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Résumé – La surveillance d’un système à partir de données multivariées enregistrées par un ensemble de capteurs implique souvent de compter
combien de paramètres d’autosimilarité effectivement différents pilotent leurs dynamiques temporelles. En utilisant un modèle de mouvement
brownien fractionnaire multivarié, des procédures d’estimations construites sur les valeurs propres de représentations en ondelettes et une tech-
nique de bootstrap par bloc dans le domaine temps-échelle, un test d’égalité entre paires triées de paramètres d’autosimilarité estimés est construit.
La procédure permet, à partir d’une seule observation de taille finie des données, d’estimer la p-valeur et la puissance du test. Les performances
de la procédure sont quantifiées au moyen de simulations Monte Carlo de grandes tailles, conduites sous différents scénarios.

Abstract – Monitoring one system from multivariate data collected on multiple sensors often entails counting how many actually different
selfsimilarity parameters drive their temporal dynamics. Making use of a multivariate fractional Brownian motion model, of multivariate eigen-
wavelet estimations, and of a multivariate time-scale block bootstrap procedure, a test for equality between pairs of sorted estimated selfsimilarity
parameters is devised. The procedure permits the estimation of the test p-value and power from a single finite-size data observation. Test perfor-
mance are quantified from large size Monte Carlo simulations performed under several scenarios.

1 Introduction
Context. In real-world applications, the monitoring of one sys-
tem by means of a collection of sensors entails counting the
number of actually different selfsimilarity parameters that drive
the temporal dynamics of the corresponding time series [1] as a
proxy for assessing the number of independent components in
data. Practically testing the equality amongst pairs of estimated
selfsimilarity exponents from a single observation of multiva-
riate data constitutes the crucial issue at the heart of this work.
Related works. Selfsimilarity and fractional Brownian motion
(fBm) [2–4] have long been used to model scale-free dynamics
in numerous and various real world applications, while most
recent applications entail analyzing jointly multivariate times
series [1]. In the last decade, multivariate selfsimilarity models,
such as the operator fractional Brownian motion (ofBm) [5–
7], and multivariate wavelet based estimation procedures (cf.
[8–10]) were developed, usually yielding vectors of estima-
ted selfsimilarity parameters, with same size as the number
of components in data. This leaves unaddressed the estimation
of the numbers of actually different such parameters, a cru-
cial issue in many applications, such as the analysis of infras-
low brain activity (cf. [11]). In earlier works, wavelet-domain
block-bootstrap hypothesis procedures were proposed for tes-
ting whether all selfsimilarity exponents are equal [12, 13], as
first preliminary step, or for performing pairwise equality tests
for estimated selfsimilarity parameters [14], yet not satisfac-

torily reproducing the targeted significance level for situations
where some pairs are equal while others are not.
Goals, contributions and outline. This work devises a time-
scale block bootstrap procedure for testing pairwise equality
in selfsimilarity parameters that can actually be applied to a
single and finite-size observation of data. Elaborating on [14],
its originality consists in constructing bootstrap test statistics
that correctly reproduce the test significance level under all sce-
narios, i.e., both for a single cluster — all pairs follow the null
hypothesis (H0 : pairwise equality in selfsimilarity parame-
ters) — and for different numbers of clusters and cluster sizes
(where some unknown pairs depart fromH0). Section 2 recalls
the multivariate selfsimilarity model and the eigenwavelet es-
timation procedure. Section 3 describes the key contributions
of the work : the test principle, the statistical properties of the
test statistic and its modeling with folded-normal distributions,
as well as the bootstrap procedure, permitting to compute the
test, estimate the p-value and also the power. Section 4 reports
a large-size set of Monte Carlo simulations, performed under
different scenarios and sample sizes, using 6-variate fBm. It
validates the relevance of the proposed modeling of the test
statistic and quantifies the ability of the bootstrap procedure to
reproduce the actual test performance. OfBm synthesis, self-
similarity exponent estimation and test procedures are imple-
mented by the authors and available at https://github.
com/charlesglucas/ofbm_tools.

