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Résumé – La détection d’anomalie profonde est devenue une solution attrayante dans de multiples domaines et a connu récemment de nom-
breux développements. L’une des pistes les plus prometteuses est l’utilisation de tâches prétextes. Cependant, celles-ci sont limitées par l’absence
d’échantillons anormaux et comportent un biais inductif important. Pour palier ces limitations, nous introduisons le concept de tâches prétextes
apprenables, où la tâche prétexte est aussi apprise afin de réussir sur les échantillons normaux tout en échouant sur les anomalies. En appli-
quant le concept de tâche apprenable sur une tâche de reconnaissance de TPS, notre méthode discrimine mieux les anomalies aux cas limite et
améliore considérablement les performances globales. Celle-ci surpasse l’état de l’art avec une réduction d’erreur relative jusqu’à 49% sur divers
problèmes de détection d’anomalies.

Abstract – Deep anomaly detection has become an appealing solution in many fields, and has seen many recent developments. One of the most
promising avenues is the use of pretext tasks. However these are limited by the lack of anomalous samples and carries an important inductive
bias. To this end, we introduce the concept of learnable pretext tasks, where a pretext task itself is learned to succeed on normal samples while
failing on anomalies. By applying the learnable task on a thin plate transform recognition task, our method helps discriminating harder edge-
case anomalies and greatly improves anomaly detection. It outperforms state-of-the-art with up to 49% relative error reduction measured with
AUROC on various anomaly detection problems.

1 Introduction
Anomaly detection is at the core of many modern machine

learning applications. It is often appealing in situations where
anomalies are usually expensive to obtain, and where robust-
ness is critical. To name a few, in fraud detection [3], medical
imaging [14], video surveillance [17] or manufacturing defect
detection [24].

Detecting anomalies by trying to solve pretext tasks on nor-
mal data has been a successful direction in one-class anomaly
detection. Such models significantly improved state-of-the-art
performance. However, these methods still have many limita-
tions especially regarding their applicable field of images and
their introduction of an important inductive bias. Moreover they
do not use anomalous samples during training. In reality, an
additional small set of anomalies is often usable in real-life
anomaly detection challenges which can help detecting harder
edge-case anomalies.

In the light of these limitations, our main contributions in
this paper are the following :
− We explore the concept of learnable pretext task to succeed

on normal samples while failing on a small set of additional
anomalies. To the best of our knowledge this is the first work
in this direction.

− To this end, we propose a semi-supervised anomaly detec-
tion model based on thin plate spline transformations clas-
sification with a dynamic transformation number.

− We compare our method with state-of-the-art one-class and
semi-supervised methods and improve state-of-the-art ano-
maly detection with up to 49% error relative improvement
on object anomalies and 15% on face anti-spoofing.

FIGURE 1 – Overview of Sad-TPS training. First, we generate
M transformed images using our pretext image generator GT ,
and weight each transformation by w. Then we classify each
of them using the transformation detector ϕ ◦ f , and compute
either our pretext task loss L on normal samples or the OE loss
on anomalies.

2 Proposed method

2.1 Learnable pretext task

Typically, pretext tasks have only been used in a one-class
framework. They have proven to be very powerful when detec-
ting anomalies only from normal data, even sometimes com-
peting with other semi-supervised anomaly detection methods
[11]. Nevertheless, these methods tend to have two main limi-
tations : (i) The choice of pretext tasks is very dependent on
the dataset, both for normal samples and anomalies. These me-
thods thus tend to have very high variance and outright failing
for specific datasets. (ii) Edge-case samples are often poorly
classified. This is quite natural since the model has never seen
any anomalies during training.



In out-of-distribution literature, some efforts have been made
to design training losses which incorporate out-of-distribution
data to further improve the decision boundary. However to our
knowledge no work has explored using anomaly data to drive
the choice of the pretext task, and this motivates our work.

