Iterative Decoding and LDPC Codes

J ossy Sayir

Based on courses prepared in collaboration with
Ingmar Land \& Gottfried Lechner

Cours d'été à Peyresq, Juillet 2007
Kompetenzzentren-Programm

Overview

- Linear Codes
- Coding theorem for the Binary Erasure Channel (BEC)
- Iterative Processing
- Low-Density Parity-Check Codes
- Density Evolution for the BEC
- Density Evolution for other channels
- EXIT Charts
- EXIT Charts for the BEC, area property
- Information Combining

Linear Codes

- Let G be an $K x N$ matrix of rank K over $G F\left(q^{m}\right)$
- Linear code

$$
\mathcal{C}=\left\{x \in G F\left(q^{m}\right)^{N}: \exists u \in G F\left(q^{m}\right)^{k} \mid x=u G\right\}
$$

- G is called a generator or encoding matrix of C
- C is a linear subspace of $G F\left(q^{m}\right)^{N}$ of dimension K
- Code rate: $R=m \log q K / N$
- Pick any Nx ($\mathrm{N}-\mathrm{K}$) matrix H of rank $\mathrm{N}-\mathrm{K}$ such that $G H^{\top}=0$
- Then $\mathcal{C}=\left\{x \in G F\left(q^{m}\right)^{N}: x H^{\top}=0\right\}$
- H is called a parity-check matrix of C

Example over GF(2)

$$
\left(x_{1} \times_{2} \ldots x_{16}\right)=\left(u_{1} \ldots u_{6}\right)\left(\begin{array}{ccccccccccccccccc}
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

$$
K=6
$$

$$
\text { Received: (} 1 \times \text { X X X } 100001 \times 1 \times X \times 1)
$$

Remove columns corresponding to erasures...

$$
\left(x_{1} x_{6} x_{7} x_{8} x_{9} x_{10} x_{12} x_{16}\right)=\left(u_{1} \ldots u_{6}\right)\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Example (continued)

Drop last 2 columns: $\left(x_{1} x_{6} x_{7} x_{8} x_{9} x_{10}\right)=\left(\begin{array}{lll}u_{1} \ldots & u_{6}\end{array}\right)\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)$
(system of equations
is overdetermined)

Triangulize problem:

$$
\left(x_{1} x_{6} x_{7} x_{8} x_{9} x_{10}\right)=\left(u_{1}^{\prime} \ldots u_{6}^{\prime}\right)\left(\begin{array}{llllll|l}
0 & 1 & 1 & y_{4} \\
0 & 0 & 1 & 0 & 0 & 0 & g_{2} \\
0 & 0 & 0 & 1 & 0 & 0 & g_{6} \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array} g_{1} g_{1}+g_{4}+g_{5}+g_{6}\right.
$$

Solution: $\left(x_{1} x_{6} x_{7} x_{8} x_{9} x_{10}\right)=\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0\end{array}\right)$

$$
\begin{aligned}
& =g_{1}{ }^{\prime}+g_{2}{ }^{\prime}+g_{3}{ }^{\prime}+g_{4}{ }^{\prime}+g_{5}{ }^{\prime}+g_{6}{ }^{\prime} \\
& =g_{2}+g_{3}+g_{5} \\
\left(u_{1} u_{2} u_{3} u_{4} u_{6}\right) & =\left(\begin{array}{llll}
0 & 1 & 1 & 1
\end{array}\right)
\end{aligned}
$$

The Binary Erasure Channel

The Big Question

We have learned how to decode a codeword that has been transmitted over a Binary Erasure Channel (by solving a system of equations, whenever possible)

What is the probability of decoding successfully, in function of the erasure probability δ, the code rate R and the length N ?

We will suppose that the code V has been selected at random by choosing an encoding matrix G at random among all binary $K x N$ matrices ($K=N R$)

Converse Coding Theorem

If the information rate R is higher than 1- δ, the transmission cannot be arbitrarily reliable

Proof:

Even if a genie tells the transmitter where the erasures will be, the best strategy is to place the data uncoded in all positions that won't be erased. We can only transmit 1- δ bits per use on average this way.

Coding Theorem

- Let us assume $R=K / N=1-\delta-\rho$.

