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Résumé – Dans cet article, nous dérivons les régions de débit atteignables pour un système de radio cognitive coopératif composé d’une liaison
licenciée et d’une liaison opportuniste, qui est aidée par un relais full-duplex utilisant CF ou DF, lorsque tous les canaux sont complexes et les
bruits sont supposés suivre une distribution normale circulaire.

Abstract – In this paper, we derive the achievable rate regions for a cooperative cognitive radio network composed of a licensed link and an
opportunistic link, which is helped by a full-duplex relay node performing either CF or DF, when all channels are modeled as complex and the
noises are assumed to follow a circular normal distribution.

Next generations of wireless network are facing major chal-
lenges, such as increasing the network capacity and through-
put, improving the energy-efficiency, satisfying ultra-low la-
tency, while serving an unprecedented large number of users
with limited radio resources. Various techniques, ranging from
cognitive radio, cooperative communications, full-duplexing to
millimeter waves have hence been proposed to address these
goals [1].

Both full-duplexing technology and opportunistic spectrum
access increase the spectral efficiency by either mutliplexing
both the transmission and the reception on the same frequency
band [2] or by allowing an opportunistic use of under-utilized
licensed bands under Quality of Service (QoS) constrains pro-
tecting the licensed communication [2, 3].

Cooperative communications aim at increasing the network
capacity and throughput by exploiting both the increasing num-
ber of connected devices (potential relay nodes) and the na-
ture of the wireless medium, which makes all communicated
messages available at any node within range. Various relay-
ing schemes have been proposed in information theory for the
relay channel, such as Decode-and-Forward (DF), where the
relay decodes the sent message before re-transmission; and
Compress-and-Forward (CF), where the relay only quantizes
its received signal [4]. None of the above relaying schemes
is optimal in all cases with respect to the system parameters;
however, they perform well over various extensions of the relay
channel [5], such as the two-way relay channel [6], the multi-
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way relay channel [7, 8], the diamond relay channel [9], and
the interference relay channel [10, 11].

In this paper, we consider a cooperative cognitive radio net-
work, where the opportunistic transmission is assisted by a full-
duplex operating relay and assume, as in our previous study
[12], that the opportunistic direct link is present and that no
interfering link, neither from the licensed network to the sec-
ondary one nor from the secondary network to the licensed one,
can be neglected. Contrary to our previous study, we assume
here that all channels are complex and that all additive white
Gaussian noises follow a circular complex normal distribution,
which changes the achievable rate regions.

Our main contribution is precisely the derivation of the new
achievable rate regions under DF and CF relaying, in the com-
plex channels’ case and when the noises follow a circular com-
plex normal distribution. Hence, our obtained results extend
our previous study [12] as well as [13] (regarding the achiev-
able rate under CF with correlated noises), in which the chan-
nels were assumed real and the noises normal ones.

As opposed to the interference relay channels in [10, 11], in
our problem, the relay only helps the secondary transmission
and considers as additive noise the primary signal. For DF, the
major difference is that the primary message is not decoded at
the relay and only the secondary message is re-encoded in our
setting compared to [10]. For CF, the compression is adapted
solely to the secondary receiver as opposed to two different re-
ceivers [11] (via single or bi-level compression). Hence, our
achievable rates in the Gaussian case cannot be derived di-
rectly from the expressions provided in [10, 11]. In spite of



the similarity of our model with the interference relay channel,
the resulting resource optimization problems for the secondary
network are very different because of the additional cognitive
radio constraint protecting the primary link.

1 System model
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Figure 1: Cooperative cognitive radio network under study

The cooperative cognitive radio network under study, com-
posed of a primary transmission between UP and DP ; and a
secondary transmission between US and DS helped by a full-
duplex operating relay R is depicted in Figure 1. The relay,
which either performs CF or DF, is assumed to be able to can-
cel out any self-interference.

The relay and the two destinations receive the signals

YR = hSRXS + hP RXP + ZR

Yi = hRiXR + hiiXi + hjiXj + Zi,

where i ∈ {S, P}, j = {S, P} \ i. XR, XS and XP , of av-
erage power PR, PS and PP , denote respectively the message
transmitted by the relay, the opportunistic user and the primary
user. ZR and Zi represent the additive noises at the relay and
at the destination Di and are such that ZR ∼ CN (0, NR),
Zi ∼ CN (0, Ni). We also assume that all channel gains are
complex, static during the transmission, and known at the trans-
mitter and receiver ends, as per usual in information theoretic
works.

