Part-I: A Brief Introduction to Channel Coding

Marc Fossorier

Department of Electrical Engineering
University of Hawaii

Communication Channel:

- ($N, K, d_{\text {min }}$) binary linear block code.

Linear Codes:

- A linear code C is totally define by its $K x N$ generator matrix G or its $(N-K) x N$ parity check matrax \times diture cant be displayed.

$$
\mathrm{m} G=\mathrm{c}
$$

$$
\mathrm{c} H^{T}=0
$$

Example:

$$
G_{k \times n}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \Rightarrow H_{(n-k) \times n}=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]
$$

(1) Say you send the message $\mathrm{m}=\left[\begin{array}{ll}0 & 1\end{array}\right]$. Create the codeword c

$$
c=m G=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right]
$$

(2) Say the receiver receive $\hat{c}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$
(0) How can the receiver know the codeword he receive is wrong ?
(- Test the receive codeword with the parity check matrix H

$$
\begin{aligned}
\hat{c} H^{t} & =\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]^{t}=\left[\begin{array}{ll}
1
\end{array}\right] \text { - error detected } \\
\hat{c} H^{t} & =\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]^{t}=\left[\begin{array}{ll}
0
\end{array}\right] \text { - good }
\end{aligned}
$$

Maximum Likelihood Decoding:

- Find the most likely codeword \mathbf{c} based on received sequence.
- For AWGN, c minimizes the discrepency metric:

$$
L(r, c)=\sum_{\ell: r_{\ell}^{H D} \neq c_{\ell}}\left|r_{\ell}\right|(\geq 0)
$$

- "Brute-force" decoding: Out of 2^{K} possible solutions, find the most probable (i.e. the codeword with minimum discrepency metric).

Coding/Decoding:

- Mathematical problem: design best code (i.e. best performance for given channel).
- Engineering problem: design best code that can be implemented.

Majority-logic decoding

Simple and effective way for decoding certain class of block codes, especially cyclic code.

Idea behind Majority logic decoding

Take an (n, k) cyclic code C with parity-check matrix H Chose a codeword \mathbf{c} in C, and a codeword $\mathbf{h}_{\mathbf{k}}$ in H then

$$
\mathbf{c} \cdot \mathbf{h}_{\mathrm{k}}=\mathbf{0}
$$

Let \mathbf{e} be an error pattern, and \mathbf{r} a received sequence.

$$
\mathbf{r}=\mathbf{c}+\mathbf{e}
$$

Majority-logic decoding

Simple and effective way for decoding certain class of block codes, especially cyclic code.

Idea behind Majority logic decoding

Take an (n, k) cyclic code C with parity-check matrix H Chose a codeword \mathbf{c} in C, and a codeword $\mathbf{h}_{\mathbf{k}}$ in H then

$$
\mathbf{c} \cdot \mathbf{h}_{\mathrm{k}}=\mathbf{0}
$$

Let \mathbf{e} be an error pattern, and \mathbf{r} a received sequence.

$$
\mathbf{r}=\mathbf{c}+\mathbf{e}
$$

Imagine $\mathbf{e}=\left(0,0, \ldots, 0, e_{14}=1\right)$

$$
\begin{aligned}
& A_{1} \\
& A_{2} \\
& A_{3} \\
& A_{4}
\end{aligned}=\begin{aligned}
& \mathbf{h}_{7} \cdot \mathbf{r} \\
& \mathbf{h}_{11} \cdot \mathbf{r} \\
& \mathbf{h}_{13} \cdot \mathbf{r} \\
& \mathbf{h}_{14} \cdot \mathbf{r}
\end{aligned}=\begin{array}{llll}
e_{7} & +e_{8} & +e_{10} & +e_{14} \\
e_{3} & +e_{11} & +e_{12} & +e_{14} \\
e_{1} & +e_{5} & +e_{13} & +e_{14} \\
e_{0} & +e_{2} & +e_{6} & +e_{14}
\end{array}=\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
$$

Check sums A_{1}, A_{2}, A_{3} and A_{4} return a $1 \Rightarrow$ error detected. The clear majority has detected the error in e_{14}.

$$
\text { Imagine } \left.\mathbf{e}=\left(0,0, \ldots, 0, \epsilon_{13}=1, \epsilon_{14}=1\right) \text { (correcting } e_{14}\right)
$$

$$
\begin{aligned}
& \begin{array}{llllll}
A_{1} & \mathbf{h}_{7} \cdot \mathbf{r} & e_{7} & +e_{8} & +e_{10} & +e_{14}
\end{array} \\
& \begin{array}{l}
A_{2}=\begin{array}{l}
\mathbf{h}_{11} \cdot \mathbf{r} \\
A_{3}
\end{array}=\begin{array}{l}
e_{3}+e_{11}+e_{12}+e_{14} \\
\mathbf{h}_{13} \cdot \mathbf{r}
\end{array}=\begin{array}{l}
1 \\
e_{1}+e_{5} \\
+e_{13}
\end{array}+e_{14}
\end{array} \\
& \begin{array}{llllll}
A_{4} & \mathbf{h}_{14} \cdot \mathbf{r} & e_{0} & +e_{2} & +e_{6} & +e_{14}
\end{array}
\end{aligned}
$$

Imagine $\mathbf{e}=\left(0,0, \ldots, 0, \epsilon_{13}=1, \epsilon_{14}=1\right)$ (correcting ϵ_{13})

Cyclic code helps the decoding process.

$$
\text { Imagine } \left.\mathbf{e}=\left(0,0, \ldots, 0, e_{12}=1, e_{13}=1, e_{14}=1\right) \text { (correcting } e_{14}\right)
$$

