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Résumé – Cet article présente un modèle pour l’estimation de l’amplitude du signal GNSS qui utilise la corrélation du signal comme observa-
tion. Nous estimons les amplitudes à la fréquence de répétition du code des signaux GPS C/A (fréquence de 1 ms). Cependant, le modèle qui
relie les observations de la composante en phase à l’amplitude du signal à la fréquence de 1 ms est non linéaire. Pour estimer les amplitudes
des signaux GNSS, nous proposons d’utiliser un filtre de Kalman qui intègre un détecteur de rupture. L’estimateur proposé est appliqué à la
réflectométrie GNSSR qui est une technique radar qui observe la surface de la terre à partir des signaux GNSS réfléchis. Dans ce travail nous
estimons la réflectivité du signal GPS et nous détectons ces variations associées à des zones en eaux. On montre à partir du signal segmenté que
96% des zones en eaux sont détectés par le système radar aéroporté par un autogire. On montre aussi que la localisation des zones en eau est
obtenu avec une précision métrique.

Abstract – This paper presents a model for the estimation of the GNSS signal amplitude using the signal correlation as an observation. We
estimate the amplitude at the code repetition rate of the GPS C/A signal (1 ms rate). However, the model that links the in-phase component
observations to the signal amplitudes at the 1 ms rate is non-linear. To estimate the amplitudes of the GNSS signals, we propose to use a Kalman
Filter that incorporates a change detector. The proposed estimator is applied to GNSS-R which is a radar technique that provides observations of
Earth surface from reflected GNSS signals. In this work, we estimate the GPS signal reflectivity and we detect the variations associated to the
presence of water bodies. We show using signal segmentation, that 96% of the in-land water body surfaces are detected by the airborne radar
system embedded on a gyrocopter while achieving the meter precision for water body edge localization.

1 Introduction

Global Navigation Satellite Systems - Reflectometry (GNSS-
R) is a method of remote sensing which uses GNSS navigation
signals as ”Signals of Opportunity” in a bi-static radar system
for Earth Observation. Its main principle is to receive and fur-
ther extract information from the GNSS signals which are re-
flected off Earth surface in addition to those received directly
from the satellites in order to derive some geophysical proper-
ties of Earth [1]. In GNSS-R, soil moisture content can be de-
rived from the reflectivity measurements. These measurements
are directly linked to the amplitudes of the GNSS signals.

In this regard, the Signal-to-Noise Ratio (SNR) can be used
to observe the GNSS signal amplitudes. The SNR can be deri-
ved from the statistical properties of the in-phase and quadra-
ture components of correlation. However, the maximum rate of
SNR measurements that can be achieved in multi-bit quantiza-

tion digital receivers is 20 ms in order to synchronize with the
navigation message data bits [2].

In this paper, we propose a model that estimates the GNSS
signal amplitudes (and therefore the SNR) at high rate, na-
mely the code repetition rate (e.g. 1 ms for GPS C/A signals).
We estimate the statistics of 1 sample over 1 ms in order to
obtain 1 ms rate estimates of the GNSS signal amplitudes.
The non-linear expression that links the maximum value of the
in-phase component to the signal amplitude is derived. In or-
der to estimate the time varying signals amplitudes, we pro-
pose a Kalman Filter to reverse the non-linear expression with
the noisy observations of correlation provided by the tracking
loops. A change detection system is utilized in order to detect
the changes in the GNSS measurements obtained along a flight
experimentation. The proposed model is applied in an airborne
GNSS-R experiment for water body detection using a light-
weight low altitude carrier.



2 GPS C/A front end processing
A GNSS software receiver processes the in-phase (I) and

quadrature (Q) components of correlation with local replicas.
In practice, GNSS receivers are numerical and the signals are
frequency down converted with Analog-to-Digital Conversion
(ADC) and quantization, and the local replicas are digitized. In
our approach, 1-bit quantization is applied. We show in Figure
1, the processing block diagram of the in-phase component in
a GNSS receiver front end.