- On average, there will be $\delta \mathrm{N}=\mathrm{N}-\mathrm{K}-\rho \mathrm{N}$ erasures per block. For now, let us assume that there will be exactly $\delta \mathrm{N}$ erasures every time.
- Our matrix inversion decoder will work if the remaining $K+\rho N$ columns of the encoder matrix are linearly independent, i.e., if the resulting $K x(K+\rho N)$ matrix has rank K.

$$
R=K / N=1-\delta-\rho
$$

Coding Theorem (cont...)

- The erasures will be placed at random positions in the codeword (not all at the end as in our illustration)
- There are $\binom{N}{\delta N}$ erasure patterns
- Evaluating the probability of success for a given matrix means checking if each of these matrices is invertible...

Random Coding Experiment

- Pick a KxN matrix at random
- Generate an information sequence at random
- Generate the corresponding codeword
- Generate an erasure pattern at random
- What is the probability of success of the matrix inversion decoder?

Rank of a random matrix

- What is the probability that a $L x M$ matrix ($L \leq M$) chosen at random has rank L ?
- $1 \times M$:

$2^{M}-1$ choices
- $2 x \mathrm{M}:$
$2^{M}-1$ choices

$2^{M}-2$ choices
- $3 x \mathrm{M}:$

$2^{M}-1$ choices
$2^{M}-2$ choices
$2^{M}-4$ choices

The number of $L x M$ linearly independent matrices is thus:

$$
\prod_{i=0}^{L-1}\left(2^{M}-2^{i}\right)
$$

If our $L x M$ matrix is chosen at random among the $2^{L \times M}$ binary matrices, then the probability that it have rank L is:

$$
P(\text { rank } L)=\frac{\prod_{i=0}^{L-1}\left(2^{M}-2^{i}\right)}{2^{L \times M}}=\prod_{i=M-L+1}^{M}\left(1-2^{-i}\right)
$$

ft w .
If $L=M$, we have:

$$
P(\text { full rank })=\frac{1}{2} \frac{3}{4} \frac{7}{8} \frac{15}{16} \frac{31}{32} \frac{63}{64} \ldots \frac{2^{L}-1}{2^{L}}
$$

If $L \rightarrow \infty, P($ full rank $) \rightarrow 0.2887880950866 \ldots$

Therefore, $R=1-\delta(\rho=0)$, the probability of successful decoding for $N \rightarrow \infty$ tends towards 0.2887880950866...

If $L<M$, we have:
ftw.

$$
P(\text { full rank })=\underbrace{\underbrace{16}}_{M-L} \frac{15}{32} \frac{33}{64} \ldots \frac{2^{L}-1}{2^{L}}
$$

If $M=L+1$, the product starts with $3 / 4$, if $M=L+2$, the product starts with $7 / 8$, etc...

In our case, $L=K$ and $M=K+\rho N$

$$
M-L=\rho N
$$

ftw.

For a fixed δ and ρ ($R=1-\delta-\rho$), the probability of successful decoding is

$$
P(\text { success })=\prod_{i=\rho N+1 \ldots k}\left(1-2^{-i}\right)
$$

\rightarrow It can be made arbitrarily close to 1 for a given ρ by choosing N large enough

Prob. of successful decodina

$\rho=.01$
(i.e., R is .01 less than the maximum possible rate)

Information Theory for the Binary Erasure Channel

Peter Elias 1923-2001

Professor at MIT, one of the most original and prolific researchers in information theory, inventor of convolutional codes

Presented coding theorems for linear codes for the BEC in London, 1955 (without proof...)

What we have learned...

For any information rate $R<1-\delta$, it is possible to achieve any desired non-zero probability of error provided that we choose K and N large enough.

In plain English:

(Coding theorem)
Arbitrary reliability is possible up to a certain rate, but we have to work with very large block sizes

And furthermore:
We can expect to do pretty well by simply choosing our codes at random

SUDOKU

ftw.

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

© ftw. 2007

SUDOKU Message Passing

- 81 variables, 27 constraints
- every variable participates in 3 constraints
- every constraint ties 9 variables
- message passing SUDOKU solver
- message = set of possible values
- not every solvable SUDOKU can be solved by mere message passing (only "easy" SUDOKUs)

Iterative Decoding for a Parity-Check Matrix...