Let’s consider a pretext task T defined by its pretext objec-
tive loss Lpre and its pretext data generation function GT :
P(X ) 7→ P(X ×K) where X is the set of natural images and
K the set of pretext labels. Given an image x we first extract a
set of features using a deep encoder ϕ, then we predict the task-
specific outputs using a second network f . Our objective is to
minimize the pretext objective loss Lpre on normal samples
Xnorm, while maximizing a given Outlier Exposure (OE) loss
LOE on anomalous data Xanom.

We consider a sub-family of pretext data generation func-
tion GT parameterized by Θ, and jointly optimize the network
weights of ϕ ◦ f and Θ.

ϕ∗, f∗,Θ∗ = argmin
ϕ,f,Θ

L (1)

Our approach of learnable pretext task can be related to au-
tomatic data augmentation [15] albeit with two major diffe-
rences : (i) transformations are also driven to perform poorly
on anomalous data and (ii) they are kept after training and used
for the anomaly detection.

In more details, we define our pretext task as a transforma-
tion classification task, where the goal is to correctly classify
which transformation from a set of M transformations T1:M

has been applied. Our task-specific network f is simply a multi-
layer perceptron with softmax output and our pretext objective
loss is the cross-entropy LCE . Our complete loss becomes

L =Ex∼Pnorm,Ti∼PT [LCE(ϕ ◦ f(Ti(x)), i)]+

λEx′∼Panom,Ti∼PT [LOE(ϕ ◦ f(Ti(x
′)), i)] (2)

where PT is the prior distribution over the set of M transforma-
tions. Accordingly we choose each transformation to be para-
metric and entirely defined by a vector θi. Using this loss, our
pretext task will essentially be designed to provide easy classi-
fication tasks for normal samples but harder tasks for anoma-
lies.

Once the network has been trained, we freeze the M trans-
formations and compute the anomaly score using the softmax
truth in the standard pretext task-driven anomaly detection man-
ner :

sa(x) = ETi∼PT [ϕ ◦ f(Ti(x))i] (3)

2.2 Thin Plate Spline transformations
For our parametric transformations T1:M we choose Thin

Plate Spline (TPS) transformations [2]. These transformations
have several benefits : (i) can cover a lot of linear and non-
linear transformations, (ii) are differentiable, (iii) can easily be
computed, and (iv) can be parameterized by a few parameters.

The 2D TPS transformation T is parameterized by K input
control points π(i)

1:K and output control points π(o)
1:K . It is defi-

ned as the solution to a least square error :

T ∗ = argmin
T


K∑
j=1

∥∥∥π(o)
j − T

(
π

(i)
j

)∥∥∥2
 (4)

There exists a unique closed form solution T ∗ to this equation,
where T ∗ is continuous in regards to its control points. In order
to limit the number of parameters for each TPS transformation,
we choose to fix the input control points to an evenly spaced
grid of (nw, nh) cells and only control the K = nw ·nh output
control points. This reduces the total amount of pretext task
parameters to 2M · K. We also employ a reflection padding
on the borders, which is usually much less noticeable than zero
padding.

TPS transformations classification forms a very powerful and
versatile class of pretext task. It can represent any rotation or
translation, generalizing previous geometrical pretext tasks [1],
and to some extent can displace or focus on local parts of the
images similarly to the jigsaw puzzle task [18]. This will al-
low our model to optimally identify low-scale and high-scale
features that will discriminate normal samples from anomalies.

2.3 Automatic transformation number choice
We push our idea of automatic pretext task to the full extent

and also include the number of transformations M into the
learnt parameters. To avoid a dynamically sized task-specific
network f , we instead turn M into the maximum number of
transformations and define a set of M weights w1, · · · , wM ∈
[0, 1] where wi represents the weighting coefficient of the ith

transformation for anomaly detection. Accordingly, each trans-
formation class in the pretext objective loss and OE loss is
weighted by w :

LCE(p, i) = −κ log pi (5)
LOE(p, i) = −κmax

j
wj · pj (6)

in the case of the softmax flatness OE function, where p is the
predicted probability for each transformation and κ = M ·wi∑

j wj

is there to keep the same range for the loss, regardless of the
number of transformations. We also prevent the model from
choosing too much transformations by adding an L1 regulari-
zation term on the transformation weights, yielding our final
loss

Ltot =L+ λtf

∑
i

wi

=Ex∼Pnorm,Ti∼PT [LCE(ϕ ◦ f(Ti(x)), i)]+

λEx′∼Panom,Ti∼PT [LOE(ϕ ◦ f(Ti(x
′)), i)] + λtf

M∑
i=1

wi

(7)

where λtf is an hyper-parameter controlling the trade-off bet-
ween accuracy and the number of transformations chosen. Fi-
nally, after training our model we discard all parameters inclu-
ding the rows of the task-specific network f weights W corres-
ponding to transformations where wi < τ .



