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Résumé – La décomposition en Tucker nonnégatif (NTD), un modèle de décomposition tensorielle, permet d’extraire des
motifs pertinents de manière non-supervisée, notamment dans le cadre de signaux audios. Néanmoins, les algorithmes actuels
pour calculer la NTD sont souvent conçus pour optimiser la norme euclidienne. Ce travail propose un algorithme à mises à jour
multiplicatives pour optimiser la NTD par rapport à la β-divergence, souvent considérée comme plus pertinente pour traiter
des signaux audios. En particulier, cet article montre comment implémenter ces mises à jour de manière efficace en utilisant
l’algèbre tensoriel. Finalement, des résultats expérimentaux sur la tâche d’estimation de la structure musicale montrent que la
NTD optimisée par rapport à la β-divergence améliore les précédents résultats obtenus par rapport à la norme euclidienne.

Abstract – Nonnegative Tucker decomposition (NTD), a tensor decomposition model, has received increased interest in the
recent years because of its ability to blindly extract meaningful patterns, in particular in music information retrieval. Nevertheless,
existing algorithms to compute NTD are mostly designed for the Euclidean loss. This work proposes a multiplicative updates
algorithm to compute NTD with the β-divergence loss, often considered a better loss for audio processing. We notably show how
to implement efficiently the multiplicative rules using tensor algebra. Finally, we show on a music structure analysis task that
unsupervised NTD fitted with β-divergence loss outperforms earlier results obtained with the Euclidean loss.

1 Introduction

Tensor factorization models are powerful tools to inter-
pret multi-way data, and are nowadays used in numerous
applications [1]. These models allow to extract interpre-
table information from the input data, generally in an un-
supervised (or weakly-supervised) fashion, which can be a
great asset when training data is scarcely available. This is
the case for music structure analysis (MSA) which consists
in segmenting music recordings from the audio signal. For
such applications, annotations can be ambiguous and dif-
ficult to collect [2].

Nonnegative Tucker decomposition (NTD) has previously
proven to be a powerful tool for MSA [3, 4]. While usually
the Euclidean distance is used to fit the NTD, audio spec-
tra exhibit large dynamics with respect to frequencies,
which leads to a preponderance of few and typically low
frequencies when using Euclidean distance. Contrarily, β-
divergences, and more particularly Kullback-Leibler and
Itakura-Saito divergences, are known to be better suited
for time-frequency features. We introduce a new algorithm
for NTD where the objective cost is the minimization of
the β-divergence, and we study the resulting decompo-
sitions as regards their benefit on the MSA task on the

RWC-Pop database [5]. The proposed algorithm adapts
the multiplicative updates framework well-known for non-
negative matrix factorization (NMF) [6, 7] to the tensor
case, detailing efficient tensor contractions. It is closely
related to [8], but studies instead the β-divergence and
proposes modified multiplicative updates that guarantees
global convergence to a stationary point. Code is fully
open-source in nn_fac 1.

2 Mathematical background

2.1 Nonnegative Tucker Decomposition

NTD is a mathematical model where a nonnegative ten-
sor is approximated as the product of factors (one for each
mode of the tensor) and a small core tensor linking these
factors. NTD is often used as a dimensionality reduction
technique, but it may also be seen as a part-based re-
presentation similar to NMF. In this work, we focus on
third-order tensors for simplicity. Denoting X ∈ RJ×K×L+

the tensor to approximate and using conventional tensor-
product notation [1], computing the NTD boils down to

1. https ://gitlab.inria.fr/amarmore/nonnegative-factorization



seek for three nonnegative matrices W ∈ RJ×J
′

+ , H ∈
RK×K

′

+ and Q ∈ RL×L
′

+ and a core tensor G ∈ RJ
′×K′×L′

+

such that :
X ≈ G×1 W ×2 H ×3 Q (1)

This decomposition is also presented in Figure 1.
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Figure 1 – Nonnegative Tucker decomposition of tensor
X in factor matrices W,H,Q, and core tensor G.