Imagine $\mathbf{e}=\left(0,0, \ldots, 0, e_{12}=1, \epsilon_{13}=1, e_{14}=1\right.$) (correcting e_{13})

$$
\text { Imagine } \mathbf{e}=\left(0,0, \ldots, 0, e_{12}=1, e_{13}=1, e_{14}=1\right) \text { (correcting } e_{12} \text {) }
$$

$$
\begin{aligned}
& A_{3}^{\prime \prime}=\begin{array}{l}
\mathbf{h}_{11} \cdot \mathbf{r} \\
A_{4}^{\prime \prime}=
\end{array}=\begin{array}{l}
e_{14}+e_{3}+e_{11}+e_{12} \\
\mathbf{h}_{12} \cdot \mathbf{r}
\end{array}=\begin{array}{l}
0 \\
e_{13}+e_{0} \\
+e_{4} \\
+e_{12}
\end{array}
\end{aligned}
$$

Part-II: Introduction to LDPC Codes

Marc Fossorier
Department of Electrical Engineering
University of Hawaii

LDPC Codes:

* First proposed by R.G. Gallager in 1960's, and ressurected recently [Gallager-IRE62, MacKay-IT99]
* Can achieve near Shannon limit performance with a sophisticated soft decision iterative decoding algorithm called belief propagation (BP) or sum-product algorithm [Luby-Mitzenmacher-ShokrollahiSpielman:IT01, Richardson-Urbanke-IT01,]

Representations of LDPC Codes

Mx N Parity Check Matrix

$$
H=\left[\begin{array}{llllll}
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Tanner Graph

Basic idea:

$$
x_{1}+x_{2}+\ldots+x_{l}=0
$$

-The / bits x_{1}, \ldots, x_{l} must satisfy a single parity-check constraint.

- If any of the $/$ bits x_{1}, \ldots, x_{l} is unknown, it can be reconstructed if the others are known.
- A single parity-check (SPC) code can correct at most one erasure.

Regular and Irregular LDPC Codes:

* Few l's in H.
* An LDPC code is regular if its row and column weights are constants (say J and L). Otherwise it is irregular.
* Irregular LDPC codes have better performance than regular LDPC codes (and turbo codes) in general [Richardson-Urbanke-IT01]

Regular (J,L) LDPC codes of length N and dimension K :

* Number of 1's: $\quad J N=M L$
* Rate:

$$
\begin{aligned}
R & =K / N \\
& =1-(N-K) / N \\
& \geq 1-M / N \\
& =1-J / L
\end{aligned}
$$

Irregular (J,L) LDPC codes of length \mathbf{N} and dimension K :

* Defined by edge degree distributions:
λ_{i} : fraction of edges connected to degree- i variable (left) nodes.
ρ_{j} : fraction of edges connected to degree- j check (right) nodes.

$$
\sum_{i} \lambda_{i}=\sum_{j} \rho_{j}=1
$$

* Rate:

$$
\begin{aligned}
R & \geq 1-M / N \\
& =1-\frac{\sum_{i} \lambda_{i} / i}{\sum_{j} \rho_{j} / j}
\end{aligned}
$$

(the number of edges from variable (left) nodes equals the number of edges from check (right) nodes.

Definitions:

* A cycle of length l in a Tanner graph is a path comprising l edges which closes back on itself.
* The girth of a Tanner graph is the minimum cycle length of the graph.
* The shortest possible cycle in a bipartite graph is of length-4:

$$
H=\left[\begin{array}{ccc}
a & & b \\
& \cdots & \\
1 & & 1 \\
& \cdots & \\
1 & & 1 \\
& \cdots &
\end{array}\right]
$$

* Cycles of length-6 play an important role in iterative decoding:

Part-III: Introduction to Turbo Codes

Marc Fossorier
Department of Electrical Engineering
University of Hawaii

- Encoder structure

- Decoder structure

- Decoding Algorithms
*Soft-inputs soft-outputs (SISO) algorithm
Soft-inputs: component decoders can receive and make use of extrinsic information.

Soft-outputs: component decoders can provide reliability values for each bit, and deliver extrinsic information for further processing.
*Turbo decoding algorithms include :

* Symbol-by-symbol maximum a posteriori (MAP),
* Max-Log-MAP,
* soft-outputs Viterbi Algorithm (SOVA).

MAP Algorithm

Max-Log-MAP Algorithm

Difference of 2 metrics associated with the best 2 paths.

Soft-output Viterbi Algorithm (SOVA)

Λ_{i} is the difference between 2 metrics associated with 2 paths.

* No guarantee that both paths are the best,
$\Rightarrow \Lambda_{i}$ is often overestimated compared to the Max-Log-MAP.

Possible path selection in SOVA

One of the best path may be discarded before remerge the survivor path: suggests bi-directional SOVA.

Decoding performance of Bi-directional SOVA

Normalized Max-Log-MAP algorithm

* The outputs of Max-Log-MAP algorithm are generally overestimated compared to those of the MAP algorithm.

Percentages associated with the different cases on the relationship between L_{1} and L_{2}.

$E_{b} / N_{o}(\mathrm{~dB})$	$\operatorname{sgn}\left(L_{1}\right) \neq \operatorname{sgn}\left(L_{2}\right)$	$\operatorname{sgn}\left(L_{1}\right)=\operatorname{sgn}\left(L_{2}\right)$ $\left\|L_{1}\right\|<\left\|L_{2}\right\|$	$\operatorname{sgn}\left(L_{1}\right)=\operatorname{sgn}\left(L_{2}\right)$ $\left\|L_{1}\right\| \geq\left\|L_{2}\right\|$
0.8	14.6	74.0	11.4
1.0	13.3	74.7	12.0
1.2	11.8	75.7	12.5
1.5	9.7	77.1	13.2
1.7	8.4	78.2	13.4

L_{1} - MAP, $\quad L_{2}$ - Max-Log-MAP

Performance of Normalized Max-Log-MAP algorithm

Part-IV: Constructions of LDPC Codes

Marc Fossorier

Department of Electrical Engineering
University of Hawaii

Random Constructions of (J, L) codes:

* Generate an all-0 $M \times N$ matrix H.
* Randomly assign L 1's per row while ensuring that no more than J 1's are assigned per column.
* Run a post processing subroutine to delete 4 cycles (random swap).