Received: ($1 \times x \times x 10001 \times 1 \times x \times 1$)

Parity-Check Matrix:

$$
\left(\begin{array}{llllllllllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Iterative Decoding

$$
\begin{aligned}
& \left(\begin{array}{lllllllllllllll}
1 & X & X & 0 & X & 1 & 0 & 0 & 0 & 1 & x & 1 & X & x & X
\end{array}\right) \\
& 0
\end{aligned} 1
$$

Iterative Decoding

$$
\begin{aligned}
& (1 \times \times 0 \times 10001 \times 1 \times 1 \times 1) \\
& \left(\begin{array}{llllllllllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Iterative Decoding

$$
\begin{aligned}
& (1 \times \times 0 \times 10001011 \times 1 \times 1) \\
& \left(\begin{array}{llllllllllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Iterative Decoding

$$
\begin{aligned}
& \left(\begin{array}{lllllllllllllll}
1 & X & X & 0 & X & 1 & 0 & 0 & 0 & 1 & 1 & 1 & x & 1 & 0
\end{array}\right) \\
& 0
\end{aligned} 1
$$

Iterative Decoding

$$
\begin{aligned}
& \left(\begin{array}{lllllllllllllll}
1 & X & 1 & 0 & X & 1 & 0 & 0 & 0 & 1 & 1 & 1 & X & 1 & 0
\end{array}\right) \\
& 0
\end{aligned} 1
$$

Iterative Decoding

$$
\begin{aligned}
& \left(\begin{array}{lllllllllllllll}
1 & 1 & 1 & 0 & x & 1 & 0 & 0 & 0 & 1 & 1 & 1 & x & 1 & 0
\end{array}\right) \\
& 0
\end{aligned} 1
$$

Iterative Decoding

$$
\left.\begin{array}{llllllllllllllll}
\left(\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0
\end{array} 1\right. & 1 & 1 & x & 1 & 0 & 1
\end{array}\right)
$$

Iterative Decoding

Decoded: (111000100011111101)

$$
\begin{aligned}
& \text { Sten } \\
& \left(\begin{array}{llllllllllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Factor Graph of Parity-Check Matrix ftW.

© ftw. 2007

Message Passing Decoder

- N=16 variables, N-K=10 constraints
- number of constraints for a variable = Hamming weight of the corresponding column
- number of variables for a constraint = Hamming weight of the corresponding row
- message passing erasure decoder
- message = value or erasure
- not every decodable received word can be decoded using mere message passing
- message passing for other channels
- message = probability distribution

"Tree" Perspective

ftw.

Computation for the BEC

Repeat Code

$$
m_{v c}=\left\{\begin{array}{c}
0,1 \\
\Delta
\end{array}\right.
$$

$$
m_{c v}= \begin{cases}\sum_{i} m_{v c, i} & \text { if no } m_{\mathrm{vc}, \mathrm{i}} \text { is an erasure } \\ \Delta & \text { if at least one } \mathrm{m}_{\mathrm{vc}, \mathrm{i}} \text { is an erasure }\end{cases}
$$

General Binary Input Channels

ftw.
Instead of messages 0,1, Δ we transmit Log-Likelihood Ratios over the edges of the graph.

Repeat Code

$$
\begin{array}{r}
L\left(x \mid \mathcal{Y}_{1} \cup \cdots \cup \mathcal{Y}_{d_{v}-1}\right)= \\
=L_{c h}+\sum_{i} L\left(x \mid \mathcal{Y}_{i}\right)
\end{array}
$$

Single Parity-Check Code

$$
\begin{aligned}
& L\left(x \mid \mathcal{Y}_{1} \cup \cdots \cup \mathcal{Y}_{d_{v}-1}\right)= \\
& \quad=2 \cdot \tanh ^{-1}\left[\prod_{i} \tanh \frac{L\left(x_{i} \mid \mathcal{Y}_{i}\right)}{2}\right]
\end{aligned}
$$

"Tree" Perspective in Practice
 ftw.

When using random codes with finite block length, the tree perspective is only true for a few steps.

Iterative Decoding

We were lucky. This decoder will not always work...

What property must a parity-check matrix have for iterative decoding to succeed with a high probability?

In effect, iterative decoding is possible in this setting whenever the matrix can be triangulated by simple row \& column swaps

Low-Density Parity-Check Matrix

$\begin{array}{lllllllllllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1\end{array}$	4
0 000101010001000000	4
0010100010000100	4
1000000100000100	3 O
1000010000100001	$4 \sum$
01000001000100010	\sum
0001000100000010	$\underline{\square}$
0010000010010000	+
00001000001001100	4
1001000100100000	4
223222222322322	

The parity-check matrix must have a low density.