NTD is generally performed by minimizing some dis-
tance or divergence function between the original tensor
and the approximation. Many algorithms found in the lite-
rature [3, 9, 10] are based on the minimization of the squa-
red Euclidean distance. In this work, we instead consider
the β-divergence, detailed hereafter.

2.2 The β-divergence loss function
In this work, we will focus on the β-divergence function

introduced in [11]. Given two nonnegative scalars x and
y, the β-divergence between x and y denoted dβ(x|y) is
defined as follows :

dβ(x|y) =


x
y − log(xy )− 1 β = 0

x log(xy ) + (y − x) β = 1
xβ+(β−1)yβ−βxyβ−1

β(β−1) β ∈ R\{0, 1}
(2)

This divergence generalizes the Euclidean distance (β =
2), and the Kullback-Leibler (KL) (β = 1) and Itakura-
Saito (IS) (β = 0) divergences. The β-divergence dβ(x|y)
is homogeneous of degree β, that is for any λ ∈ R, we have
dβ(λx|λy) = λβdβ(x|y). It implies that factorizations ob-
tained with β > 0 (such as the Euclidean distance or the
KL divergence) will rely more heavily on the largest data
values and less precision is to be expected in the estimation
of the low-power components. The IS divergence (β = 0)
is scale-invariant and is the only one in the β-divergences
family to possess this property. It implies that entries of
low power are as important in the divergence computa-
tion as the areas of high power. This property is interes-
ting when processing audio signals as low-power frequency
bands can contribute as much as high-power frequency
bands to their characterization. Both KL and IS diver-
gences are notoriously known to be better suited to audio
source separation than the Euclidean distance [6, 12].

Hence, this work focuses on how to compute a candidate
solution to approximate NTD with β-divergence as a loss
function :

argmin
W≥0,H≥0,Q≥0,G≥0

Dβ(X|G×1 W ×2 H ×3 Q) (3)

with Dβ the elementwise β-divergence.

3 A multiplicative updates algorithm

3.1 Multiplicative updates rules

The cost function is non-convex with respect to all fac-
tors, and computing a global solution to NTD is NP-
Hard since NTD is a generalization of NMF. However,
each subproblem obtained when fixing all but one mode
is convex as long as β ∈ [1, 2]. Hence, block-coordinate
algorithms, that update one factor at a time while fixing
all the other factors, are standard to solve both NMF and
NTD [7, 10, 12]. In particular, the seminal paper by Lee
and Seung [7] proposed an alternating algorithm for NMF
with β-divergence, later revisited by Fevotte et. al. [12],
which we shall extend to NTD.

The multiplicative updates (MU) rule in approximate
NMF M ≈ UV ᵀ are

U ← max

U ·([(UV )·(β−2) ·M
]
V ᵀ

(UV )·(β−1)V ᵀ

).γ(β)
, ε

 (4)

with · and ÷ the element-wise product and division, ε > 0
a small constant and γ(β) a function equal to 1

2−β if β < 1,
1 if 1 ≤ β ≤ 2, and 1

β−1 if 2 < β [12]. The element-
wise maximum between the matrix update, i.e. the closed
form expression of the minimizer of the majorization built
at the current iterate, and ε in (4) aims at avoiding zero
entries in factors, which may cause division by zero, and
establishing convergence guarantee to stationary points
within the BSUM framework [13].

3.2 Multiplicative updates for NTD

The NTD model can be rewritten using tensor matrici-
zation, e.g. along the first mode :

X = G×1 W ×2 H ×3 Q

⇔ X(1) =WG(1) (H ⊗Q)
ᵀ (5)

where X(i) is the matricization of the tensor X along mode
i [1] and ⊗ denotes the Kronecker product. The matriciza-
tion are analogous for factors H and Q. One can therefore
interpret equation (5) as a NMF of X(1) with respect to
W and G(1) (H ⊗Q)ᵀ.

