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Résumé – La trace tr(q(L+ qI)−1), où L est une matrice symétrique à dominante diagonale, est une quantité d’intérêt dans certains problèmes
d’apprentissage automatique. Son calcul direct est difficile si la taille de la matrice est importante. Les méthodes de pointe comprennent l’estima-
teur de Hutchinson combiné à des solveurs itératifs, ainsi que l’estimateur basé sur les forêts aléatoires (un processus aléatoire sur les graphes).
Dans ce travail, nous révélons deux façons d’améliorer l’estimateur basé sur les forêts via des techniques bien connues de réduction de la va-
riance, à savoir les variables de contrôle et l’échantillonnage stratifié. La mise en œuvre de ces techniques est pratique et permet une réduction
substantielle de la variance, donnant souvent des performances comparables à l’état de l’art ou meilleures.

Abstract – The trace tr(q(L + qI)−1), where L is a symmetric diagonally dominant matrix, is the quantity of interest in some machine
learning problems. However, its direct computation is impractical if the matrix size is large. State-of-the-art methods include Hutchinson’s
estimator combined with iterative solvers, as well as the estimator based on random spanning forests (a random process on graphs). In this work,
we show two ways of improving the forest-based estimator via well-known variance reduction techniques, namely control variates and stratified
sampling. Implementing these techniques is easy, and provides substantial variance reduction, yielding comparable or better performance relative
to state-of-the-art algorithms.

1 Introduction
Randomized methods are useful to approximate the trace of

a matrix if the matrix is not explicitly known. These methods
come into play in various problems [19] in which A ∈ Rn×n
is typically a large matrix (e.g. n ≥ 106) and tr(f(A)) is
the quantity of interest. In this work, we focus on calcula-
ting the trace of f(L) = q(L + qI)−1 without taking the
matrix inverse when L is a symmetric diagonally dominant
(SDD) matrix i.e. ∀i, |Li,i| ≤

∑
j |Li,j |. A natural use case of

tr(q(L + qI)−1) arises in graph Tikhonov regularization pro-
blem [17] where L is the graph Laplacian. In this problem, we
are given a noisy signal over n vertices y = [y1, y2, . . . , yn]>

and we aim to recover the original signal x by solving the fol-
lowing problem :

x̂ = argmin
z∈Rn

q||y − z||22 + z>Lz, q > 0 (1)

where the hyper-parameter q > 0 controls the regularization.
The explicit solution x̂ reads Ky where K = q(L + qI)−1. No-
tice that the recovery error, i.e. ||x − x̂||22, highly depends on
q and there are several methods to automatically choose the
value of q such that the solution x̂ approaches to x. Many of
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them, such as generalized cross-validation, Akaike or Bayesian
information criteria, use tr(K) as a measure of the degrees of
freedom of the linear smoother K [7].

State-of-the-art. The standard estimator for tr(K) is due to
Hutchinson [9]. Given N samples of a Bernoulli random vec-
tor a ∈ {1,−1}n with ∀i, P(ai = ±1) = 1/2, Hutchinson’s
estimator is defined as h := 1

N

∑N
i=1 a

(i)>Ka(i). where a(i)s
are samples of the random vector a. The estimator h is an un-
biased estimator of tr(K). Note that one can change the law
of a to any distribution satisfying E[a] = 0 and Var(a) = I
(e.g. Girard’s estimator [6] arises when a is Gaussian with zero
mean and unit variance).

Computing Ka is expensive due the matrix inverse. Even le-
veraging the sparsity by using Cholesky decomposition has a
time complexity O(n3) in the worst case. For large n, this cost
becomes prohibitive. The state-of-the-art that avoids this cubic
cost consists of (preconditioned) conjugate gradient [16], al-
gebraic multigrid [15], polynomial approximations. They com-
pute Ka with very small error, often much less than the Monte
Carlo error induced by Hutchinson’s estimator, and they scale
linearly with the number of edges m.

RSF estimator. In [2], we proposed an alternative method to
estimate tr(K) when L is a SDD matrix. This method is ba-
sed on random spanning forests (RSF) [1], a random process
on graphs. We showed that the number of roots is an unbiased
estimator for tr(K).

