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9 Avenue Charles de Gaulle, 92100 Boulogne-Billancourt, France

3 CRAN (UMR 7039), Université de Lorraine and CNRS,
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Résumé – Dans cette contribution nous utilisons une méthode ensembliste d’apprentissage profond pour combiner la prédiction de deux
détecteurs individuels à un étage (c’est-à-dire YOLOv4 et Yolact) dans le but de détecter les artefacts vus dans des images endoscopiques.
Cette ≪ stratégie ensembliste ≫ a permis d’améliorer la robustesse des modèles individuels sans nuire à leurs capacités de calcul en temps
réel. L’efficacité de notre approche a été démontrée en entraı̂nant et testant les deux modèles individuels et diverses configurations ensemblistes
sur le jeu de données ≪ Endoscopic Artifact Detection Challenge ≫. Des expériences poussées montrent la supériorité, en termes de précision
moyenne, de l’approche ensembliste par rapport aux modèles individuels et aux travaux de l’état de l’art.

Abstract – In this contribution we use an ensemble deep-learning method for combining the prediction of two individual one-stage detectors
(i.e., YOLOv4 and Yolact) with the aim to detect artefacts in endoscopic images. This ensemble strategy enabled us to improve the robustness of
the individual models without harming their real-time computation capabilities. We demonstrated the effectiveness of our approach by training
and testing the two individual models and various ensemble configurations on the “Endoscopic Artifact Detection Challenge” dataset. Extensive
experiments show the superiority, in terms of mean average precision, of the ensemble approach over the individual models and previous works
in the state of the art.

1 Introduction

Endoscopy is a technique that has been widely used over two
centuries by physicians to screen the interior of otherwise in-
accessible sites in the human body [11]. Nowadays, it is the
primary diagnostic and therapeutic tool for managing gastroin-
testinal (GI) malignancies [9] and the primary instrument in
minimally invasive surgery (MIS) procedures [11]. As the en-
doscope provides a high quality video signal, it has fostered
the development of a great deal of tasks related to image ana-
lysis and computer vision [10]. Some of the most promising
applications in this area are related to the detection of diseases
or pre-cancerous lesions such as polyps, ulcer, bleeding, Ce-
liac and Chron’s disease. Recently, the use of computer vision
(CV) approaches in endoscopy has caught the attention of the
artificial intelligence (AI) and medical research communities
due to the advent of deep learning approaches. Typically used
of computer vision in endoscopy fall into two main categories :
Computer-aided detection (CADe) and computer-aided diag-
nosis (CADx) systems [8].

Even though promising applications have been demonstra-
ted, there are several challenges that must be addressed before
AI can be successfully deployed in endoscopic interventions in
real clinical settings : for instance, images can be corrupted by
various types of artefacts, making object detection and instance
segmentation methods less robust and unable to generalize ,
among other pressing issues [1]. In order to tackle these pro-
blems, various public datasets have been released to develop
tools capable of handling these complex settings and various
competitions are organized every year in major conferences.

For instance, the EndoCV is a crowd-sourced challenge that
aims to address these issues by developing reliable and robust
CADe/x endoscopy systems [1]. In recent editions of this chal-
lenge, the teams that obtained the two highest detection scores
implemented an ensemble of one two-stage and one single-
stage detectors [1]. The main advantage of employing two-
stage detectors is the overall improvement in terms of robust-
ness. However, these methods have an important limitation in
the clinical context, which is related to the very high inference
time, as they cannot be used for CADe or CADx applications.



More recently, several proposals in the challenge have been
proposed to overcome these limitations. In [4], an ensemble of
RetinaNet, Cascade and Faster R-CNN was proposed with a
class-agnostic NMS stage after each model. An ensemble of
Faster R-CNN RetinaNet and Faster R-CNN was implemen-
ted in [5]. On the other hand, a YOLACT implementation with
Non-Maximum Suppression (NMS) was proposed by [12].

Even though multiple proposals have started to tackle the ro-
bustness issues discussed above, we consider that there is still a
lack of robust yet real-time capable object detector that would
enable various applications for the CV community in endo-
scopy. A way of dealing with this problem of robustness is to
adopt a model ensambling strategy, but the models need to be
preferably lightweight (to avoid becoming too power hungry
and memory intensive) and run in real-time [6].

To investigate how this can be achieved, in this paper we
present a comparison between two single-stage object detec-
tors, YOLOv4 and YOLACT, and we propose an ensemble
using both of them. The main contribution consists on develo-
ping an ensemble mechanism using only single-stage detectors
aiming to improve the robustness of the detection task while
maintaining a low memory footprint and inference time.

This paper is organized as follows : In Section II, a brief
description of EndoCV challenge, YOLOv4 and YOLACT ar-
chitectures is given, followed by the ensemble method that was
implemented for this dataset. Section III covers the results that
were obtained during this comparison and section IV concludes
the article with some future avenues of research.