A difficulty is that forming the Kronecker products is
bound to be extremely inefficient both in terms of memory
allocation and computation time. Instead, for the MU
rules of factor matricesW,H,Q, matrix V := G(i) (H ⊗Q)

ᵀ

can be computed efficiently using the identity :

G(1) (H ⊗Q)
ᵀ
= (G×2 H ×3 Q)(1) (6)

which brings down the complexity of forming V from 2

O(KLJ ′K ′L′) if done naively to O(KJ ′K ′L′ + LJ ′KL′)
and drastically reduces memory requirements.

2. The multiway products are computed in lexicographic order.



For the core factor, one can use the vectorization pro-
perty

vec(X) = (W ⊗H ⊗Q)vec(G) , (7)

to relate the core update with the NMF MU rules. Again
matrix U := W ⊗H ⊗Q is J ′K ′L′ times larger than the
data itself. Therefore, for any vector t := vec(T) we use
the identity

(W ⊗H ⊗Q) t = vec(T ×1 W ×2 H ×3 Q) . (8)

Products Uᵀt are computed similarly.
Algorithm 1 shows one loop of the proposed MU al-

gorithm. The overall complexity of such an iteration is
dependant on the multiway product effective complexity,
but is no worse than O(JKLJ ′) if J,K,L > J ′ > K ′, L′.
The proposed MU rules do not increase the cost at each
iteration and for any initial factors, every limit point is a
stationary point [14, Theorem 8.9].

Algorithm 1: A loop of β_NTD(X,dimensions,β)
Input: X,G,W,H,Q, ε, β
Output: G,W,H,Q
V = (G×2 H ×3 Q)(1)

W ← max

(
W ·

(
[(WV )·(β−2)·X(1)]V ᵀ

(WV )·(β−1)V ᵀ

).γ(β)
, ε

)
Perform analogous updates for H and Q
N = (G×1 W ×2 H ×3 Q)·(β−2) · X
D = (G×1 W ×2 H ×3 Q)·(β−1)

G← max

(
G ·
(

N×1W
ᵀ×2H

ᵀ×3Q
ᵀ

D×1Wᵀ×2Hᵀ×3Qᵀ

).γ(β)
, ε

)

4 Experimental Framework

4.1 NTD for music processing
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Mel, ...)

Time at barscale
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Figure 2 – TFB
tensor

NTD has already been introdu-
ced to process audio signals, and
was shown to provide a barwise
pattern representation of a mu-
sic [3, 4]. For music, NTD is per-
formed on a 3rd-order tensor, cal-
led TFB tensor, which is the re-
sult of splitting a spectrogram on
bar frontiers and concatenating
the subsequent barwise spectro-
grams on a 3rd-mode. Hence, a TFB tensor is composed of
a frequential mode and two time-related modes : an inner-
bar (low-level) time, and a bar (high-level) time. Each bar
contains 96 frames, which are selected as equally spaced
on a oversampled spectrogram (hop length of 32 samples),
in order to account for bar length discrepancies [3].

In our previous work [3], we computed the NTD on
chromagrams, then evaluated on music segmentation. We
extend this previous study to Mel-spectrograms, which
consist in the STFT of a song with frequencies aggre-
gated following a Mel filter-bank. They provide a richer

representation of music than chromagrams but they live
in a higher dimensional space. On the basis of this alter-
nate representation, we compare the algorithm introduced
in [3] (HALS-based NTD with Euclidean loss minimiza-
tion, see [10]) with the proposed algorithm in the MSA
task, on the audio signals of the RWC Pop database [5],
which is a standard dataset in music information retrieval.

In practice, Mel-spectrograms are dimensioned following
the work of [15], which is considered as state-of-the-art in
this task. Precisely, STFT are computed as power spec-
trograms with a window size of 2048 samples for a signal
sampling rate of 44.1 kHz. A Mel-filter bank of 80 trian-
gular filter between 80 Hz and 16 kHz is then applied.
In addition to this raw Mel representation, we study a
logarithmic variant, which is generally used as a way to
account for the exponential distribution of power in audio
spectra. As the logarithmic function is negative for va-
lues lower than 1, we introduce the Nonnegative Log-Mel
spectrogram (NNLMS) as NNLMS = log(Mel + 1).

