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Résumé - Ce papier présente une solution d'un problème bien connu des réseaux de distribution d'énergie : la détection 

et la classification des événements transitoires précurseurs des défauts pouvant conduire à des pannes du réseau 

électrique. Nous montrons les inconvénients de certaines approches classiques (la transformée en ondelettes et 

l’analyse statistique) et nous présentons les résultats d'une nouvelle approche de classification, basée sur la dynamique 

de l’entropie de diagramme de phase et les caractéristiques de diagramme de phase. 

Abstract - This paper presents a solution of a well-known problem in power distribution networks: the detection and 

classification of transient events that precede faults that can lead to power outages. We show the inconveniences of 

some classical approaches (wavelet transform and statistical features) and we present the results of a new classification 

approach, based on the dynamics of phase diagram entropy and the characteristics of phase diagram. 

 

1 Introduction 

The topic of fault detection in power system is of great 

interest in these days. One of the most common faults is 

represented by partial discharges (PDs). Most often these 

are caused by insulation defects and can occur in any 

phase of the production-transport-distribution chain. 

These are one of the main causes of breakdowns in power 

systems [1]. Therefore, partial discharges are a 

phenomenon that must be detected and monitored in 

order to analyze the state of the power system. 

In most cases, in addition to the partial discharge 

signals, other signals corresponding to loads are 

transmitted through the power cables, often much 

stronger than the PD signals. This can lead to problems 

in the PD detection process. Thus, a high number of such 

signals in power networks is a major impediment in 

network analysis. The existence of these signals and the 

large spread of electrical infrastructures cause difficulties 

when it comes to predictive maintenance of power 

systems [2]. One of the main approaches in this situation 

is based on their classification in order to make correct 

decisions regarding the state of the power network. 

In this context, the purpose of this paper has a double 

perspective. First, we propose a detection model free 

method derived from nonlinear dynamical systems, more 

precisely phase diagram-based entropy. This method 

eliminates the disadvantages of classical detection 

methods, such as those based on spectrogram or wavelet. 

Secondly, we propose a set of features extracted from the 

phase diagram in order to successfully characterize and 

classify all the transient activities detected in the power 

system. 

The structure of the paper is as follows: Section 2 

presents theoretical notions underlying the detection and 

characterization process derived from the phase diagram, 

as well as the presentation of the classification algorithm. 

Section 3 describes the results obtained by applying the 

method of analysis and classification algorithms on a real 

power distribution network and Section 4 presents the 

conclusions of this paper and future perspectives. 

2 Theoretical aspects 

This section presents the method used to detect 

transient signals, as well as the features extracted from 

the phase diagram representation and machine learning 

algorithms used in the classification part.  

2.1 Phase diagram-based entropy 

Phase diagram-based entropy method comes from the 

dynamic system theory. The emphasis of each transient 

event occurred in the power system can be done by 

transposing the analyzed signal in a multidimensional 

representation space, through the phase space vectors as 

in (1). 
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Changing the representation space and obtaining the 

phase diagram is done based on the delay d  between 

samples and the encapsulation dimension m . The 

determination of these parameters is done using the 

mutual information and the false nearest neighbor 

method [3]. Also ke  are the axis unit vectors and

( 1)M N m d   , where N is the length of the time 



series. Each two vectors from the phase diagram will be 

evaluated in terms of similarity in order to highlight the 

changes that occur in the analyzed system with the help 

of (2): 
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where r  is a tolerance threshold used to establish the 

range in which the data fluctuations are considered 

similar, [ ]d  is the operator of Euclidean distance and 

is the Heaviside function. Analyzing all pairs of two 

vectors in the phase diagram we quantify the degree of 

similarity in a logarithmic manner, as in (3). 
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Thus, in defining the phase diagram-based entropy [4], 

we measure the changes that occur in the system as an 

increase of the embedding dimension, as shown in (4). 

1m mPDEn       (4) 

A higher value of this entropy highlights the less 

predictable character of the system and highlights 

irregular appearances. 