Pseudo-Random Constructions of (J, L) codes:

Progressive edge growth (PEG) algorithm [Hu \& al. 02]

* Objective: try to maximize girth $g=2(l+2)$.
* Edges are assigned one at a time as follows:
* For each bit- i from 1 to N :
(1) Assign first edge to a check node among those of lowest degree.
(2) Assign other edges to check nodes which are not among the neighbors of bit- i up to depth- l in the current graph.

Random or Pseudo-Random Constructions of irregular codes:

* The same approaches can be applied once degree distribution determined.
* Best degree distribution depends on channel considered as well as decoding algorithm.
* Differential evolution can be applied to determine the best distribution corresponding to a given objective function.

Parallel Differential Optimization:

- Step 1: initialization
- Step 2: mutation and test
- Step 3: compare and update.
- Step 4: stopping test

Parallel Differential Optimization

Algebraic construction of LDPC codes:

- LDPC codes can be constructed based on the points and lines of finite geometries.
- Let \mathbf{G} be a finite geometry with n points, $\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \cdots, \mathbf{p}_{n}\right\}$, and J lines, $\left\{\mathcal{L}_{1}, \mathcal{L}_{2}, \cdots, \mathcal{L}_{J}\right\}$, which has the following fundamental structural properties:
(1) Each line consists of ρ points.
(2) Any two points are connected by one and only one line.
(3) Each point lies on γ lines, i.e., each point is intersected by γ lines.
(3) Two lines are either parallel (i.e., they contain no common point) or intersect at one and only one point.
- Let \mathcal{L} be a line in \mathbf{G}. Define a vector based on the points on \mathcal{L} as follows:

$$
\mathbf{v}_{\mathcal{L}}=\left(v_{1}, v_{2}, \cdots, v_{n}\right)
$$

where

$$
v_{i}= \begin{cases}1, & \text { if } v_{i} \text { corresponds to a point on } \mathcal{L} \\ 0, & \text { otherwise }\end{cases}
$$

This vector $\mathbf{v}_{\mathcal{L}}$ is called the incidence vector of \mathcal{L}.

- $\mathbf{H}_{\mathrm{G}}^{(1)}$ is a $J \times n$ matrix whose rows are the incidence vectors of the J lines in the finite geometry \mathbf{G} and whose columns correspond to the n points in \mathbf{G}. The matrix $\mathbf{H}_{\mathrm{G}}^{(1)}$ has the following properties:
(1) each row has weight ρ;
(2) each column has weight γ;
(3) any two columns have at most one " 1 -component" in common, i.e., $\lambda=0$ or 1 ;
(4) any two rows have at most one " 1 " in common.
- The null space of $\mathbf{H}_{\mathrm{G}}^{(1)}$ gives a LDPC code which is called a type-I geometry-G LDPC code, denote $\mathrm{C}_{\mathrm{G}}^{(1)}$.
- It follows from the structural properties of $\mathbf{H}_{\mathrm{G}}^{(1)}$ that for every code bit position of $\mathbf{C}_{\mathrm{G}}^{(1)}$, there are γ rows in $\mathbf{H}_{\mathrm{G}}^{(1)}$ which are orthogonal on it. Therefore, the minimum distance $d_{\text {min }}$ of $\mathbf{C}_{\mathbf{G}}^{(1)}$ is at least $\gamma+1$, i.e.,

$$
d_{\min } \geq \gamma+1
$$

- There are two well known families of finite geometries: Euclidean geometries over finite fields and projective geometries over finite fields.
- Let $\mathrm{EG}\left(m, 2^{s}\right)$ denote the m-dimensional Euclidean ge ometry over GF $\left(2^{s}\right)$. This geometry consists of

$$
2^{m s} \quad \text { points }
$$

and

$$
\frac{2^{(m-1) s}\left(2^{m s}-1\right)}{2^{s}-1} \quad \text { lines. }
$$

- Each line consists of

$$
2^{s} \quad \text { points }
$$

- For each point \mathbf{p} in $\operatorname{EG}\left(m, 2^{s}\right)$, there are

$$
\frac{2^{m s}-1}{2^{s}-1} \quad \text { lines }
$$

that intersect at \mathbf{p}.

- Let $\mathbf{H}_{E G}^{(1)}$ be a matrix whose rows are the incidence vectors of all the lines in $\mathrm{EG}\left(m, 2^{s}\right)$ that do not pass through the origin and the columns correspond to the $2^{m s}-1$ non-origin points of $\mathrm{EG}\left(m, 2^{s}\right)$. Then $\mathbf{H}_{E G}^{(1)}$ consists of $2^{m s}-1$ columns and $2^{(m-1) s}\left(2^{m s}-1\right) /\left(2^{s}-1\right)$ rows. $\mathbf{H}_{E G}^{(1)}$ has the following properties:

$$
\begin{aligned}
\rho & =2^{s} \\
\gamma & =\frac{2^{m s}-1}{2^{s}-1} \\
\lambda & =0 \text { or } 1,
\end{aligned}
$$

- For $m=2$, the type-I 2-dimensional EG-LDPC code has the following parameters:

$$
\begin{array}{ll}
\text { Length } & n=2^{2 s}-1, \\
\text { Number of parity bits } & n-k=3^{s}-1, \\
\text { Dimension } & k=2^{2 s}-3^{s}, \\
\text { Minimum distance } & d_{\min }=2^{s}+1,
\end{array}
$$

- A list of type-I two-dimensional EG-LDPC codes

s	n	k	$d_{\min }$	ρ	γ
2	15	7	5	4	4
3	63	37	9	8	8
4	255	175	17	16	16
5	1023	781	33	32	32
6	4095	3367	65	64	64
7	16383	14197	129	128	128