Low-Density Parity-Check Coding
 ftw.

Invented by Robert G. Gallager in his PhD thesis, MIT, 1963
(re-discovered by MacKay from Cambridge, England in 1999)

Bob Gallager

$$
\begin{aligned}
& \text { Regular LDPC Codes } \\
& 00100010100001010010 \text { ftW. }
\end{aligned}
$$

Regular LDPC Codes

$$
0100010010001000110000001000
$$

$$
100000100000100000010001100
$$

$$
100010000010001000100010000
$$

$$
00000011 \begin{array}{llllllllllllll}
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
10000000000000110000001110
$$

$$
0101000001000110000001
$$

$$
0010101000000000001110
$$

$$
3333333333333333333333
$$

Column weights

$$
d_{v}=3
$$

Columns and rows in the parity-check matrix of a regular LDPC code have fixed weights d_{v} and d_{c} (as opposed to irregular LDPC codes)

Regular Codes

How many '1's are there in the parity-check matrix?

$$
\text { Answer: } \begin{aligned}
n_{1} & =d_{v} N & & =3 \times 20=60 \\
& =d_{c}(N-K) & & =6 \times 10=60
\end{aligned}
$$

The design rate of the code is: $R=K / N=1-d_{v} / d_{c}$

If the rows of the parity-check matrix are linearly independent, the design rate is the true code rate

A few thoughts

- Practical implementation typically $\left(d_{v}, d_{c}\right)=(3,6)$, blocklength $\mathrm{N}=10^{5}$
Very, very sparse parity-check matrix (only 6 ones in a row of length $10^{5}, 3$ ones in a column of 5×10^{4})
- How are the distance properties of a code affected by the low-density property of H ?
- Will the decoder performance depend on the particular H or only on the code?
- How likely is it that a random code has a low-density parity-check matrix? Can we "de-densify" a highdensity parity-check matrix?
- How well will the message-passing decoder work in practice? Can it approach capacity?

Concentration theorems

(Luby, Mitzenmacher, Shokrollahi, Spielman / Richardson \& Urbanke)

- We will only consider expected decoding behavior over all graphs of a given degree distribution (not the behavior for one specific graph/code)
- Concentration: the probability that the performance of a specific code diverge by ε from the expected performance over all graphs converges to 0 exponentially in the code length N

- Cycle-free behavior: for any iteration number $n_{i t}$, one can choose a code length N so that the expected performance at iteration $n_{i t}$ is as near as desired to the decoder performance under the tree assumption

Tree Decoding Performance for the BEC

ftw.

$P($ erasure $)=$?

8: channel erasure

Reminder: Elements of the Tree Perspective

ft w .

Reminder: Decoding for the BEC
 ft w .

Repeat Code

$$
m_{v c}=\left\{\begin{array}{c}
0,1 \\
\Delta
\end{array}\right.
$$

$$
m_{c v}= \begin{cases}\sum_{i} m_{v c, i} & \text { if no } m_{\mathrm{vc}, \mathrm{i}} \text { is an erasure } \\ \Delta & \text { if at least one } \mathrm{m}_{\mathrm{v}, \mathrm{i}} \text { is an erasure }\end{cases}
$$

"Simulating Simulating"
 (Tom Richardson, ISIT 2004, Chicago)

ftw.

- Simulation: run message-passing decoding for codewords transmitted over a binary erasure channel and measure the resulting error probability
- Simulating simulation: compute probability distributions of messages passing through the decoder
- Instead of $m_{v c}$ and $m_{c v}$, compute * $m_{v c}=P\left(m_{v c}=0,1, \Delta\right)$ and ${ }^{*} m_{c v}=P\left(m_{c v}=0,1, \Delta\right)$

What is * $m_{v c}$ at iteration 0 ?

Notation: * $m_{\mathrm{vc}}=\left(P\left(m_{\mathrm{vc}}=0\right), P\left(m_{\mathrm{vc}}=1\right), P\left(m_{\mathrm{vc}}=\Delta\right)\right)$
Intuitively: ${ }^{\prime} m_{v c}(0)=((1-\delta) / 2,(1-\delta) / 2, \delta)$
Why is this correct??