2.2 Phase diagram features 

The representation in the phase diagram has the 

potential to highlight the existence of important features 

capable of characterizing transient signals. More details 

can be found in [4]. Three signal classification features 

will be presented in this subsection. In defining them we 

start from a test signal and its representation in the phase 

diagram, both representations can be viewed in Figure 1. 

In the representation we considered 1d   and 2m  . 

We chose this test signal because it fits best with the 

shape of the existing transient signals in real power 

networks. 

 

Figure 1. The test signal and its phase diagram representation 

Figure 2 displays the features derived from the 

representation in the phase diagram. These will be used 

in classification algorithms. 

 

Figure 2. Phase diagram dispersion (a), the number of spirals (b) 

and orientation (c) 

2.2.1 Phase diagram dispersion 

As can be seen in Figure 2a, the representation in the 

phase diagram can be inscribed in an ellipse. Thus, the 

two semi-axes of the ellipse show us the degree of 

dispersion of the points of the trajectory. We can quantify 

this according to the two dispersions in the two directions 

with the help of (5). 

PDD ab   (5) 

This feature is related to the amplitude of the signal. If 

the signal is strong and its generating source is close to 

the sensing point, the dispersion will have a higher value. 

2.2.2 The number of spirals 

The representation of the test signal in the phase 

diagram consists of several spirals, as show in Figure 2b. 

It is possible to quantify the number of spirals of the 

representation as the number of vectors that intersect with 

the major semi-axis of the ellipse that contains the 

representation using (6) and (7). 
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This feature is related to the duration and shape of the 

signal. The more spirals there are, the longer the duration 

is and the amplitude of the signal decreases over time. 

2.2.3 Orientation 

As shown in Figure 3c, orientation gives the angle 

between the major axis, the line which best fits all the 

points of the representation of the ellipse and its 

projection on the OX axis. This can be quantify using (8). 
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This feature is related to the signal symmetry in the 

time domain and the distribution of its samples. For 

example, the orientation of a sinusoidal signal is 45°. 

In order to show the interest of the proposed features, 

in Section 3 we compare them with some classical 

features based on wavelet transform approach. 

2.3 Machine learning algorithms 

Support Vector Machine (SVM) is an algorithm which 

find an optimal hyperplane between the possible outputs, 

that distinctly classifies the data [5]. In multiclass 

classification task, we need a hyperplane to separate 

between every two classes, neglecting the points of other 

classes. The computations of data points separation 

depend on a kernel function. This function determines the 

smoothness and efficiency of class separation. In our 

paper, we use a second order polynomial kernel function.  

Decision tree (DT) learning is a method for 

approximating discrete-valued functions, in which the 

learned function is represented by a decision tree. The 

aim of decision tree learning is recursively partition data 

into sub-groups [5]. In our study, the AdaBoostM2, a 

boosting algorithm designed for multiclass problems 

with weak base classifier is adopted. The algorithm is 

designed to minimize a loose bound on the training error. 

Quadratic Discriminant Analysis (QDA) is a 

probabilistic parametric classification technique.  QDA 
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models the likelihood of each class as a Gaussian 

distribution, then uses the posterior distributions to 

estimate the class [5].  

The performance metrics used to evaluate the 

classifiers are recall, specificity, precision and accuracy.  

3 Experimental configuration and results  

In this paper we have studied a real three-phase power 

distribution network. Through three high frequency 

current transformer sensors and one acquisition board we 

collected the electrical signals from the distribution 

cables. The acquisition system and the power distribution 

network diagram are shown in Figure 3.  

 

Figure 3. The power distribution network benchmark 

Figure 4 shows one of the signals collected from the 

network. The signals were recorded at 5sf MHz  

sample frequency. The analysis of the cables highlights 

several transient activities in the network. Three different 

types of transient events can be distinguished, specific to 

three generating sources. 

 

Figure 4. The signal collected distribution network 

The choice of the classes is made based on the level of 

amplitude. To Class 1 we assign the strongest signal in 

terms of amplitude and with the longest duration. To 

Class 2 we assign the periodic signal, with a pulse 

repetition rate of 19T us  . To Class 3 we assign the 

signal specific to the partial discharge activity.  