LDPC codes can be constructed based on the points and lines of the m-dimensional projective geometry $\operatorname{PG}\left(m, 2^{s}\right)$ over $\mathrm{GF}\left(2^{s}\right)$. Type-I PG-LDPC codes are also cyclic. For $m=2$, the type-I 2-dimensional PGLDPC code has the following parameters:

Length

$$
n=2^{2 s}+2^{s}+1,
$$

Number of parity bits $n-k=3^{s}+1$,
Dimension $k=2^{2 s}+2^{s}-3^{s}$,
Minimum distance $\quad d_{\text {min }}=2^{s}+2$,

- A list of type-I 2-dimensional PG-LDPC codes

s	n	k	$d_{\min }$	ρ	γ
2	21	11	6	5	5
3	73	45	10	9	9
4	273	191	18	17	17
5	1057	813	34	33	33
6	4161	3431	66	65	65
7	16513	14326	130	129	129

Bit-error probabilities of the $(255,175)$ EG-LDPC code, $(273,191)$ PG-LDPC code and two computed searched $(273,191)$ Gallager codes with IDBP.

Bit-error probabilities of the $(1023,781)$ EG-LDPC code, (1057, 813) PG-LDPC code and two computed searched (1057, 813) Gallager codes with IDBP.

Convergence of the IDBP algorithm for the $(4095,3367)$ type-I EG-LDPC code.

- Finite geometry LDPC codes can be shortened to obtain good LDPC codes. This is achieved by deleting properly selected columns from their parity check matrix.

Quasi-Cyclic LDPC codes:

$$
H=\left[\begin{array}{cccc}
I(0) & I(0) & \cdots & I(0) \\
I(0) & I\left(p_{1,1}\right) & \cdots & I\left(p_{1, L-1}\right) \\
\vdots & & \ddots & \vdots \\
I(0) & I\left(p_{J-1,1}\right) & \cdots & I\left(p_{J-1, L-1}\right)
\end{array}\right]
$$

with $I\left(p_{j, l}\right) p \mathrm{x} p$ circulant permutation matrix with 1 at column- $\left(r+p_{j, l}\right)$ mod- p for row- r. (J, L) regular LDPC code of length $N=p L$.

■ Example: $J=2 ; L=3 ; p=5$.
$H=\left[\begin{array}{ccccccccccccccccc}1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\end{array}\right]$
$=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 2 & 3\end{array}\right]$

- A (J, L) quasi cyclic (QC) LDPC code is totally defined by ($J-1$)(L-1) integers.
- The quasi cyclic structure allows simple encoding based on shift registers.
- Girth at most 12 and minimum distance at most $(J+1)$!

Example:

-0000m 000010000
00100001000
01000010000
0001000040000×1
000010000100001
1200000010000010
010000001000001
001000000110000
000101000001000
00010

Rate-0.55 Length-4100 Codes:

Rate-0.77 Length-1050 Codes:

Lifted quasi-cyclic LDPC codes:

- Start with $(J, L) M_{l} \times N_{l}$ small H_{b} matrix of girth g at least 6 .
- Replace every 1 by N_{2} x N_{2} circulant matrix.
- We obtain a (J, L) LDPC code with:
length $N=N_{1} N_{2}$
co-dimension at most $M_{1} N_{2}$
girth at least g.

RA-type LDPC codes:

linear time encodable.

LDPC codes over GF (q) :

- In $H, h_{i j} \in \mathrm{GF}(q)$; i.e. each edge is labeled by a symbol of GF(q) - ~ rotation -
- Check sum-i:

$$
\begin{aligned}
& \sum_{j} h_{i j} x_{j}=0 \\
& h_{i j} \in \mathrm{GF}(q), x_{j} \in \mathrm{GF}(q)
\end{aligned}
$$

Results for small lengths

Results for small lengths

Results for medium lengths

Performance Comparison, $\mathrm{K}=53$ bytes, Rate $=1 / 2$

Generalized LDPC codes:

- A standard LDPC code is characterized by the random connection between variable nodes and check nodes.

> Generalized LDPC codes are obtained by replacing ($d c, d c-1$) SPC with other ($d c, k$) subcodes. [Tanner-IT81]

doubly-GLDPC codes

Transmitted bit

Super variable node

Super check node

Construction steps:

Step 1: row expansion

In every row of parity check matrix, each " 1 " is replaced with a subcolumn from the subcode parity check matrix of the corresponding super check node based on a one-to-one correspondence and each " 0 " is replaced with a zero subcolumn.

$$
\mathbf{H}=\left(\begin{array}{llllllllllllll}
\boxed{1} 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

$$
\text { Subcode } \mathbf{H}_{(7,4) \mathrm{Ham}}=\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 \\
1
\end{array}\right)
$$

Construction steps (continued)

Step 2: column expansion

In every column of parity check matrix each " 1 " in the same subcolumn is replaced with the same subrow in the transposed generator matrix of the corresponding super variable node based on a one-to-one correspondence and each " 0 " in a subcolumn is replaced with a zero subrow.

$$
\mathbf{H}=\left(\begin{array}{lllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

$$
\begin{gathered}
\text { Subcode } \\
\mathbf{G}_{1}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) \\
\mathbf{G}_{1}^{T}=\left(\begin{array}{l}
10 \\
\hline 11 \\
01
\end{array}\right)
\end{gathered}
$$

Construction of DGLDPC code $\boldsymbol{C 1}$

$>$ Target: obtain good threshold
$>C_{1}$ is a rate-7/15 length- 7650 code.
$>$ Super variable nodes: $(6,1)$ repetition code, $(6,2)$ code with generator matrix $\binom{111100}{001111},(6,4)$ code with generator matrix $\left(\begin{array}{l}111000 \\ 011100 \\ 001110 \\ 000111\end{array}\right),(6,5)$ SPC code.
$>$ Super check node: $(15,11)$ Hamming code
$>$ Variable node distribution is $\lambda_{1}=0.425, \lambda_{2}=0.075, \lambda_{3}=0.075$, and $\lambda_{4}=0.425$.
$>$ Threshold is 0.3 dB , only 0.26 dB away from capacity.