TABLE 1 – Comparison with the state-of-the-art methods over several datasets in the semi-supervised protocol using the AUC.
The first block only contains one-class methods, whereas the second one includes semi-supervised methods. Underline indicates
the overall best result, bold indicates the best semi-supervised method (We re-evaluated Elsa, DP-VAE, SSAD, GOAD and ARNet on CIFAR100).

CIFAR-10 CIFAR-100 F-MNIST
Models \ γ 0% 1% 5% 10% 0% 1% 5% 10% 0% 1% 5% 10%
OC-SVM [20] 64.7 62.6 74.2
IF [16] 60.0 58.5 84.0
PIAD [21] 79.9 78.8 94.3
ARNet [5] 86.6 78.8 93.9
GOAD [1] 88.2 74.5 94.1
MHRot [10] 89.5 83.6 92.5
PuzzleGeom [11] 88.2 85.8 92.8
Supervised 55.6 63.5 67.7 53.8 58.4 62.5 74.4 76.8 79.0
SS-DGM [12] 49.7 50.8 52.0 - - - - - -
SSAD [7] 62.0 73.0 71.5 70.1 57.4 65.0 67.3 68.1 92.8 92.1 88.3 85.5
DeepSAD [19] 60.9 72.6 77.9 79.8 56.3 67.7 71.6 73.2 89.2 90.0 90.5 91.3
DP VAE [4] 52.7 74.5 79.1 81.1 56.7 68.5 73.4 75.8 90.8 90.9 92.2 91.7
Elsa [8] 80.0 85.7 87.1 81.3 84.6 86.0 92.9 93.4 93.9
Sad-TPS 89.8 91.8 92.6 87.8 88.0 88.5 92.6 93.1 94.2

In practice we represent M by a continuous quantity m, ins-
tead of defining M independent transformation weights :

wi =


1 if i ≤ ⌊m⌋
m− ⌊m⌋ if i = ⌊m⌋+ 1

0 if i > ⌊m⌋+ 1

(8)

This formulation has the advantage of keeping near-quantized
weights during training while allowing our loss to be fully conti-
nuous and differentiable.

3 Experiments

3.1 Evaluation protocol
Our evaluation protocol is made of two types of anomaly

detection challenges. First, we consider general object recogni-
tion datasets where the one-vs-all protocol is used. In this pro-
tocol we consider one class of a multi-classification dataset as
the normal class and all the other classes as anomalous. We ob-
tain a set of runs for each possible normal class and report the
mean of all runs as the final result. Secondly, we include a da-
taset from face anti-spoofing (FAS) where the goal is to discri-
minate real faces from fake representations of someone’s face.
This practical anomaly detection problem incorporates object
anomalies, style anomalies and local anomalies.

Unlike the one-class protocol where only normal samples
are seen during training, the semi-supervised protocol provides
anomalies as well. We consider various ratios γ of anomaly
data in the training dataset and for each average the metrics
on 10 random samples to obtain a representative and fair eva-
luation. As for the FAS dataset, we instead use the intra-dataset
cross-type protocol where training and test data is sampled from
the same dataset, albeit with one tested attack type being un-
seen during training.

For object anomalies, we use Fashion-MNIST [22], an har-
der version of MNIST with 10 classes of fashion items and

CIFAR-10 [13], an object recognition dataset composed of 10
wide classes with 6000 images per class. As for style ano-
malies, we include CIFAR-100 [13], an extended version of
CIFAR-10 with 100 classes each containing 600 images. Fi-
nally, for the face presentation attack detection we encompass
the WMCA dataset [6] which contains short RGB videos of
real faces and presentation attacks. We consider here the follo-
wing unseen attack types : Paper Print (PP), Screen Recording
(SR), Paper Mask (PM) and Flexible Mask (FM).