ADC ∑
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FIGURE 1 – Radio frequency GNSS receiver block diagram

The expressions of the signals in Figure 1 are defined after
digitization by :

si =

⌊∑
l∈V

AlCAl(ti + τl) sin(2πfl ti + ϕl) + ηi

⌋
>0

(1)

cv,i = ⌊CAv(ti + τv) sin(2πfv ti + ϕv)⌋>0 (2)

where cv,i and si are respectively the local replica and the di-
gitized sum of the signals. ⌊. . .⌋>0 is a sign function that asso-
ciates -1 to the negative values of the signal and +1 to positive
(or zero) values. In the expression of si, V is the set of vi-
sible satellites. Al(t) is the amplitude of the signal, CAl(t) is
the Code Division Multiple Access (CDMA) code of satellite l
and τl is the code delay. fl and ϕl are respectively the frequency
and the phase delay of the carrier. η(t) is a zero mean additive
Gaussian noise with a unit variance. The in-phase component
of the maximum of correlation Iv is obtained by accumulating
the sampled signals over a coherent integration time Tc. Then
we have :

Iv =
∑fs Tc

i=1 si civ,i (3)

Our aim is to derive an expression that links the amplitude
Av of the received signal to the mean value of the in-phase
component. We define iv,i = si cv,i to take the value +1 when
si is equal to cv,i and -1 when they are different. Assuming that
the random variables iv,i are identically distributed, we model
the mean value of Iv as follows :

E(Iv) = E(iv,i) Tcfs

= (2 P (iv,i = 1)− 1) Tcfs (4)

where Tcfs is the number of samples integrated over a coherent
integration time Tc.

3 Linearization of the measurement equa-
tion

Let us construct the following model approximation of the
sampled signal of satellite v after digitization :

ŝi =
∑
v∈V

AvCAv(ti + τ̂v) sin(2πf̂v ti + ϕ̂v) (5)

si ≈ ⌊ŝi + ηi⌋>0 (6)

and

cv,i ≈
⌊
CAv(ti + τ̂v) sin(2πf̂v ti + ϕ̂v)

⌋
>0

(7)

where cv,i is defined to get the maximum of correlation. The
probability of the random variable iv,k to take the value +1 is
written as :

P (iv,i = 1) = P (cv,i = 1)P (ηi ≥ −ŝi/cv,i = 1) (8)
+ P (cv,i = −1)P (ηi < −ŝi/cv,i = −1)

An empirical estimate of the probability that the local replica
is positive can be written as :

P (cv,i = 1) =

fsTc∑
i=1

(cv,i + 1)

2fsTc
(9)

from which P (cv,i = −1) can be derived. An empirical esti-
mate of the first probability of expression (8) associated to the
additive random noise on the signal is defined as :

P (η ≥ −ŝi/cv,i = 1) =
2

fsTc∑
i=1

(cv,i + 1)

∑
{ĩ}1

v

P (η ≥ −ŝi) (10)

where the set {̃i}1v defines the values of the index i as i/cv,i =
1. The probability P (η ≥ −ŝi) is processed with the tabulated
error function as follows :

∑
{ĩ}1

v

P (η ≥ −ŝi) =
∑
{ĩ}1

v

∫ +∞

−ŝi

1√
2π

exp(
−x2

2
) dx

=
∑
{ĩ}1

v

1

2
erfc

(
−ŝi√
2

)
(11)

The second probability estimate of expression (8) associated
to the additive random noise on the signal can be derived as ex-
pression (10) over the set {̃i}2v which defines the values of the
index i as i/cv,i = −1.

According to equations (4) and (8) we derive the following
expression for the non-linear measurement function f(...) :



fv,k
(
{Av,k}v∈V ; {θv,k}v∈V

)
=

∑
{̃i}1

v,k

erfc

(
−ŝi√
2

)

−
∑
{̃i}2

v,k

erfc

(
−ŝi√
2

)
+

fsTc∑
i=1

|cv,i − 1| − Tcfs

where θv,k = {τ̂v,k, f̂v,k, ϕ̂v,k} denotes the GNSS signal pa-
rameters provided by the Phase Lock Loop (PLL) and Delay
Lock Loop (DLL) components of the receiver. The GPS signal
is very weak, so the values of ŝi are small. Therefore, the follo-
wing Taylor approximation of the tabulate function can be used
in order to linearize the expression :

erfc(x) ≈ 1− 2√
π
x (12)

After simplification, we develop the expression of ŝi to find a
linear expression between Iv,k and Av,k. Accordingly, for a set
V of n satellites in view, we have the following linear equation :

IV,k ≈ HAV,k + ωk (13)
with IV,k = [I1,k, . . . , In,k]

T and AV,k = [A1,k, . . . , An,k]
T .