Simulation Result of C1

The $(2,15)$ GLDPC code, which is used to compare with C_{1}, has the same kind of check node as C_{1}, i.e., $(15,11)$ Hamming codes. The simulation result of the $(2,15)$ GLDPC code is obtained from [Lentmaier et al.-CL99].

Construction of DGLDPC code $\boldsymbol{C} 2$

$>$ Target: lower error floor
$>C_{2}$ is a rate- $1 / 2$ length- 1536 code.
$>$ Super variable nodes: the $(4,1)$ repetition code and the $(4,3)$ SPC code.
$>$ Super check node: $(15,11)$ Hamming code
$>$ Threshold is 0.77 dB .

Simulation Result of $\boldsymbol{C 2}$

The rate-1/2 length-1504 (2,4)-LDPC code over GF(16) is used to compare with C_{2}. The simulation result of this (2,4)-LDPC code is obtained from [Poulliat et al.-ISTC 2006].

Random codes performance comparison on BEC

Part-V: Iterative Decoding of LDPC Codes

Marc Fossorier

Department of Electrical Engineering
University of Hawaii

General concept:

* Each bit/check node is a processor, receiving messages from neighbor nodes, and sending back messages after processing.

Main goal: avoid direct correlation assuming incoming messages are independent of each other.

Iterative Decoding on BEC:

* MLD: Find information set (K independent positions) without erasures and perform Gaussian elimination: $\mathrm{O}\left(N^{3}\right)$.
* Iterative decoding: Propagate information available at each node.

Processing in bit nodes:

* If node of degree- $J, J+1$ copies of bit available:
J estimates from check nodes.
1 estimate from channel.
* Define $\quad x_{l}=\operatorname{Prob}($ message $=$ "?" at bit.node for it $-l)$

$$
y_{l}=\operatorname{Prob}(\text { message }=" ? " \text { at check node for it }-l)
$$

* Transmitted information still erasure if all other incoming message and initial estimate from channel are erasures:

$$
x_{l+1}=\varepsilon y_{l}^{J-1}
$$

Processing in check nodes:

* If node of degree- L, L incoming bits sum to 0 .
* Transmitted information still erasure if at least one incoming message is an erasure:

$$
y_{l}=1-\left(1-x_{l}\right)^{L-1}
$$

Combining the two equations:

$$
x_{l+1}=\varepsilon\left[1-\left(1-x_{l}\right)^{L-1}\right]^{J-1}
$$

* Threshold: largest value of \mathcal{E} such that $x_{l} \longrightarrow 0$ " with l large enough".
($\mathrm{x}_{l+1} \longrightarrow x>0$ possible)

For irregular codes:

$$
x_{l+1}=\varepsilon \lambda\left[1-\rho\left(1-x_{l}\right)\right]
$$

* Capacity achieving codes of rate $R=1-\varepsilon$ have been found for the BEC (ex: heavy tail Poisson distribution)

Finite length issues:

Stopping set: subset V of variable nodes such that all neighbors are connected to V at least twice.

These are poor configurations as iterative decoding stuck even if MLD possibly correct

Iterative Decoding on BSC:

* MLD: NP_hard problem.
* Iterative decoding: Propagate information available at each node.

Gallager algorithm-A:

* At iteration- $(i+1)$, send to check node initial value received from channel, unless ($J-1$) other check values disagree with it.
$*$ Define $\quad P^{(i)}=\operatorname{Prob}($ check sum returns an error for it $-i)$
* Ways to make an error:
(1) bit received in error and less than $J-1$ check sums indicate otherwise.

$$
p_{0}\left(1-\left(1-P^{(i)}\right)^{J-1}\right)
$$

(2) bit received correctly and all $J-1$ check sums indicate otherwise.

$$
\left(1-p_{0}\right) P^{(i)^{J-1}}
$$

* It follows:

$$
p_{i+1}=p_{0}\left(1-\left(1-P^{(i)}\right)^{J-1}\right)+\left(1-p_{0}\right) P^{(i)^{J-1}}
$$

* Check sums of weight L indicates an error if $L-1$ other bits contain odd number of errors:

$$
\begin{aligned}
P^{(i)} & =\sum_{j \text { odd }}\binom{L-1}{j} p_{i}^{j}\left(1-p_{i}\right)^{L-1-j} \\
& =\frac{1-\left(1-2 p_{i}\right)^{L-1}}{2}
\end{aligned}
$$

* A necessary and sufficient condition for $p_{i+1}<p_{i}$:

$$
p_{0}\left(1-P^{(i)}\right)^{J-1}>\left(1-p_{0}\right) P^{(i)^{J-1}}
$$

* This equation can be used to determine the largest value of p_{0} such that $p_{i+1}<p_{i}$ for i large enough.
* To this end it assumes the incoming messages are independent. On a Tanner graph of girth g, it is true for $\left\lfloor\frac{g-2}{4}\right\rfloor$ iterations.
($\sim g / 2$ branches to reach 2 opposite nodes on a cycle and 2 branches per iteration).

Gallager algorithm-B:

* At iteration- $(i+1)$, send to check node initial value received from channel, unless $T(i)$ other check values disagree with it.
$T(i)$ is a threshold associated with iteration- i.
* Using same reasoning as for alg-A, we obtain:

$$
\begin{aligned}
p_{i+1} & =p_{0}-p_{0} \sum_{l=T(i)}^{J-1}\binom{J-1}{l}\left(1-P^{(i)}\right)^{l} P^{(i)} J-1-l \\
& +\left(1-p_{0}\right) \sum_{l=T(i)}^{J-1}\binom{J-1}{l} P^{(i)^{l}}\left(1-P^{(i)}\right)^{J-1-l}
\end{aligned}
$$

* The optimum theoretical threshold is the smallest T that satisfies:

$$
\frac{1-p_{0}}{p_{0}} \leq\left(\frac{1-P^{(i)}}{P^{(i)}}\right)^{2 T-J+1}
$$

* Alg-A is equivalent to Alg-B with $T(i)=J-1$ (hence alg-B always better).
* In practice, $T(i)$ adjusted from simulation.