https://github.com/charlesglucas/ofbm_tools
https://github.com/charlesglucas/ofbm_tools


2 Multivariate selfsimilarity
Multivarite selfsimilarity model. It has recently been propo-
sed that multivariate selfsimilarity in time series can be mo-
deled by the operator fractional Brownian motion [7]. In the
present work, we use a simplified version of that model that we
refer to as multivariate fBm (M -fBm). It is defined from a set
ofM dependent fBm [4], each with possibly different selfsimi-
larity exponents H = (H1, . . . ,HM ), 0<H1≤ . . .≤HM <1,
and covariance matrix ΣX , mixed linearly via a M×M real-
valued and invertible mixing matrix W :

Y , {Y H,ΣX ,W1 (t), . . . , Y
H,ΣX ,W
M (t)}t∈R ,

W {XH1(t), . . . , XHM (t)}t∈R = WX. (1)

Multivariate selfsimilarity parameter estimation. To esti-
mate the vector of selfsimilarity paramatersH , a procedure was
devised in [9,10], based on multivariate discrete wavelet trans-
form coefficients DYm(2j , k) = 〈2−j/2ψ0(2−jt − k)|Ym(t)〉,
∀k ∈ Z, ∀j ∈ {j1, . . . , j2} with ψ0 the mother wavelet [15].
To improve estimation performance, it was proposed in [13] to
estimate a collection of M ×M multivariate wavelet spectra,
computed for non-overlapping windows, w = 1, . . . , 2j−j2

S(w)(2j) ,
1

nj2

wnj2∑
k=1+(w−1)nj2

DY (2j , k)DY (2j , k)∗. (2)

The eigenvalues {λ(w)
1 (2j), . . . , λ

(w)
M (2j)}, computed indepen-

dently at each scale 2j and for each window w, are then avera-
ged across windows, after a logarithmic transformation : λ̄m(2j)

, 2j2−j
∑2j−j2

w=1 log2(λ
(w)
m (2j)). The behaviors along scales

2j of these averaged log-eigenvalues provide relevant linear
regression-based estimation ofH [13], with vj classical weights
verifying

∑
j jvj = 1 and

∑
j vj = 0 [12]

Ĥm =

 j2∑
j=j1

vj λ̄m(2j)

/2− 1

2
, ∀m = 1, . . . ,M. (3)

3 Selfsimilarity parameter equality test
Test methodology. Let us assume that, by definition, the vector
H is sorted, ∀m = 1, . . . ,M − 1, Hm+1 ≥ Hm. The null
hypothesis for a pairwise consecutive selfsimilarity parameter
equality tests is defined for each of theM−1 consecutive pairs

H(m)
0 : Hm+1 −Hm ≡ 0, m = 1, . . . ,M − 1. (4)

The test statistics is constructed from the vector of M esti-
mates Ĥ obtained from a single observation of finite-size M -
variate data (cf. Eq. 3). Then, Ĥ is sorted in ascending order,
Ĥτ = (Ĥτ(1), . . . , Ĥτ(M)) with Ĥτ(m+1) ≥ Ĥτ(m), m =

1, . . . ,M − 1, and test statistics δ̃m are defined as

δ̃m = Ĥτ(m+1) − Ĥτ(m), m = 1, . . . ,M − 1. (5)

The practical use of the test thus entails the knowledge of the
distribution of δ̃m underH(m)

0 .

Properties of the test statistics δ̃m. It was shown in [9, 10]
that Ĥ is asymptotically unbiased, with components of equal
variances, jointly Gaussian and weakly dependent. In a biva-
riate setting (M = 2), this implies that δ̃1 follows a folded
normal distribution FN µ̃1,σ̃1

with parameters µ̃1 = |H2−H1|
and σ̃1 =

√
σ2
Ĥ1

+ σ2
Ĥ2

. Under H(m)
0 , the distribution of δ̃1

simplifies to a Half-Normal distribution.
Monte Carlo simulations, conducted on M -fBm, reported

in Section 4.2, show that, at least in a multivariate yet low-
dimensional setting , i.e., 3 ≤ M � N (with N the sample
size), the distributions of δ̃m are well approximated by fol-
ded normal distributions FN µ̃m,σ̃m , and hence, under H(m)

0 ,
by Half-Normal distributionsHN σ̃m ≡ FN 0,σ̃m .