H is a matrix that represents the contribution of the satellites
in Iv,k and ωk is a Gaussian noise. We present in Figure 2 the
different elements of H . For a component Ii,k, hi,i is the cor-
relation contribution of the signal from satellite i and hi,j is
the inter correlation contribution of the signal from satellite j.
hi,∀j is the global contribution of all the satellites in Ii,k. From
the analysis of matrix H , the cross-correlation components hi,j

contribute to the standard deviation of the random-like evolu-
tion of E(Iv) approximately two times more than the contribu-
tion of the auto-correlation components hi,i [3].
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FIGURE 2 – Contribution of each satellite in the observations
Iv,k.

4 Kalman estimate of the signal ampli-
tude

We propose a state filter in the form of a Kalman Filter that
uses the GNSS signal components as observations to provide

1 ms rate estimates of the GNSS signal amplitudes. We as-
sume that the amplitudes are constant during one period of the
CDMA code. The state model is a classical second order state
equation used for data smoothing where the second state is the
rate of change of the first state.

In our airborne GNSS-R bi-static system, high rate reflecti-
vity measurements are obtained as the ratio of the modulus of
the amplitudes of the reflected signals Ar over the modulus of
the amplitudes of the direct signals Ad as :

Γ(t) =
Ar(t)

Ad(t)
(14)

A Kalman CUSUM approach is used to detect changes in
the reflectivity measurements using the innovation of the filter.
Then, a maximum likelihood localization approach is imple-
mented for accurate geo-positioning of the edges of the scan-
ned reflecting surfaces [4]. The proposed models are applied to
airborne GNSS-R observation of in-land water body surfaces.

5 Experimentation

5.1 Water body detection
The proposed radar technique is first applied for in-land wa-

ter body detection. Figure 3 shows the detected water body sur-
faces by our proposed radar technique over a study area bet-
ween Guı̂nes and Ardres imposed on IGN maps.

FIGURE 3 – The detected water body surfaces using our pro-
posed radar technique for three satellites in study.

The radar technique detects 96% of in-land water bodies ob-
served on IGN maps. However, the percentage of true water
bodies detections, i.e. the number of times the proposed radar
technique detects water when water is present on the map is
75%. Consequently, the percentage of false alarm detections,
, i.e. the number of times the proposed radar technique incor-
rectly detects the presence of water is 25%. It is important to
note that the percentage of false alarms is not strictly indicative
of the radar technique detection accuracy because the results
lack comparison with the ground truth especially that the flight
took place in winter.



We show in Figure 4, the automatic segmentation of GNSS
measurements by the proposed radar technique. The satellite
traces are represented with specular point localization on Google
Earth (Figure 4a). The segmentation model divides the signals
into stationary segments based on the reflectivity measurements
obtained for the different satellite signals (Figures 4b,4c,4d).
As reflections are obtained from water bodies, the reflectivity
increases allowing the detection of in-land water body surfaces
associated with a blue coloring of the segments and of the cor-
responding specular points of reflection.
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FIGURE 4 – Detection of in-land water body surfaces using the
proposed automatic radar signal segmentation technique.

5.2 Water body edge localization
The radar signal segmentation system is also applied for wa-

ter body edge localization. For that, we compare the manual
edge localization via Google Earth with the automatic edge lo-
calization by the proposed radar technique. A total of 65 wa-
ter body surfaces were detected along the traces of the three
satellites in study. We show in Figure 5, the total number of
perfect (absolute value of the offset between the 2 localization
approaches is zero) and imperfect localizations along with the
total number of edge localizations for the different water body
surfaces.

From the histogram of Figure 5, the proposed radar tech-
nique achieves a total perfect edge localization percentage of
76.2%, i.e. 99 out of 130 possible perfect localizations. Fur-
thermore, from the analysis of the water body edge localization
accuracy, we observe a total mean distance localization error of
0.96m and a total localization difference standard deviation of
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FIGURE 5 – Statistics of water body edge localization by the
proposed radar technique per water body type.

0.9 m. Therefore, we conclude that we can achieve the meter
accuracy with our automatic localization approach as compa-
red to manual localization using Google Earth.

6 Conclusion
In this article, we propose a high rate (1 ms) estimator of

the amplitudes of GNSS signals in the form of a Kalman Filter
that uses 1ms rate of the in-phase components of the signals as
observations. In order to be independent of the ambient tempe-
rature that affects the automatic gain control, 1-bit quantization
digital receiver is used. The non-linear expression that links
the maximum value of the in-phase correlation component to
the signal amplitude is derived. The proposed model and filter
inversion method are assessed on real airborne GNSS-R mea-
surements. We apply a segmentation model to detect in-land
water body surfaces along the flight trajectory. The proposed
radar technique shows high detection capacity while localizing
the edges of the detected surfaces with a meter accuracy.
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