Our contributions. In this work, we improve the efficiency



of the RSF-based estimator by well-known variance reduction
(VR) techniques from the Monte Carlo literature. The main re-
sults of this paper are listed as follows :

• We show two novel ways of applying VR techniques to the
RSF-based estimator,

• The additional computations remain in the time complexity
O(m) and come with practical implementations,

• Empirical evidence on various graphs shows that the propo-
sed methods perform at least as well as Hutchinson’s estima-
tor, while outperforming it in many settings.

2 Background
In this section, we introduce our notation and revisit some

theoretical properties of RSFs.

Graph theory. Consider an undirected, weighted graph G =
(V, E , w) with |V| = n nodes and |E| = m edges. The weight
function w : V ×V → R≥0 maps E to positive weights and for
(i, j) 6∈ E ,w(i, j) equals to 0. The (weighted) adjacency matrix
of a graph is the matrix A = [w(i, j)]i,j ∈ Rn×n. Degree of a
node i is di =

∑
jN (i) w(i, j) whereN (i) is the neighborhood

of i. We form the degree matrix as D = diag(d). Finally, the
graph Laplacian L = D −W is a useful object with many ap-
plications in graph combinatorics, machine learning and graph
signal processing [17].

Random spanning forests. A tree is a cycle-free subgraph of
G. It is a spanning tree if it reaches all vertices of G. A rooted
tree is a directed tree whose edges are oriented towards a spe-
cial node called a root. A rooted spanning forest, denoted by
φ, is a set of disjoint rooted trees on G whose union reaches all
vertices. Let us denote the set of all spanning forests by F . We
define an RSF Φq as a random object that is defined over F and
has the following distribution :

P(Φq = φ) ∝ q|ρ(φ)|
∏

(i,j)∈φ

w(i, j), q > 0. (2)

where ρ(φ) is the root set of φ. Although |F| can be very large,
a modified version of Wilson’s algorithm [18] can be used to
sample a forest [1]. The algorithm is based on loop-erased ran-
dom walks on G. Thus, the time complexity of the algorithm
is reported as the expected number of steps until it terminates
which is equal to tr(K(I + 1

qD)) ≤ n+ 2m
q [11] 1.

The random object Φq has fascinating theoretical properties
that connect various concepts [1]. An important example for
this paper is E[|ρ(Φq)|], which equals tr(K). Previously, we
deployed |ρ(Φq)| as an unbiased estimate of tr(K). According
to experiments performed on various graphs, this estimator is
competitive and outperforms in some cases Girard’s estimator
in terms of the required time for reaching a certain precision. In
this work, we improve the expected error of the RSF estimator
by VR techniques for Monte Carlo estimators.

1. tr(K) + 1
q

tr(KD) ≤ n+ 1
q

tr(KD) ≤ n+ 1
q

tr(D) = n+ 2m
q

.

3 Proposed Methods
Two VR methods are applicable to the RSF estimator : The

control variate (CV) technique and stratified sampling. 2 Mo-
reover, generalizing these methods to SDD matrices is straight-
forward [2]. Both methods use some additional information
(e.g. a statistic with a known mean) on the estimator to re-
duce variance. The difficulty in applying such methods is to
find which additional statistic will be both fast to estimate and
provide a substantial decrease in the variance. This paper shows
practical ways to adapt these techniques for the RSF estimator.

3.1 Control Variates
We give two RSF based unbiased estimators for K in [14].

Both relies on the root relation rφ : V → ρ(Φq) which
maps every node to its root in φ. The first estimator is S̃ :=
[I(rΦq

(i) = j)]i,j and verifies E[S̃] = K since P(rΦq
(i) =

j) = Ki,j . An improved version of this estimator with the CV
method is [13] :

Z̃ = S̃− α(K−1S̃− I) (3)

Since E[Z̃] = K, we find a unbiased trace estimator :

s̃ := tr(Z) = |ρ(Φq)| − αc̃, (4)

where

c̃ = |ρ(Φq)|−α

n− |ρ(Φq)| −
1

q

∑
i∈ρ(Φq)
j∈N (i)

w(i, j)I(rΦq (j) 6= i)

 .