In principle, this permits the computation of the p-value, pm,
associated with the rejection ofH(m)

0 . However, in practice, the
parameters σ̃m (and µ̃m) are unknown. It is proposed here to
perform their estimation from a single observation of data by
means of bootstrap techniques [16].
Multivariate time-scale block bootstrap test. Following [12–
14], use is made of a multivariate wavelet domain block boots-
trap procedure, so as to reproduce the time-scale multivariate
cross-dependence structure of multivariate wavelet coefficients
D(2j , k). Practically, overlapping blocks have size LB in time,
and range across all scales and components jointly. For r =
1, . . . , R, bootstrap resamples are drawn with replacement :
D
∗(r)
j = (D∗(r)(2j , 1), . . . , D∗(r)(2j , nj)).

From each bootstrap sample D∗(r)j , estimates S∗(r,w)(2j)

and Ĥ∗(r)m are computed using Eqs. (2-3) and sorted into H̃∗(r)τ∗(r,m).
Monte Carlo simulations, conducted on M -fBm, reported in

Section 4.3, show that the bootstrap test statistics δ̃∗(r)m are well
approximated by folded normal distributions FN µ̃∗

m,σ̃
∗
m

and
satisfactorily reproduce the test statistics δ̃m. Parameters µ̃∗m
and σ̃∗m are estimated from δ̃

∗(r)
m using a classical maximum

likelihood estimator. It consists in solving, from independent
samples, {x1, . . . , xn}, the set of coupled equations

n∑
i=1

1− e
2µ̃xi
σ̃2

1 + e
2µ̃xi
σ̃2

xi + n
µ̃

2
= 0, σ̃2 =

1

n

n∑
i=1

x2
i − µ̃2. (6)

The corresponding p-values associated with the rejection of
H(m)

0 can then be computed as (with FFN the cumulative dis-
tribution function of the folded-normal distribution)

p̃∗m = 1− FFN
(

0, δ̃m
σ̃∗m

), (7)

together with, for a significance level α, the test decision :

d(m)
α = 1 : p̃∗m < α (8)

Furthermore, and this in another key outcome of the bootstrap
procedure constructed here, the power of the test can be esti-
mated also from a single finite-size observation as

π(µ̃∗m, σ̃
∗
m) = 1− FFN (µ̃∗

m,σ̃
∗
m)(F

−1
FN (0,σ̃∗

m)(1− α)). (9)



FIGURE 1 – Test statistics δ̃m. Quantile-quantile plots of
δ̃m against samples drawn for a FN µ̃m,σ̃m , with parameters
µ̃m, σ̃m estimated using Eq. 6, for m = 1, . . . , 5 (from left to
right) and Scenario1 (top) and Scenario2 (bottom). Red boxes
correspond to departures fromH0 (Scenario2, m = 1 and 4).

4 Monte Carlo Performance Assessment

4.1 Monte Carlo experiment set-up
To assess the relevance of both the folded-normal distribu-

tion approximations for the test statistics δ̃m and of the pro-
posed multivariate wavelet domain block bootstrap-based test
procedure defined in Section 3, Monte Carlo simulations are
conducted, fromNMC = 1000 independent copies of synthetic
M = 6-variate M -fBm with sample size N = 216. To validate
that the achieved conclusions hold both when all pairs follows
H0 (a single cluster with identical selfsimilarity parameter) and
when data comprise different selfsimilarity parameters (several
clusters of different sizes), two scenarios are considered :