In order to evaluate the performance of the detection 

we compare our approach with one of the most used 

methods for the detection of transient signals, namely the 

wavelet transform. Figure 5 shows the results of the 

detection process using the two methods.  

For the phase diagram-based entropy detection, a 10-

sample window is slid over the entire duration of the 

signal to highlight entropy variations. For the tolerance 

threshold, the value of 0.5 is chosen from the standard 

deviation of the signal contained in the sliding window. 

For the wavelet-based detection, the type of wavelet 

used in this paper is the Daubechies order 4 family. This 

family of wavelets corresponded to the best results 

obtained via many trials.  

 

Figure 5. Transient detection results 

As can be seen, only the phase diagram-based entropy 

method could detect the partial discharge signal. In the 

study of distribution networks, this type of signal is the 

most important, because it is an indicator of the cable 

degradation. Failure to detect this will lead to false 

information about the status of the system. 

In Figure 6, we display a signal specific to each class 

form the created database. As it can be seen the three 

transient signals have a specific shape. 

 

Figure 6. The three classes of transient signals 

One of the classical approaches for feature extraction 

is based on the wavelet transform approach. In our case 

is a problematic approach, because the impossibility of 

identifying a suitable scale is a real impediment, as 

shown in Figure 7. We also encounter problems in 

choosing the type of wavelet which best corresponds to 

the analyzed signals. 

 

Figure 7. The scalograms of the three transient signals 

However, in order to have a reference for the 

classification algorithm, we use a set of features widely 

used in such applications extracted based on wavelet 

transform [6]. We use wavelet decomposition of the 

transient signal and we extract the detail coefficients at 

the coarsest scale from the wavelet decomposition 

structure as shown in Figure 8. 

Class 2 Class 3 Class 1 



From these coefficients, we extracted statistical 

information for each level: maximum values, minimum 

values, the mean values and the standard deviation of the 

coefficients in each sub-band. 

 

Figure 8. The detail coefficients for three levels for class 1 signal 

(up), class 2 signal (middle) and class 3 signal (down) 

We created a database using several measurements at 

different times. In this sense, we gathered 750 signals 

specific to the three classes, each class consisting of 250 

signals. Of these signals, 70% were used for training and 

30% for the testing part of the classification algorithms. 

Figure 9-11 shows the performances obtained in the 

classification process using both approaches. The phase 

diagram approach results are shown in the left side of the 

figure and wavelet approach results in right side. 

 

Figure 9. The recall performance 

 

Figure 10. The specificity performance  

 

Figure 11. The precision performance  

As we can see, all classifiers based on extracted 

features from phase diagram domain have very good 

results. In particular, the best performance is obtained by 

using the SVM classifier. The performance obtained with 

the phase diagram approach is superior when it comes to 

recall, specificity and precision. When it comes to the 

precision parameter, the wavelet approach has the worst 

results for the partial discharge class. 

 

Figure 12. The accuracy performance  

Figure 12 shows a comparison in terms of the accuracy 

of the classification process for the two approaches. The 

results obtained with our proposed set of features is 

superior to those obtained with the wavelet statistical 

features. The best result obtained is 99.5% for the phase 

diagram approach and the SVM. The worst result 

obtained is 87.5% for the wavelet approach and the QDA. 

4 Conclusions 

In this paper we present a new approach based on 

phase diagram analysis of a power distribution network 

in order to detect and classify all the transient events. Our 

approach was compared with an intensively used method, 

both in detection and classification. 

The machine learning algorithms that classify power 

distribution network signals provide valuable decision 

support. The best one is SVM, which offers a high 

classification accuracy followed by the Decision Tree 

classifier and Quadratic Discriminant Analysis. Our 

approach brought an increase of up to 8% for the same 

classifier in the performance of the classification 

accuracy. 

A future research direction will be based on extraction 

of the best combination of nonlinear features from the 

phase diagram and identification of new features in a 

multi-dimensional representation space. 
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