Finally, each nonnegative TFB tensor has sizes 80×96×L,
with L the number of bars in the song. When (empirically)
setting core dimensions J ′,K ′, L′ = 32, one iteration of
the MU algorithm takes approximately 0.2s, while one ite-
ration of the HALS algorithm takes approximately 0.75s
on an Intel®Core™i7 processor. Nonetheless, the HALS
algorithm generally converges in less iterations than MU.

4.2 Music structure analysis based on NTD

MSA consists in segmenting a song into sections (such
as “verse”, “chorus”, etc) as presented in [2]. The goal here
is to retrieve the boundaries between different sections.
We use the same segmentation framework than in [3].

Segmentation results are presented in Table 1, where
we compare the performance of segmenting the chroma-
gram using the HALS-NTD [3] with segmenting Mel and
NNLMS representations. These results show that, for both
representations, using the KL and IS divergences instead
of the Euclidean loss enhance segmentation performance.
Segmentation results are also higher when using NTD on
the NNLMS rather than on the Mel-spectrogram, and ou-
treach previous results on Chromagrams. Hence, adapting
the decomposition to the dynamics of audio signals seems
beneficial, both in term of loss function and feature.

4.3 Qualitative assessment of patterns

As a qualitative study between the different β-divergences
(β ∈ {0, 1, 2}), we computed the NTD with these three
values on the STFT of the song “Come Together” by the
Beatles. Using the Griffin-Lim algorithm [16] and softmas-
king [4], spectrograms computed with the NTD (such as
musical patterns WG[:,:,i]H

T [3]) are reconstructed into
listenable signals. Results are available online 3, and qua-

3. https ://ax-le.github.io/resources/examples/ListeningNTD.html



Table 1 – Segmentation results on the RWC Pop dataset [5], with different loss functions. P, R and F respectively
represent Precision, Recall and F-measure, based on the evaluation of correct and incorrect boundaries (in time). These
metrics are computed with two tolerances for considering a boundary correct : 0.5s and 3s. These values are standard
in MSA [2]. Core dimensions J ′,K ′, L′ are fitted among values {8, 16, 24, 32, 40} with two-fold cross-validation, by
splitting the RWC-Pop dataset between even and odd songs.

Representation Technique P0.5 R0.5 F0.5 P3 R3 F3

Chromas (initial work [3]) HALS-NTD 55.3% 59.3% 56.6% 70.3% 75.1% 71.9%

Mel-spectrogram
HALS-NTD (β = 2) 45.9% 49.5% 47.2% 68.1% 73.0% 69.7%

MU-NTD β = 1 53.3% 56.9% 54.6% 70.5% 75.3% 72.2%
β = 0 51.1% 56.8% 53.3% 69.9% 78.0% 73.1%

NNLMS
HALS-NTD (β = 2) 50.5% 52.7% 51.1% 71.2% 74.6% 72.2%

MU-NTD β = 1 57.8% 61.9% 59.3% 73.9% 79.3% 75.9%
β = 0 55.9% 61.7% 58.1% 74.0% 81.9% 77.1%

litatively confirm that the KL divergence is better adap-
ted to signals than the Euclidean loss, while this is more
contrasted for the IS divergence.

5 Conclusion

Nonnegative Tucker decomposition is able to extract
salient patterns in numerical data. This article has pro-
posed a tractable and globally convergent algorithm to
perform the NTD with the β-divergence as loss function.
This appears to be of particular interest for a wide range
of signals and applications, notably in the audio domain,
as supported in this paper by quantitative results on a
music structure analysis task and qualitative examples for
β = 1, 0.

Future work may consider the introduction of sparsity
constraints, which generally improve the interpretability
of nonnegative decompositions, and seeking additional stra-
tegies to accelerate the algorithm itself.
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