2 Data and methods
This study compares the use of two single-stage detectors,

YOLOv4 and YOLACT against an ensemble of both of them,
which we dub CEM. These models were trained and tested with
the Endoscopy Artifact Detection challenge 2020 [1].

2.1 EAD Dataset
The EndoCV challenge consists of Endoscopy Disease De-

tection (EDD) and Endoscopy Artifact Detection (EAD) tasks.
The EAD sub-challenge contains diverse endoscopy video frames
that were collected from seven institutions. The dataset co-
vers eight different artefact classes that were identified by cli-
nical experts as specularity, saturation, artefact, blur, contrast,
bubbles, instrument and blood. The dataset is composed by
2,532 images, classified into two types of data : single and se-
quence frames [1] for testing different models.

At the top of Fig. 1, five images from the single frame cate-
gory are shown. While, at the bottom of the same figure, five
images belonging to the sequence frames category are shown.

For the detection task, 31,069 bounding boxes were given,
being specularity, the class with more occurrences, followed by
artefact and bubbles. Whereas, the class with less occurrences
is blood, followed by instrument, blur, and saturation. A chart
describing the data distribution is given in Fig. 2.

2.2 Object Detectors

The first single-stage object detector that was trained and
evaluated with this dataset was YOLOv4 [2]. The architecture
of this model was set to work with CSPDarknet53 as its back-
bone, an additional SPP module, PANet path-aggregation neck
and a YOLOv3 head.

The other single-stage object detector that was selected for
this study is YOLACT’s lightweight instance segmentation de-
tector [7], whose architecture closely follows the one of Retina-
Net, without the use of focal loss. We set our backbone detector
to be ResNet50 with a modified FPN, applying smooth-L1 loss
to train box regressors and encode box regression coordinates,
as SSD.

2.3 Ensemble

An ensemble method combines the predictions done by mul-
tiple object detectors into a final output [3]. This method can
be understood as a voting system in which every model in the
ensemble submits its own predictions, aiming that the final de-
cisions accuracy overcomes the accuracy of every learning me-
thod alone. We implemented two voting strategies :

— Consensus : This voting strategy needs the majority of
the models to detect the same object in order to consider
that prediction a final output. Since we are structuring
our ensemble method with just two single-stage object
detectors, this approach works exactly as the unanimous
voting strategy, in which both YOLOv4 and YOLACT
models need to agree with the same prediction.

— Affirmative : Unlike the consensus and unanimous stra-
tegies, this approach requires just a single model, either
YOLOv4 or YOLACT, to do a prediction in order to take
it into account for the final output. In other words, all pre-
dictions done by each detector will be considered for the
final result.

2.4 Training

The training procedure of both object detectors, YOLOv4
and YOLACT, was performed on an NVIDIA DGX-1 system
with eight Tesla V100 GPUs. Before the training procedure
was done, input images were resized to 416 x 416 pixels and
augmented using different data augmentation techniques : flips,
blur and hue, gamma and equalized histogram and a combina-
tion of all of them.

The YOLOv4 model was trained using a learning rate of
0.001, a batch size of 64, subdivision equals to 16, momen-
tum value of 0.949 and weight decay of 5e−4 on a single GPU.
The traditional YOLACT model was also trained using a single
GPU with a learning rate of 0.001, batch size of 16 images,
weight decay of 5e−4, a momentum value of 0.9. The ensemble
method was implemented by using the generated object detec-
tor models from the training stage.



FIGURE 1 – Samples from EAD2020 dataset images [1]

FIGURE 2 – Class distribution from EAD2020 dataset [1]

2.5 Metrics
The performance of the methods was evaluated using an stan-

dard evaluation metric : mean average precision (mAP). This
metric measures the ability of a model to accurately capture all
instances of the ground truth annotations.

This metric was evaluated at three different intersection over
union values (IoU) : 0.25, 0.50, and 0.75. The IoU value mea-
sures the overlap of two different bounding boxes and is used
to determine whether or not a prediction is correct with respect
to the ground truth.

3 Results
This section compares qualitatively and quantitatively the

obtained results after completing an evaluation of the selected
models : YOLOv4, YOLACT and the ensemble method.

3.1 Quantitative Results
The mAP metric was used to evaluate all three methods at

three different IoU : 25, 50, and 75 percent. The graphs in
Fig. 3 show the mAP values obtained by each model with dif-
ferent data augmentation strategies : original data only, geome-

tric data augmentation, distortion (blur and hue), photo-metric
(gamma and equalized histogram) and flips. The red crosses in-
dicate the YOLOv4 mAP values, while the blue circles denote
the YOLACT mAP values and finally, the green stars highlight
the mAP values of the consensus ensemble method (CEM).