Iterative Decoding on AWGN:

$\dot{y}=\mathbf{x}+\mathbf{n}$ with $x_{i}=(-1)^{c i}$ and $n_{i}=N\left(0, N_{0} / 2\right)$

* Define: $\quad N(m)=\left\{n: h_{m n}=1\right\}$

$$
M(n)=\left\{m: h_{m n}=1\right\}
$$

For (J, L) regular code: $|N(m)|=L ;|M(n)|=J$.
Define:

$$
\begin{aligned}
& p_{0}=P\left(y_{i} \mid c_{i}=0\right)=\left(\pi N_{0}\right)^{-1 / 2} \mathrm{e}^{-\left(y_{i}-1\right)^{2} / N_{0}} \\
& p_{1}=P\left(y_{i} \mid c_{i}=1\right)=\left(\pi N_{0}\right)^{-1 / 2} \mathrm{e}^{-\left(y_{i}+1\right)^{2} / N_{0}}
\end{aligned}
$$

$r_{m, n}^{x}$: Probability that bit $-n$ is x based on other bits n^{\prime} in $N(m) \backslash n$ which have probabilities $q_{m, n^{\prime}}^{x}$.
$q_{m, n}^{x}:$ Probability that bit $-n$ is x based on f_{n}^{x} and the other probabilitiess $r_{m, n}^{x}$ for bit- n in $M(n) \backslash m$.
f_{n}^{x} : Probability that bit $-n$ is x based y_{n}.

$$
f_{n}^{0}=p_{0} /\left(p_{0}+p_{1}\right) ; \quad f_{n}^{1}=p_{1} /\left(p_{0}+p_{1}\right)
$$

q_{n}^{x} : Probability that bit $-n$ is x based on f_{n}^{x} and the other probabilitiess $r_{m^{\prime}, n}^{x}$ for bit $-n$ in $M(n)$.

Belief Propagation (BP) Algorithm:

* BP algorithm is an iterative decoding algorithm [GallagerIRE62, MacKay-IT99].
* Messages can be probabilities, and more conveniently, loglikelihood ratios (LLR's) for binary LDPC codes.

Initialization : $q_{m, n}^{0}=f_{n}^{0} ; q_{m, n}^{1}=f_{n}^{1}$.

Horizontal step :

$$
\begin{aligned}
& r_{m, n}^{0}=1 / 2\left(1+\prod_{n^{\prime} \in N(m) \backslash n}\left(q_{m, n^{\prime}}^{0}-q_{m, n^{\prime}}^{1}\right)\right) \\
& r_{m, n}^{1}=1 / 2\left(1-\prod_{n^{\prime} \in N(m) \backslash n}\left(q_{m, n^{\prime}}^{0}-q_{m, n^{\prime}}^{1}\right)\right)
\end{aligned}
$$

Vertical step :

$$
\begin{aligned}
& q_{m, n}^{0}=\alpha_{m n} f_{n}^{0} \prod_{m^{\prime} \in M(n) \backslash m} r_{m^{\prime}, n}^{0} \\
& q_{m, n}^{1}=\alpha_{m n} f_{n}^{1} \prod_{m^{\prime} \in M(n) \backslash m} r_{m^{\prime}, n}^{1} \\
& \alpha_{m n}: q_{m, n}^{0}+q_{m, n}^{1}=1
\end{aligned}
$$

Decision :

$$
\begin{aligned}
& q_{n}^{0}=q_{m, n}^{0} r_{m, n}^{0} \\
& q_{n}^{1}=q_{m, n}^{1} r_{m, n}^{1}
\end{aligned}
$$

Stopping criterion : Stop as soon as hard decision is a codeword.

Decoding in log-domain more stable numerically.

$$
\begin{aligned}
& \left(r^{0}, r^{1}\right) \\
& \left.r^{0}=q_{1}^{0}\right) \\
& r_{1}^{1}=q_{1}^{0} q_{2}^{1}+q_{1}^{1} q_{2}^{0} \sim(0+1 \text { or } 1+0) \\
& =1 / 2\left(1+\left(q_{1}^{0}-q_{1}^{1}\right)\left(q_{2}^{0}-q_{2}^{1}\right)\right) \\
& =1 / 2\left(1+q_{1}^{0} q_{2}^{0}+q_{1}^{1} q_{2}^{1}-q_{1}^{0} q_{2}^{1}-q_{1}^{1} q_{2}^{0}\right) \\
& =1 / 2\left(1+2 q_{1}^{1} q_{2}^{1}-q_{1}^{0}\left(1-q_{2}^{0}\right)-q_{1}^{1}\left(1-q_{2}^{1}\right)\right) \\
& \left.=q_{1}^{0} q_{2}^{1} q_{2}^{0}+q_{1}^{1} q_{2}^{1}-q_{1}^{1}\right)
\end{aligned}
$$

Processing in check nodes:
Principles: incoming messages + constraints \Rightarrow outgoing messages

m

$$
L_{m n}=2 \tanh ^{-1}\left(\prod_{n^{\prime} \in N(m) \backslash n} \tanh \left(z_{m n^{\prime}} / 2\right)\right)
$$

Bit NodeS ${ }^{Z}{ }^{m n_{4}}$
$N(m)$

Processing in bit nodes:

BP-Based Algorithm (min-sum)

__simplification in check node processing

* Low complexity;
* Independent of channel characteristics for AWGN channels;
* Degradation in performance.