Scenario1 : A single cluster with H1 = . . . = HM = 0.8.
Scenario2 : 3 clusters with different H and sizes (respecti-

vely, 1 component with H1 = 0.4, 3 components with H2 =

0.6, and 2 components with H3 = 0.8), such thatH(m)
0 is valid

for m = 2, 3, 5 and not for m = 1, 4.
The covariance matrix ΣX is chosen such that all diagonal

entries are set to 1 and all non-diagonal entries are set to r =
0.5. The M ×M invertible matrix W is randomly selected and
kept fixed for all realizations. Wavelet analysis is performed
with the least asymmetric Daubechies3 wavelet. Estimations
are performed by linear regressions across scales 2j1 = 28 to
2j2 = 211.R = 500 block-bootstrap resamples are drawn from
overlapping blocks of size LB = 6 (corresponding to the size
of the Daubechies3 mother wavelet time support).

4.2 Test statistics properties
Let us start by studying the test statistics δ̃m. Fig. 1 reports,

for Scenario1 and 2, and for the five pairs m = 1, . . . ,M −
1, quantile-quantile plots for the distributions of δ̃m against
samples drawn from a folded normal distribution FN µ̃m,σ̃m ,
with parameters µ̃m, σ̃m estimated using Eq. 6.

Fig. 1 shows first that folded normal distributions are rele-
vant approximations for δ̃m under both H0 and alternative hy-
pothesisHA, and second that underH0, µ̃m ' 0 validating the
approximation by the Half-Normal distribution. These Monte
Carlo simulations show that, under Scenario1, despite the fact
that all pairs follow H0, it can be observed that, while µ̃m ' 0
∀m, σ̃m depend on m : It is larger for m = 1 and m = 5, i.e.,

FIGURE 2 – Test statistics δ̃∗m. Quantile-quantile plots of
δ̃m against samples drawn for a FN µ̃∗

m,σ̃
∗
m

, with parameters
µ̃∗m, σ̃

∗
m estimated using Eq. 6, for m = 1, . . . , 5 (from left to

right) and Scenario1 (top) and Scenario2 (bottom). Red boxes
correspond to departures fromH0 (Scenario2, m = 1 and 4).

for the smallest and largest estimates Ĥm, and smaller for the
central estimates, which can be interpreted as a consequence
of the sorting operation applied to the elements of Ĥ . They
also show that, underH0, the values for σ̃m for a same m (i.e.,
m = 2, 3 or 5) differ between Scenario1 and Scenario2. These
observations constitute the first main and interesting findings :
The distribution of δ̃m under H0 depends both on the rank of
the sorted pairs (i.e., onm) and on the scenario, mostly via σ̃m.

4.3 Boostrapped test statistics properties
Folded-normal modeling. Let us now turn to the bootstrap test
statistics δ̃∗m. Fig. 2 reports, for Scenario1 and 2, and for the five
pairs m = 1, . . . ,M − 1, quantile-quantile plots for the dis-
tributions of δ̃∗m against samples drawn from FN µ̃∗

m,σ̃
∗
m

, with
µ̃∗m, σ̃

∗
m estimated using Eq. 6. Fig. 2 shows that δ̃∗m are well ap-

proximated by folded-normal distributions under both H0 and
HA and for both scenarios.
Bootstrap parameter estimation. Table 1 shows that the esti-
mates of µ̃∗m and σ̃∗m averaged across Monte Carlo simulations
compare well to µ̃m, σ̃m, thus validating that the bootstrap test
statistics δ̃∗m satisfactorily reproduce the test statistics δ̃m.