In all evaluations, the metric used is the area under the ROC
curve (AUROC) or alternatively the error 1-AUROC, averaged
over all possible normal classes for one-vs-all datasets.

3.2 Implementation details
We use a maximum number of TPS transformations M = 25

for all the evaluations. A grid of 4× 4 control points is used to
give enough control on finer details. λtf is fixed to 0.01, and
factor λ is fixed to 0.5 as recommended in [9]. For the trans-
formation number selection, we choose a constant quantization
threshold τ = 0.5.

Regarding network architecture, we use a 16-4 WideResNet
[23] (≈ 10M parameters with a depth of 16) for the feature
extractor network ϕ, along with a dense layer of size M for the
transformation recognition task. Training is performed under
SGD optimizer with nesterov momentum, using a batch size of
32 and a cosine annealing learning rate scheduler.

3.3 Comparison to the state-of-the-art
We compare our Sad-TPS model with state-of-the-art ano-

maly detection methods. We use the semi-supervised anomaly
detection protocol presented in 3.1, as well as the one-class pro-
tocol when possible. This offers a good overview of how effec-
tively the anomaly data is used in semi-supervised methods.

For one-class methods, we include hybrid models such as
OC-SVM [20] and IF [16], reconstruction error generative mo-



TABLE 2 – Comparison with the state-of-the-art methods over
face anti-spoofing datasets in the cross-type protocol. The co-
lumns indicate the type of presentation attack that has not been
seen during training : Paper Print (PP), Screen Recording (SR),
Paper Mask (PM) and Flexible Mask (FM).

WMCA
Models All PP SR PM FM
PIAD 76.4
ARNet 84.5
GOAD 86.1
MHRot 81.3
PuzzleGeom 85.6
Supervised 78.3 77.1 80.7 81.9
DP VAE 53.9 - - - -
DeepSAD 71.2 79.9 80.3 81.8 83.4
Elsa 86.1 84.3 89.2 89.1
Sad-TPS 87.4 86.6 89.0 89.2

dels with the PIAD model [21] and self-supervised methods
with ARNet [5], GOAD [1], MHRot [10] and PuzzleGeom
[11]. Considered semi-supervised methods are reconstruction
error models with DP VAE [4], density estimation methods
with SS-DGM [12], two-stage anomaly detection with Elsa
[8], and direct anomaly distance model with SSAD [7] and
DeepSAD [19]. As a baseline, we also compare a classical bi-
nary classification deep network with batch balancing between
normal samples and anomalies.

The evaluation results on CIFAR-10, CIFAR-100 and Fashion-
MNIST are displayed in Table 1. As we can see, our method
performs best on all datasets covering simple object detection
and finer object detection with an error relative improvement of
up to 49% on CIFAR-10 compared to the second best perfor-
ming semi-supervised model. This shows our method’s great
adaptability power to different training data, thanks to its lear-
nable pretext task.

We present in Table 2 the cross-type evaluation on the face
anti-spoofing challenge. We show that our method, without fur-
ther tuning, improves anti-spoofing detection performances on
WMCA with error relative improvements of up to 15%.

In general, all anomaly detection approaches including those
with the one-class framework outdo the classical binary classi-
fication which fails to generalize to unseen anomalies. Moreo-
ver, self-supervised models with a pretext task overall excel
among one-class methods further justifying the use of pretext
task in a semi-supervised fashion.

4 Conclusion

In this paper, we explore the idea of learnable pretext tasks
for anomaly detection. We apply this scheme to parameteri-
zable TPS transformations, where the amount of transforma-
tions is also dynamically learned. We show through compari-
son with state-of-the-art methods that this is a very interesting
direction that can greatly increase the anomaly detection per-

formances with a few additional anomalous samples. Compa-
red to other pretext task models, it can be used on a wider array
of datasets and alleviates the need of an a-priori for the choice
of auxiliary task.
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