The random variable c̃ is called the “control variate”, and its
mean is n. To calculate c̃, one only needs to count the neigh-
bors of each root i that are not rooted in i. For |ρ(Φq)| �
n, the computational cost remains negligible, whereas, in the
worst case, it might require traversing every edge of the graph.
One can also adapt these calculations for the second esti-
mator in [14]. To do so, let us recall this estimator in ma-
trix form; the trees of Φq depict a random partition P =

{V1,V2, . . . ,V|ρ(Φq)|} over V = ∪|ρ(Φq)|
i=1 Vi. We enumerate

these components from 1 to |ρ(Φq)| and consider a mapping
t from each vertex i to the number of the component that i
belongs to. Then, the second estimator takes the form : S̄ =[
I(i∈Vt(j))
|Vt(j)|

]
i,j

. So, one has :

s̄ := |ρ(Φq)| − αc̄, (5)

where c̄ = n − |ρ(Φq)| − 1
q

∑
i∈V

j∈N (i)
S̄i,iw(i, j)I(rΦq

(j) 6=

i). In this case, the control variate requires keeping track of
partition sizes and neighbors at partition boundaries. While the
former can be done in O(n), the latter requires traversing all
edges. However, it provides more variance reduction than the
previous option(See Prop. 1 and 2 in [14]).

2. We omit the main motivations behind these methods due to space limi-
tations but we refer the reader to [10] for more details.



How to choose α. As can be deduced from Prop. 2 in [13], a
safe value of α, i.e. a value that guarantees variance reduction,
is 2q

q+dmax
where dmax is the maximum degree in G. We also

observe that q
q+davg

is usually a good estimate of α? where
davg is the average degree in G.

3.2 Stratified Sampling
Stratification reduces the Monte Carlo error by dividing the

sample space into sub-parts, each called a stratum, based on
another random variable. Stratified sampling can substantially
decrease approximation error when applicable. In the follo-
wing, we give a way of applying stratification to the RSF-based
trace estimator.
Stratification for the RSF estimator. Consider the root set
that are sampled at the first visit of random walks in Wilson’s
algorithm. Let us denote them by ρ′(Φq) and define a random
variable Ri := I(i ∈ ρ′(Φq)) where I is the indicator func-
tion. Notice that each Ri is an independent Bernoulli variable
with P(Ri = 1) = q

q+di
. Building on this, we propose to use

the cardinality |ρ′(Φq)| =
∑
i∈V Ri ∈ {0, 1, . . . , n} to apply

stratification on the RSF estimator as follows ; i/ take disjoint
K-fold strata C1, . . . , CK verifying

⋃K
i=1 Ci = {0, 1, . . . , n},

ii/ get Ni samples of Φq

∣∣∣|ρ′(Φq)| ∈ Ci for each stratum Ci, iii/
compute the following weighted sum :

sst :=

K∑
i=1

1

Ni

 Ni∑
j=1

|ρ′(φ(j))|∈Ci

|ρ(φ(j))|

P(|ρ′(Φq)| ∈ Ci).

(6)
For N =

∑K
i=1Ni samples, sst gives an unbiased estimation

of tr(K) due to the law of conditional expectation. Moreover,
given a fixed N , certain settings of Ni’s provide lower theore-
tical variance, e.g. Ni = NP(|ρ′(Φq)| ∈ Ci) [10].
Implementation. We address two issues in implementing stra-
tified sampling. The first one is the calculation of the proba-
bilities P(|ρ′(Φq)| ∈ Ci). We approximate the distribution of
|ρ′(Φq)| by a normal distribution with a mean µ =

∑
i∈V

q
q+di

and a variance σ2 =
∑
i∈V

qdi
(q+di)2

to avoid expensive calcu-
lations of the exact methods [8]. The second is to sample the
random variable |ρ(Φq)|

∣∣∣|ρ′(Φq)| ∈ Ci. Given a set X ⊆ V
verifying |X | ∈ Ci, we can easily adapt Wilson’s algorithm for
sampling Φq|ρ′(Φq) = X with two modifications ; i/ we pass
X as the initial root set of Φq , ii/ we prevent any node i 6∈ X
being a root at the first visit of walks in Wilson’s algorithm. For
the generation of the fixed set X , we use rejection sampling [3]
which is fast if ∀i, P(|ρ′(Φq)| ∈ Ci)� 0.

4 Experiments
We empirically compare the proposed methods to Hutchin-

son’s estimator over various graphs by following a similar pro-
cedure to [2]. Notice that all estimators here are Monte Carlo.