Throughout the paper, we assume that the primary message
is not decoded at the relay and secondary destination and can
hence be treated as additional noise. We thus consider the fol-
lowing equivalent noises Z̃R = ZR + hP RXP ∼ CN (0, ÑR)
with ÑR = NR + |hP R|2PP and Z̃S = ZS + hP SXP ∼
CN (0, ÑS) with ÑS = NS + |hP S |2PP at the relay and sec-
ondary destination respectively. Further, note that the two later
noises are correlated such that E[Z̃RZ̃∗

S ] = hP Rh∗
P SPP , where

E[.] denotes the mathematical expectation. Likewise, the mes-
sage from the secondary user and the relay are considered ad-
ditional noise at the primary destination.

Notations. We denote by C(x) = log2(1 + x) the capacity
of the point-to-point channel. Let R{·}, (·)∗, and | · | denote
the real part, the complex conjugate, and the absolute value of
a complex number, respectively. At last, H(·) represents the
differential entropy, and I(·; ·) is the mutual information.

2 Preliminaries
We start by presenting two theoretical and preliminary results
relating the differential conditional entropies to the estimator
minimizing the mean squared error, which is proved to be lin-
ear when the considered random variables are Gaussian ones.
These results can be found in [14, 15], but are reported below
for the sake of completeness.

Lemma 1. Let X̂(Y ) be the estimator of a random variable
(r.v.) X when we have side information Y . The estimator min-
imizing the estimation error is given by X̂(Y ) = E[X|Y ] and
the mean squared error of the estimation is such that

E[|X − E[X|Y ]|2] ≥ 1
πe

2H(X|Y ), (1)

where the equality is met if X and Y are Gaussian.
Moreover, if X and Y are jointly Gaussian with zero mean,
then the optimal estimator is linear and is given by

E[X|Y ] = E[XY ∗]
E[|Y |2] Y

and the mean squared estimation error is given by

E[|X − E[X|Y ]|2] = E[|X|2]
(

1 − |E[XY ∗]|2

E[|X|2]E[|Y |2]

)
.

Proof. The lower bound in (1) follows from the Corollary of
[14, Theorem 8.6.6]. The optimal estimator is obtained by min-
imizing the mean squared error given as E[|X−X̂(Y )|2|Y ] and
is given as X̂(Y ) = E[X|Y ].

Now, assume that X and Y are such that X ∼ CN (0, σ2
X),

Y ∼ CN (0, σ2
Y ) with the correlation coefficient defined as

ρ = |E[XY ∗]|
σX σY

. It can be shown that there exist two indepen-
dent random variables Z1, Z2 ∼ CN (0, 1), such that

X = σX

√
1 − ρ2Z1 + E[XY ∗]

σY
Z2, Y = σY Z2.

Hence, the optimal estimator is linear such that E[X|Y ] =
E[XY ∗]
E[|Y |2] Y. Then, the mean squared estimation error expression

follows easily.

Below, we extend Lemma 1 in the case where we have side
information composed of two r.v. Y = (Y1, Y2).

Corollary 1. Let X̂(Y1, Y2) be the estimator of X when we
have two r.v. Y1 and Y2 as side information. The estima-
tor minimizing the estimation error is given by X̂(Y1, Y2) =
E[X|Y1, Y2] and the mean squared estimation error is such that

E[|X − E[X|Y1, Y2]|2] ≥ 1
πe

2H(X|Y1,Y2).

Moreover, if X , Y1, Y2 are jointly Gaussian with zero mean,
then E[X|Y1, Y2] = aoptY1 + boptY2 with aopt and bopt given
below.
i) If Y1 and Y2 are independent r.v., then

aopt = E[XY ∗
1 ]

E[|Y1|2] bopt = E[XY ∗
2 ]

E[|Y2|2] .



ii) Otherwise, we have

aopt = E[XY ∗
2 ]

E[Y1Y ∗
2 ] − bopt

E[|Y2|2]
E[Y1Y ∗

2 ]

bopt = −E[XY ∗
1 ] E[Y1Y ∗

2 ] + E[XY ∗
2 ] E[|Y1|2]

E[|Y1|2] E[|Y2|2] − |E[Y1Y ∗
2 ]|2 .