APP Algorithm

__simplification in bit node processing

$M(n)$

* Z_{n} is not only for hard decision, but also as a substitution for $Z_{m n}$.
* Lower computational complexity and storage requirement.
* Introducing correlation in the iterative decoding process.

APP-Based Algorithm —_simplification in both nodes

Performance of BP and Its Simplified Versions

$(1008,504)$ regular LDPC Code

(8000, 4000) Regular LDPC Code

$(273,191)$ DSC Code

$(1057,813)$ DSC Code

Improvement of the BP-based algorithm

check node processing in different algorithms

BP:

$$
L_{1}=2 \tanh ^{-1}\left(\prod_{i} \tanh \left(Z_{i} / 2\right)\right)
$$

BP-based:

$$
L_{2}=\prod_{i} \operatorname{sgn}\left(z_{i}\right) \cdot \min _{i}\left|Z_{i}\right|
$$

Two statements hold:

1. $\operatorname{sgn}\left(L_{1}\right)=\operatorname{sgn}\left(L_{2}\right) ;$
2. $\left|L_{1}\right|<\left|L_{2}\right|$.

Two improvements of the check node processing

Normalized BP-based algorithm:

Divide L_{2} by a normalization factor α greater than 1 ,

$$
L_{2} \leftarrow L_{2} / \alpha .
$$

Offset BP-based algorithm:
Decreasing $\left|L_{2}\right|$ by a offset value β,

$$
\left|L_{2}\right| \leftarrow \max \left(\left|L_{2}\right|-\beta, 0\right) .
$$

* Decoder parameters, α 's or β 's, need to be optimized.

Normalized APP-based algorithm

* APP-based algorithm + normalization in check nodes
\Rightarrow normalized APP-based algorithm.

Optimizing Parameters by Density Evolution

* Density evolution (DE) is a powerful tool to analyze messagepassing algorithms of LDPC codes [Richardson-IT01].
* Assumptions:
(1) symmetric channels (BSC, AWGN,);
(2) decoder symmetry;
(3) all-0 sequences transmitted;
(4) infinite code length --- loop free.
* Basic idea: numerically derive the probability density functions (pdf) of the messages from one iteration to another, based on decoding algorithms, and then determine the bit error rate.

- Threshold phenomenon: for an ensemble of code, a certain kind of channels and a decoding algorithm, there exits a threshold for a channel parameter, such that the BER approaches to 0 with a channel parameter better than this threshold, and the BER stays away from zero with a worse channel parameter.
- Example:

For AWGN channel with variance σ^{2}, BPSK transmission, BP as decoding algorithm, and $(J, L)=(3,6)$ $\Rightarrow \sigma_{T}=0.880(1.11 \mathrm{~dB})$ [Richardson-Urbanke-IT01]. As a comparison, Shannon limit for BPSK is about 0.2 dB .

Density evolution algorithms

Check node processing:
Bit node processing:

Density evolution algorithms for BP and BP-based algorithms
(1) In bit nodes: SAME

* Only additions involved in both alogrithms.
* The output pdf is the convolution of the input pdf's.
* Can use FFT to speed up the computation.
(2) In check nodes: DIFFERENT

Due to different ways of processing

$$
\begin{aligned}
\mathrm{BP}: \quad L=2 \tanh ^{-1}\left(\prod_{i} \tanh \left(Z_{i} / 2\right)\right) \\
\text { BP-based: } L=\prod_{i} \operatorname{sgn}\left(Z_{i}\right) \cdot \min _{i}\left|Z_{i}\right|
\end{aligned}
$$

DE for normalized and offset BP-based algorithms

* Slightly modify the DE algorithm of the BP-based algorithm.
* Normalized BP-based

$$
\begin{aligned}
L & \leftarrow L / \alpha \\
Q_{L}(l) & \leftarrow \alpha Q_{L}(\alpha \cdot l)
\end{aligned}
$$

$$
\begin{aligned}
& |L| \leftarrow \max (|L|-\beta, 0) \\
& Q_{L}(l) \leftarrow u(l) Q_{L}(l+\beta)+u(-l) Q_{L}(l-\beta) \\
& \quad+\delta(l) \int_{-\beta}^{\beta} Q_{L}(l) d l
\end{aligned}
$$

Applying DE to Find Best Decoder Parameters for Improved BP-Based Algorithms

2.5

Thresholds (in dB) for various decoding algorithms.

$\left(\mathrm{d}_{\mathrm{v}}, \mathrm{d}_{\mathrm{c}}\right)$	rate	BP	BP- based	Normalized BP-based		Offset BP- based	
				σ	β	σ	
$(3,6)$	0.5	$\mathbf{1 . 1 1}$	$\mathbf{1 . 7 1}$	1.25	$\mathbf{1 . 2 0}$	0.15	$\mathbf{1 . 2 2}$
$(4,8)$	0.5	$\mathbf{1 . 6 2}$	$\mathbf{2 . 5 0}$	1.50	$\mathbf{1 . 6 5}$	0.175	$\mathbf{1 . 7 0}$
$(5,10)$	0.5	$\mathbf{2 . 0 4}$	$\mathbf{3 . 1 0}$	1.65	$\mathbf{2 . 1 4}$	0.2	$\mathbf{2 . 1 7}$
$(3,5)$	0.4	$\mathbf{0 . 9 7}$	$\mathbf{1 . 6 8}$	1.25	$\mathbf{1 . 0 0}$	0.2	$\mathbf{1 . 0 3}$
$(4,6)$	$1 / 3$	$\mathbf{1 . 6 7}$	$\mathbf{2 . 8 9}$	1.45	$\mathbf{1 . 8 0}$	0.25	$\mathbf{1 . 8 4}$
$(3,4)$	0.25	$\mathbf{1 . 0 0}$	$\mathbf{2 . 0 8}$	1.25	$\mathbf{1 . 1 1}$	0.25	$\mathbf{1 . 1 3}$

$(504,252)$ LDPC code, $(J, L)=(3,6)$

An (8000, 4000) LDPC code, (J,L)=(3,6), 100 iterations.

