosen stable reference window, 𝑒𝑖𝜑𝑘,𝑟𝑒𝑓, computed for 

each interferogram, k.  

We then investigated the effect of the perpendicular 

baselines of each interferogram on the phase. Higher 

perpendicular baselines cause higher sensitivity to 

topography, therefore if topographic residuals exist after 

the topographic component removal with the SRTM 

DTM, a correlation with the interferometric phase would 

be revealed. To do this, we computed the average phase 

the 5 x 5 pixels moving window, l, over the entire crop, 

noted 𝑒𝑖𝛿𝜑𝑘,𝑙 . We then investigated for each window the 

relationship between interferometric phase and 

perpendicular baseline for the whole temporal series of 

interferograms. This was done by performing a parameter 

search to find the best linear fit in the complex realm, to 

account for the circularity of the phase values, as the 

interferograms are wrapped. For each moving window, l, 

and for each interferogram, k, predicted values were 

calculated as:  

𝑒𝑖𝛿�̂�𝑘,𝑙 =  𝑒𝑖𝑋𝑘𝛽𝑙 (2) 

where 𝑒𝑖𝛿�̂�𝑘,𝑙 is the predicted phase in each window l, 

𝑋𝑘is the perpendicular baseline of each interferogram 

and 𝛽𝑙 is the proportionality coefficient between 𝑒𝑖𝛿𝜑𝑘,𝑙 

and perpendicular baseline for the window l (Fig. 1). For 

the parameter search, several bounds were tested for 

𝛽 before choosing -0.5 and 0.5 rad/m, with a 0.001 step. 

A value of 𝛽 is obtained by maximising the coherence 

between the predicted and the observed values: 

𝜌𝑘 = |∑ 𝑒𝑖𝜑𝑘,𝑙
𝑘  ∗ 𝑒𝑖𝛿𝜑𝑘,𝑙

̂ ∗

/𝑁| (3) 

where 𝑁 is the number of interferograms (Fig. 1). Maps 

of 𝛽, 𝜌 and corrected interferograms were then obtained 

(Fig. 2).  

 

Figure 1. Example of correlation between phase and perpendicular 

baseline for a window shown in the yellow square. Each purple point 

represents the complex average phase in the yellow window for a 

given interferogram of the series with respect to the complex average 

phase in the reference area (white square). As the phase is known in 

modulo 2, its +2 and -2 values are also shown in blue and teal 

respectively.  



2.2 Phase difference  

After interferogram correction, time series of wrapped 

phase difference between the stable area and an area at 

the crown of the landslide were investigated, after 

referencing to the reference area. Precursors are expected 

to be observed in the upper part of the landslide, in an 

area where headscarp retrogression might occur in 

subsequent destabilisation phases. The changes of phase 

difference through time between the stable area and an 

area where retrogression might occur should thus be a 

proxy for acceleration of displacement rates. In order to 

limit the effect of the noise of the interferometric phase 

within the landslide boundaries, we performed a selection 

of a 3 by 3 pixels window, based on average temporal 

coherence. Although it was not possible to select a 

specific threshold for temporal coherence, given the large 

variability, the selection of the area was based on the 

necessity to target the crown of the landslide whilst 

retaining the highest relative temporal coherence. Several 

window sizes were tested, and the size above was chosen. 

However, different window sizes could be chosen, 

depending on specific characteristics. Phase differences 

time series are initially assigned a degree of reliability 

associated with a visual inspection of all interferograms. 

Moreover, each point in the time series is assigned a 

quantitative measure of uncertainty which relates to the 

departure from a second degree polynomial to the 

correlation between phase standard deviation and 

average coherence within the reference and target 

windows.  

2.3 Coherence drop patterns 

We investigated spatial patterns of interferometric 

coherence loss both within the landslide and in the 

surrounding area. Coherence loss patterns that occur over 

restricted areas are considered a proxy of localised strain, 

as localised changes of the complex interferometric 

values are likely associated with localised displacements.  