In both cases, the mean squared estimation error equals

E[|X − E[X|Y1, Y2]|2] = E[|X|2] − aoptE[Y1X∗]
− boptE[Y2X∗].

3 Decode-and-Forward
In this section, we provide an achievable rate region obtained
when the relay performs DF. For completeness, we start by the
discrete channels’ case, followed by the complex additive white
Gaussian case.

Proposition 1. In the discrete memoryless channels’ case, the
achievable rate region over our cooperative cognitive radio
network for Decode-and-Forward relaying is given by

RP = max
p(xP )

I(XP ; YP )

RS = max
p(xS ,xR)

min{I(XS ; YR|XR), I(XS , XR; YS)}.

Proof. The primary rate corresponds to the capacity of the point-
to-point channel between the primary user UP and its destina-
tion DP . The secondary rate is obtained as for DF relaying
over the relay channel and is given in [15, Theorem 16.2].

Theorem 1. The following rate region is achievable over our
cognitive radio network with additive Gaussian noises Zi ∼
CN (0, Ni), i ∈ {S, P, R} when the relay performs Decode-
and-Forward:

RP ≤C

(
|hP P |2PP

|hRP |2PR+|hSP |2PS+2R{h∗
RP hSP γ}

√
PSPR+NP

)
RS ≤ C (min {fR(γ), fS(γ)}) , with |γ| ∈ [0, 1] and

fR(γ) = |hSR|2PS(1 − |γ|2)
NR + |hP R|2PP

,

fS(γ) = |hSS |2PS + |hRS |2PR + 2R{hSSh∗
RSγ}

√
PSPR

NS + |hP S |2PP
.

Proof. The optimal distributions of XR and XS , analogously

to the real case, are XR ∼ CN (0, PR), XS = X ′
S +γ

√
PS

PR
XR

with |γ| ∈ [0, 1] and X ′
S ∼ CN (0, (1 − |γ|2)PS) orthogonal

to XR. Thus, E[XSX∗
R] = γ

√
PSPR and with |γ| ≤ 1 the

Cauchy-Schwarz inequality |E[XSX∗
R]|2 ≤ PSPR is satisfied.

Furthermore, it can be noted that this choice of coding is equiv-
alent to the use of coding by superposition. Similarly, the opti-
mal choice for the primary distribution is XP ∼ CN (0, PP ).

To complete the proof, we need to derive the expression of
the three mutual information terms in Proposition 1.

Computation of I(XS ; YR|XR).
I(XS ; YR|XR) = H(YR|XR) − H(ZR + hP RXP )

(a)= C

(
|hSR|2(1 − |γ|2)PS

NR + |hP R|2PP

)
where (a) follows from Lemma 1.

Computation of I(XS , XR; YS).

I(XS , XR; YS) = H(YS) − H(Z̃S)

= C

(
|hSS |2PS +|hRS |2PR+2R {hSSh∗

RSγ}
√

PSPR

NS + |hP S |2PP

)
Computation of I(XP ; YP ).
I(XP ; YP ) = H(YP ) − H(ZP + hSP XS + hRP XR)

= C

(
|hP P |2PP

|hRP |2PR+|hSP |2PS+2R{h∗
RP hSP γ}

√
PSPR+NP

)

4 Compress-and-Forward
In this section, we provide an achievable rate region obtained
when the relay performs CF. Similarly to the previous section,
we start by the discrete channels’ case, followed by the com-
plex additive white Gaussian case.

Proposition 2. In the discrete memoryless channels’ case, the
achievable rate region over our cognitive radio network for
Compress-and-Forward relaying is given by

RP = max
p(xP )

I(XP ; YP )

RS = max I(XS ; ŶR, YS |XR)
where the maximum for RS is taken over all distributions such
that I(XR; YS) ≥ I(YR; ŶR|XR, YS).

Proof. The primary achievable rate is the same as in Proposi-
tion 1. The secondary rate is obtained as for CF relaying over
the relay channel and is given in [15, Theorem 16.4, Remark
16.3].