From the figure, we can observe that the ensemble model
outperforms the other methods for at 75 IoU, while preserving
a low inference time given by the two one-stage detectors.

FIGURE 3 – Mean average precision values at 25, 50, and 75
IoU values. Red crosses : YOLOv4 mAP values, Blue Circles :
YOLACT mAP values and Green stars : CEM

One of the main objectives of the challenge is to address
generalization issues, therefore, the test data that was released
to the participants was collected from different sources not pre-
sented in the training data. In this study, the public training data
was randomly split to construct the train and test datasets since
official test data is not publicly available. Even though the mo-
dels evaluated during the challenge and our models were not
evaluated over the same data, table 1 presents the results obtai-
ned by the three best performing teams, the given baseline and
the methods described in this study, i.e. YOLOv4, YOLACT
and CEM, with the data augmentation that achieves the best
mAP for the CEM method. From the table we can observe that
all our methods outperform previous competitors challenge, as
well as the baselines by a large margin. YOLACT has the hi-



TABLE 1 – Benchmark between three best performing teams,
given baselines [1] and the methods used in this study

Team names mAP 25 mAP 50 mAP 75
StarStarG 46.965 30.202 5.432
higersky 47.716 29.841 4.473
qzheng5 48.21 25.717 3.997
baselines
YOLOv3 32.199 18.473 1.137
RetinaNet (ResNet101) 17.646 6.447 0.767
Ours
YOLACT 91.88 81.95 59.8
YOLOv4 65.83 51.22 31.55
CEM 85.44 75.5 60.47

ghest mAP for the IoU of 25 and 50 (91.88 and 81.95 respec-
tively), but the CEM ensembles obtained the best overall mAP
for IoU of 75 (60.47).

3.2 Qualitative Results
Figure 4 contains a set of predictions that were done by the

trained models over a test image. Also, the ground truth is
shown in order to do a visual comparison between the expected
results and the actual predictions. The 1st column contains the
expected ground truth bounding boxes. The 2nd column shows
the predictions done by YOLOv4 and the CEM with a 50%
IoU. Finally, the 3rd column displays the predictions done by
YOLACT and the CEM with a 75% IoU.

FIGURE 4 – Visual comparison between ground truth and infe-
rence results of YOLOv4, YOLACT, CEM at 50 and 75% IoU

It can be seen how as the IoU threshold is increased, the
amount of final detections decrease. In fact, this situation is
more clear in small objects (i.e., specularities not detected in
bottom right image). Thus, more experiments and architectural
improvements are needed to deal with such small objects.

4 Conclusion and future work
A proposed CEM was generated from two single-stage de-

tectors, YOLOv4 and YOLACT, trained models with different
data augmentations, aiming to improve the detection perfor-
mance while trying to maintain inference time as low as pos-
sible. All three models were evaluated in terms of mAP at three

different IoU thresholds : 25, 50, and 75. Based on the obtained
results, CEM’s object detector have a better performance than
YOLOv4 and YOLACT at higher IoU.

Another important aspect was that even though the ensemble
method increases inference time, it outperformed YOLOv4 in
all cases, which means that an ensemble of two single-stage
object detectors can increase the mAP value at a little inference
time cost with respect to an ensemble of two-stage detectors.
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[3] Á. Casado-Garcı́a and J. Heras. Ensemble methods for
object detection. In ECAI, 2020.

[4] I. A. Polat G., S. D. and Temizel. Endoscopic artefact de-
tection with ensemble of deep neural networks and false
positive elimination. In CEUR Workshop, 2020.

[5] C. A. Tiwari R. Jadhav S., Bamba U. and Raj A. Multi-
plateau ensemble for endoscopic artefact segmentation
and detection. In CEUR Workshop, 2020.

[6] J.C. Angeles Cerón, L. Chang, G. Ochoa Ruiz, and S.
Ali. Assessing yolact++ for real time and robust instance
segmentation of medical instruments in endoscopic pro-
cedures. In 2021 43rd Annual International Conference
of the IEEE Engineering in Medicine Biology Society
(EMBC), pages 1824–1827, 2021.

[7] D. Bolya, C. Zhou, F. Xiao, and Y.J. Lee. Yolact : Real-
time instance segmentation. 2019.

[8] Y. He, J. Su, Z. Li, X. Zuo, and Y. Li. Application of ar-
tificial intelligence in gastrointestinal endoscopy. Journal
of Digestive Diseases, 20 :623–630, 10 2019.

[9] Y. Tang, S. Anandasabapathy, and R. Richards-Kortum.
Advances in optical gastrointestinal endoscopy : a techni-
cal review. Molecular Oncology, page 1878–0261.12792,
Sep 2020.

[10] B. Münzer, K. Schoeffmann, and L. Böszörmenyi.
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