$(273,191)$ DSC code with BP, APP-based, normalized BPbased and normalized APP-based algorithms, $\alpha=2.0$.

(1057, 813) DSC code with BP, APP-based, normalized BPbased and normalized APP-based algorithm, $\alpha=4.0$.

(4161, 3431) DSC code with BP and normalized APPbased algorithm, $\alpha=8.0$.

Hardware Implementation of BP Algorithm

$$
\begin{aligned}
L & =2 \tanh ^{-1}\left(\prod_{i} \tanh \left(Z_{i} / 2\right)\right) \\
& =\prod_{i} \operatorname{sgn}\left(Z_{i}\right) \cdot f\left(\sum_{i} f\left(\left(Z_{i}\right)\right)\right)
\end{aligned}
$$

* $\quad f(z)$ can be implemented by look-up table (LUT).
* Only need two kinds of operations: LUT and additions.

Check node implementation of BP algorithm

Check node implementation of BP-based algorithm and improved versions

Quantization Effects

q-bit quantization

Density evolution algorithms for the BP-based and the normalized BP-based algorithm can be extended to quantized cases.

Thresholds for quantized offset BP-based decoding with (dv,dc)=(3,6).

q	Δ	β	thresholds (dB)
5	0.15	1	1.24
5	0.075	2	1.60
6	0.15	1	1.24
6	0.075	2	1.22
7	0.15	1	1.24
7	0.075	2	1.22
7	0.05	3	1.22

An $(8000,4000)$, regular LDPC code, $(J, L)=(3,6)$

$(1008,504)$ Regular LDPC Code

* BP is sensitive to the error introduced by quantization.

Comparison of various of decoding algorithms

Algorithm
BP
Min-sum

Normalized MS
Normalized MS

Performance

irregular

2-D Normalized Min-Sum decoding

- Step 1: (i) Horizontal Step, for $0 \leq n \leq N-1$ and each $m \in M(n)$:

$$
U^{(i)}{ }_{m n}=\alpha_{d c(m)} \times \prod_{n^{\prime} \in N(m) \backslash n} \operatorname{sgn}\left(V_{m n^{\prime}}^{(i-1)}\right) \times \min _{n^{\prime} \in N(m) \backslash n}\left|V_{m n^{\prime}}^{(i-1)}\right|
$$

(ii)Vertical Step, for $0 \leq n \leq N-1$ and each $m \in M(n)$:

$$
\begin{aligned}
& V_{m n}^{(i)}=U_{c h, n}+\beta_{d v(n)} \times \sum_{m^{\prime} \in M(n) \backslash m} U_{m^{\prime} n}^{(i)} \\
& V_{n}^{(i)}=U_{c h, n}+\beta_{d v(n)} \times \sum_{m \in M(n)} U_{m n}^{(i)}
\end{aligned}
$$

Density Evolution of 2-D Normalized MS Decoding

- Density evolution for check nodes

$$
f_{U}^{(i)}(u) \leftarrow \sum_{j=1}^{d_{\text {cmax }}} \frac{\rho_{j}}{\alpha_{j}} \cdot f_{U}^{(i)}\left(\frac{u}{\alpha_{j}}\right)
$$

- Density evolution for bit nodes

$$
f_{V}^{(i)}(v) \leftarrow \sum_{j=1}^{d_{\text {varas }}} \frac{\lambda_{j}}{\beta_{j}} F^{-}\left(F\left(f_{U_{c h}}\right) \cdot\left(F\left(f_{U}^{(i)}\right)\right)^{j-1}\right)\left(\frac{v}{\beta_{j}}\right)
$$

Optimal Normalization Factors

- Normalization factors pair $\mathbf{f}=(\boldsymbol{\alpha}, \boldsymbol{\beta})$

$$
\begin{aligned}
& \boldsymbol{\alpha}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{c_{\text {weight }}}\right\} \\
& \boldsymbol{\beta}=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{v_{\text {weight }}}\right\}
\end{aligned}
$$

- Intractable when $v_{\text {weight }} \times c_{\text {weight }}$ is large: use differential evolution.

Simulation Results

Iterative decoding of DG-LDPC codes

For super variable node

$$
u_{n, 1}^{(i)}
$$

$$
V_{m_{n, p}, t_{n, p}}^{(i)}=\log \frac{\mathrm{P}\left(x_{n, p}=0 \mid \mathrm{u}_{n[p]}^{(i)}, \mathrm{y}_{n}\right)}{\mathrm{P}\left(x_{n, p}=1 \mid \mathrm{u}_{n[p]}^{(i)}, \mathrm{y}_{n}\right)}
$$

$$
V_{m_{n, p}, t_{n, p}}^{(i)}=\log \frac{\mathrm{P}\left(x_{n, p}=0 \mid \mathbf{u}_{n \mid p]}^{(i)}, \mathrm{y}_{n}\right)}{\mathrm{P}\left(x_{n, p}=1 \mid \mathrm{u}_{n[p]}^{(i)}, \mathrm{y}_{n}\right)}
$$

$$
\begin{aligned}
& \mathbf{b}_{n}: x_{n, p}=1 j=1, j \neq p \quad j=1
\end{aligned}
$$

$$
U_{n_{m, q}, s_{m, q}}^{(i)}=\log \frac{\mathrm{P}\left(z_{m, q}=0 \mid \mathrm{v}_{m[q]}^{(i-1)}\right)}{\mathrm{P}\left(z_{m, q}=1 \mid \mathrm{v}_{m[q]}^{(i-1)}\right)}
$$

$$
\begin{aligned}
& \mathbf{z}_{m}: z_{m, q}=1 j=1, j \neq q
\end{aligned}
$$

For super check node
(in)

Decoding of non binary LDPC codes:

Combined approaches:

Combined approaches:

List decoder (RBD)

Combined decoder

Potential Improvement