TABLE 1 – Folded-Normal parameter estimates (Monte Carlo
average ± 95% confidence intervals). Red boxes correspond to
departures fromH0 (Scenario2, m = 1 and 4).
×102 m = 1 m = 2 m = 3 m = 4 m = 5

Sc
en

ar
io

1 µ̃m 0.0 0.0 0.0 0.0 0.0
σ̃m 4.3 2.8 2.5 2.8 3.9
µ̃∗m 0.9± 0.2 0.1± 0.0 0.1± 0.0 0.1± 0.0 0.6± 0.1
σ̃∗m 5.7± 0.1 3.9± 0.1 3.4± 0.0 3.6± 0.0 4.6± 0.1

Sc
en

ar
io

2 µ̃m 14.7 0.0 0.0 11.0 3.7
σ̃m 7.3 5.9 5.7 6.1 5.8
µ̃∗m 14.4± 0.5 3.0± 0.2 2.7± 0.2 10.4± 0.3 5.3± 0.2
σ̃∗m 7.4± 0.1 6.3± 0.1 5.9± 0.1 5.8± 0.0 6.1± 0.1

Bootstrap test p-values. Further, Fig. 3 shows that the bootstrap-
based estimates of the test p-value p̃∗m (computed from Eq. 7)
approximately follow a uniform distribution under H0. As ex-
pected, these p̃∗m depart from a uniform distribution underHA.
Bootstrap test performance. Finally, Table 2 compares, for
a preset significance level α = 0.05, averages across Monte
Carlo realizations of the test decisions d(m)

α (i.e., percentage



FIGURE 3 – Bootstrap estimates of the test p-values.
Quantile-quantile plots of p̃∗m (computed from Eq. 7) against
samples drawn from a uniform distribution, for several sample
sizes N Red boxes correspond to departures from H0 (Scena-
rio2, m = 1 and m = 4).

TABLE 2 – Bootstrap estimate of the test power π(µ̃∗m, σ̃
∗
m) (cf.

Eq 9). Red boxes indicates departures fromH0.
N m = 1 m = 2 m = 3 m = 4 m = 5

Sc
en

ar
io

1 216 〈d(m)
α 〉 0.02 0.01 0.02 0.01 0.02

π(µ̃∗m, σ̃
∗
m) 0.07 0.05 0.05 0.05 0.06

217 〈d(m)
α 〉 0.01 0.01 0.01 0.01 0.01

π(µ̃∗m, σ̃
∗
m) 0.06 0.05 0.05 0.05 0.06

218 〈d(m)
α 〉 0.01 0.01 0.00 0.00 0.01

π(µ̃∗m, σ̃
∗
m) 0.06 0.05 0.05 0.05 0.06

Sc
en

ar
io

2 216 〈d(m)
α 〉 0.51 0.05 0.05 0.49 0.09

π(µ̃∗m, σ̃
∗
m) 0.51 0.11 0.11 0.46 0.19

217 〈d(m)
α 〉 0.92 0.04 0.04 0.89 0.07

π(µ̃∗m, σ̃
∗
m) 0.83 0.12 0.11 0.76 0.18

218 〈d(m)
α 〉 1.00 0.03 0.04 1.00 0.06

π(µ̃∗m, σ̃
∗
m) 0.99 0.11 0.11 0.97 0.18

of rejections d(m)
α = 1) and of the test powers, π(µ̃∗m, σ̃

∗
m),

computed from Eq. 9. The results indicate that i) the test clo-
sely reproduces the preset false alarm rate α under H0, ii) has
reasonable power under HA and iii) the estimate π(µ̃∗m, σ̃

∗
m)

satisfactorily reproduce the percentage of rejections under both
scenarios and under bothH0 andHA.

5 Conclusions and perpectives
A multivariate wavelet-domain block bootstrap procedure

was constructed to test pairwise equality of selfsimilarity pa-
rameters in multivariate selfsimilar data from a single finite-
size observation. The bootstrap test statistic was shown to well
reproduce the distribution of the actual pairwise test statistic
both when all H are equal and when there exist clusters of dif-
ferent sizes with different values ofHs, a non trivial result. The
bootstrap procedure was also shown to well estimate the power
of the test, another interesting outcome. Further, the procedure
was shown to have a large power for large size data, that ho-
wever drops fast when sample size decreases. Future work will
include investigating different scenarios and whether alterna-
tive (here, consecutive comparisons of sorted estimates of H),
robust to lower sample sizes, strategies can be constructed.
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