Therefore, the asymptotic relation between the variance of a
Monte Carlo estimator over a single sample σ1, andN samples
σN , i.e. σN ≈ σ1

N1/2 , applies to all the estimators in the compa-
rison 3. We leverage this fact to compare the effective runtimes
of all methods i.e. the time needed to reach a fixed relative error
ε. First, we run all methods with N = 100. This gives us the
average runtime for the computation per sample and the sample
variance σ̂2

N . Then, we approximate σ̂1 =
√
Nσ̂N for each me-

thod. By using this approximation, we solve ε = σ̂1

tr(K)
√
k

for
ε = 0.02 to calculate the number of iterations k needed for
reaching ε error. Finally, we calculate the effective runtime per
method by multiplying k by the average time for generating a
single sample.

In Hutchinson’s estimator, we compute Ka using ; Alge-
braic Multigrid (AMG) 4, Conjugate Gradient (CG) 5, CG with
AMG preconditioning, and finally sparse Cholesky decompo-
sition using CHOLMOD [4]. Here, the CG methods benefit
from block implementations [12]. We compare these with our
proposed methods over various graphs. For s̃ and s̄, we set
α = q

q+davg
. In stratified sampling, we divide the sample space

into 5 strata C1, . . . , C5 verifying P(|ρ′(Φq)| ∈ Ck) ≈ 0.2 for
all k = 1, . . . , 5. We setNk = NP(|ρ′(Φq)| ∈ Ck) per stratum
k. The graphs that we use in these experiments are :
• Barabasi-Albert : A random graph generated by Barabasi-

Albert model (k = 10) with n = 104 and m = 99900,
• K-random regular : A random regular graph with n = 104

and m = 105 (k = 20),
• Collab-CM : A collaboration network of n = 21363 authors

in Arxiv on condense matter physics with m = 91342 links,
• Citation-HEP : A citation network of n = 34401 in Arxiv

on high energy physics with m = 420828 links.
• 3D Grid : 3-dimensional grid with n = 503 = 125000

nodes and m = 375000 edges.
• Amazon : A real-life network over n = 262111 products

in Amazon with m = 899792. A link between two products
indicates that the same client purchases these two products. 6

We choose 8 logarithmically spaced values of q such that the
ratio tr(K)/n takes values up to 65%. All experiments are im-
plemented in Julia and run in a single thread of a laptop.

Fig. 1 summarizes the results. For relatively small and sparse
graphs, such as Collab-CM, the direct method gives the best
performance, closely followed by the RSF methods. However,
the approximate ones beat the direct method when the graphs
become larger or denser. In these cases, the proposed methods
give either the best or a comparable performance with the other
state-of-the-art methods. A comparison between the regular
and highly irregular graphs, e.g. K-regular vs Barabasi-Albert,
shows that the CV estimators s̃ and s̄ gives small expected er-
ror in regular cases. This is an expected result since c̃ and c̄

3. This holds for the stratified sampling with Ni = NP(|ρ′(Φq)| ∈ Ci)
for all i. However, it is not necessarily true for other choices of Ni’s.

4. https://github.com/JuliaLinearAlgebra/
AlgebraicMultigrid.jl

5. https://docs.juliahub.com/KrylovMethods
6. The real-life data sets can be found in https://snap.stanford.

edu/data/

https://github.com/JuliaLinearAlgebra/AlgebraicMultigrid.jl
https://github.com/JuliaLinearAlgebra/AlgebraicMultigrid.jl
https://docs.juliahub.com/KrylovMethods
https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
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FIGURE 1 – Effective Runtime vs tr(K)/n.

have lower variances on regular graphs as they are summations
over the neighbors of the roots. In irregular graphs, the strati-
fied sampling estimator often outperforms state-of-the-art.

5 Conclusion
The rich theoretical properties of RSFs give us several ways

to improve the RSF trace estimator. In the future, we plan to de-
velop estimators for other Laplacian based quantities, such as
the elements of K, or the effective resistances. We also note that
we use relatively naive implementations for the stratified sam-
pling method, e.g. the normal approximation for the Poisson-
Binomial distribution can be improved by using e.g. Cornish-
Fisher or saddlepoint approximations [5].
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