The spatial analysis of coherence loss is carried out over 

individual interferograms. We calculated for 

interferogram the average coherence over three areas: the 

whole crop, the mapped landslide boundaries and a 

polygon defining the crown and scarp of the landslide 

(the latter mapped on optical images on the basis of 

geomorphological analysis, as for the landslide 

boundaries). We then analyse the average coherence time 

series in relation to daily rainfall (from the national 

service of Meteorology and Hydrology of Peru). We 

computed the time series of the ratio of average landslide 

coherence over the average coherence of the whole area 

considered.  

3 Results 

We show two examples of investigated landslides.  

These are large (between 0.8 and 1 km along the 

headscarp) deep-seated landslides in the Colca Valley. 

One of these landslides previously unidentified, failed on 

18th June 2020, causing river damming.  On this landslide 

we observe changes of the phase difference of roughly 

2.5 radians between the stable reference area and the 

target area at the crown, in the weeks prior to the failure. 

This is likely associated with an acceleration of the 

downslope displacements.  

Seasonal coherence loss is seen both within the 

landslide and in the surrounding area, in correspondence 

with wet periods over the years preceding the failure. 

However, we also observe significant, local coherence 

loss along the scarp and the southeastern flank of the 

landslide, intermittently in the years before failure, in 

periods in which coherence was overall higher in the 

surrounding area. Such coherence loss patterns appear in 

localised, elongated areas which mark prior to failure the 

developing headscarp (Fig. 3A). Optical images do not 

allow to recognise such feature as it develops. This 

observation is accompanied by a sharp decrease in the 

ratio between the coherence within the landslide and in 

the surrounding area, from 1 to 0.25, roughly six months 

before the failure. This could be associated with 

irreversible and gradual deformation on the ground 

related to internal damage of the structure of the landslide 

material.  

The second landslide analysed in this work has not yet 

undergone catastrophic failure but it has been 

characterised by periods of high velocities of 

displacements, reaching around 12 m of downslope 

displacement in 2020. From early 2017, the 

interferometric coherence maps indicate the formation of 

a head scarp and of multiple secondary scarps over the 

body of the landslide (Fig 3B). We observe that the 

coherence drops that mark the boundaries of important 

morphological features appear to occur with different 

timings, which might reflect the activation of parts of the 

landslides in stages. This might have implication in the 

understanding of the different response to trigger of 

Figure 2. Example of correction for the effect of perpendicular 

baseline. Left, raw interferogram; right, corrected interferogram.  



various sectors of the landslide through time. It also 

indicates that the landslide might be approaching a phase 

of rapid destabilisation.  

4 Conclusions 

This type of approach is promising with respect to the 

extraction of relevant information from interferometric 

data when the generation of accurate and continuous time 

series of displacements is hindered by the nature of 

landcover or of the landslide behaviour, such in the cases 

of the landslides presented here. The combination of key, 

relevant parameters and their changes through time 

obtained with this methodology may prove necessary for 

the identification of precursors over a wider range of 

landslides than with time series generation alone. 

Moreover, the accurate description of such precursors 

for a wider pool of cases will also allow for the extraction 

of spatial patterns of coherence loss over large areas, also 

with the aid of machine learning methods. In this way, it 

would become possible to identify destabilising, possibly 

unknown landslides over large areas and then focus the 

analysis with the method described above on specific 

slopes.  

The methodology discussed here is necessary in order 

to make a step change in the use of satellite imagery for 

early warning of landslide failure. We show its use with 

Sentinel-1 data (C-band), but it will become increasingly 

relevant with the launch of satellites carrying L-band 

SAR sensors, with frequent repeat pass.  
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Figure 3. Examples of interferometric coherence loss pattern observed 

for A) one of the investigated landslides in the period 27/11/2017 – 

9/12/2017, marking the southeastern flank and headscarp of the 

landslide two and a half years prior to failure; B) another landslide in 

the same valley showing the formation of multiple scarps, likely 

separating sectors of activity.  
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