Theorem 2. The following rate region is achievable over our
cognitive radio network with additive Gaussian noises Zi ∼
CN (0, Ni), i ∈ {S, P, R} when the relay performs Compress-
and-Forward:

RP ≤ C

(
|hP P |2PP

|hRP |2PR + |hSP |2PS + NP

)
RS = C

(
|hSS |2PSD + PSE[|hSSZ̃R − hSRZ̃S |2]

ÑS(ÑR + D) − |E[Z̃RZ̃∗
S ]|2

)

with D = PSE[|hSSZ̃R−hSRZ̃S |2]+ÑRÑS−|E[Z̃RZ̃∗
S ]|2

|hRS |2PR
. Further-

more, we have

E[|hSSZ̃R − hSRZ̃S |2]

= |hSS |2ÑR + |hSR|2ÑS − 2PP R{hSSh∗
SRhP Rh∗

P S}

|E[Z̃RZ̃∗
S ]|2 = |hP R|2|hP S |2P 2

P .



Proof. Choose XS ∼ CN (0, PS), XR ∼ CN (0, PR), ŶR =
YR + Z, Z ∼ CN (0, D), where the distortion Z is assumed to
be independent of all other messages. In our case, the additive
noises at the secondary relay and destination are correlated due
to the presence of wireless links between the primary user and
the secondary network, and, hence

E[Z̃RZ̃∗
S ] = E[(ZR + hP RXP )(ZS + hP SXP )∗]

= hP Rh∗
P SPP ̸= 0.

Computation of the secondary rate I(XS ; ŶR, YS |XR).
First, by applying the chain rule, we obtain:

I(XS ; ŶR, YS |XR) = I(XS ; ŶS |XR) + I(XS ; YS |XR, ŶR)

= C

(
|hSR|2PS

ÑR + D

)
+ H(YS |XR, ŶR) − H(YS |XS , XR, ŶR)

Second, we compute H(YS |XR, ŶR) as follows.

H(YS |XR, ŶR) = log2(πeE[|YS − E[YS |XR, ŶR]|2])

(b)= log2

(
πe

(
|hSS |2PS +ÑS − |hSSh∗

SRPS +E[Z̃∗
RZ̃S ]|2

|hSR|2PS +ÑR+D

))
where (b) follows from Corollary 1 with XR and ŶR indepen-
dent.

Third, we need to derive H(YS |XS , XR, ŶR).

H(YS |XS , XR, ŶR) = H(Z̃S |Z̃R + Z)

(c)= log2

(
πe

(
ÑS − |E[Z̃SZ̃∗

R]|2

ÑR + D

))
where (c) follows from Lemma 1.

Combining all the above, we obtain the secondary rate:

I(XS ; ŶR, YS |XR)

= C

(
|hSS |2PSD + PSE[|hSSZ̃R − hSRZ̃S |2]

ÑS(ÑR + D) − |E[Z̃RZ̃∗
S ]|2

)

Computation of the distortion D.
First, we derive the expression of I(YR; ŶR|XR, YS).

I(YR; ŶR|XR, YS) = H(ŶR|XR, YS) − H(ŶR|XR, YS , YR)

(d)= C

 |hSR|2PS + ÑR − |h∗
SShSRPS+E[Z̃RZ̃∗

S ]|2

|hSS |2PS+ÑS

D


where (d) follows from Corollary 1 with XR and YS not inde-
pendent. Second, we compute I(XR; YS) below.

I(XR; YS) = H(YS) − H(YS |XR)

= C

(
|hRS |2PR

|hSS |2PS + ÑS

)
Finally, I(XR; YS) ≥ I(YR; ŶR|XR, YS) reduces to

D ≥ PSE[|hSSZ̃R − hSRZ̃S |2]+ÑRÑS−|E[Z̃RZ̃∗
S ]|2

|hRS |2PR
.

5 Conclusion
In this paper, we derive achievable rate regions for a coopera-
tive cognitive radio network, where the relay performs CF or
DF in a full-duplex manner. Due to the presence of the primary
transmission, the equivalent additive noises of the secondary
network are correlated. We further consider that all channels
are complex and that the additive noises follow complex cir-
cular normal distributions, hence, our obtained rate regions ex-
tend the ones in our previous study [12], as well as the achiev-
able rate of CF under correlated noises of [13].

These new achievable rate regions will be exploited in our
future work to derive the optimal power allocation of the sec-
ondary network, i.e. both relay and opportunistic user, that
maximizes the secondary rate while satisfying some primary
QoS constraints.
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