Linear codes...
It suffices to consider binary messages $m_{\mathrm{vc} / \mathrm{cv}}{ }^{\prime}\left(n_{\text {it }}\right)=1$ if erasure, 0 if non-erasure and track *m$m_{v c / c v}{ }^{\prime}\left(n_{i t}\right)=P\left(m_{v c / c v}\left(n_{i t}\right)=\Delta\right)$

Combining Erasure Probabilities
 ft w .

Equivalently:

AND - operation

OR - operation

AND-OR Tree

Let's simplify notation:

$$
\begin{aligned}
& \mathrm{p}_{0}=\delta={ }^{*} m_{\mathrm{vc}}{ }^{\prime}(0) \\
& \mathrm{q}_{\mathrm{k}}={ }^{*} \mathrm{~m}_{\mathrm{cv}}(\mathrm{k}), \\
& \mathrm{p}_{\mathrm{k}}={ }^{\prime} \mathrm{m}_{\mathrm{vc}}^{\prime}(\mathrm{k})
\end{aligned}
$$

$$
\begin{gathered}
q_{k}=1-\left(1-p_{k-1}\right)^{d c-1} \\
p_{k}=p_{0} q_{k}^{d v-1}
\end{gathered}
$$

$$
p_{k}=p_{0}\left(1-\left(1-p_{k-1}\right)^{d c-1}\right)^{d v-1}
$$

Applying the recursion

ft w .

$p_{k+1}=p_{0}\left(1-\left(1-p_{k}\right)^{d_{c}-1}\right)^{d_{v}-1}$

$d_{v}=3 \quad d_{c}=6$

Threshold: 0.42944

BEC \& Irregular LDPC Codes

Luby, Mitzenmacher, Shokrollahi \& Spielman
Michael G. Luby was at Univ. of Berkeley and founded Digital Fountain after co-inventing irregular LDPC codes

Michael Mitzenmacher got his PhD from Berkeley in 1996, worked for DEC Research, then joined Harvard University in 1999 as Assistant Professor

Daniel A. Spielman got his PhD from MIT in 1995, did a post-doc in Berkeley 1995-96, then went back to MIT as Assistant Professor
M. Amin Shokrollahi got his Dipl.-Ing. from the Univ. of Karlsruhe, his Dr. from the Univ. of Bonn. 1991, worked as a researcher in Berkeley, joined Bell Labs from 1998 to 2000, then Digital Fountain. He has been a Professor at EPF Lausanne since 2003.

Entropy/Uncertainty

$$
H\left(P_{x}\right)=-\sum_{x} P_{x}(x) \log _{b} P_{x}(x)
$$

- $H\left(P_{X}\right)$ is the entropy of the probability distribution of X
- The word "entropy" is used because of the similarity between the formula for H and the entropy in physics
- $H\left(P_{x}\right)$ is a measure for our uncertainty about the value of X
- Alternatively, we write $H(X)$ for $H\left(P_{X}\right)$
- Keep in mind that $H($.$) is always a function of a$ probability distribution!

Binary Entropy Function

ftw.

$$
L=2, P_{x}(0)=p, P_{x}(1)=1-p
$$

$$
H(X)=h(p)
$$

The binary entropy function

For an L-ary random variable X,

$$
0 \leq H(X) \leq \log _{b} L
$$

with equality on the right when $P_{x}(x)=1 / L$ for all x, with equality on the left when $P_{x}(x)=1$ for one x and $P(X)=0$ for all other x.

Example:
Random experiment: pick a student at random
Random variable $\quad X: 1$ if female, 0 if male
Y : 1 if wears glasses, 0 if not
$Z: 1$ if Norwegian, 0 if no \dagger

The equivocation, or average conditional entropy, of X given Y is defined as

$$
H(X \mid Y)=\Sigma_{y} P_{y}(y) H\left(P_{x \mid y=y}\right)
$$

Warning: do not confuse with $H(X \mid Y=y)=H\left(P_{X \mid Y=y}\right)$

Properties of the equivocation

ftw.
"Conditioning can only reduce entropy"

$$
0 \leq H(X \mid Y) \leq H(X)
$$

equality on the left if Y essentially determines X equality on the right if X and Y are independent

Warning: $H(X \mid Y=y)$ can be larger than $H(X)!!$ "Conditioning on events can increase entropy"

$$
\begin{gathered}
\text { Chain rule: } \quad H(X Y)=H(Y)+H(X \mid Y) \\
H\left(X_{1} \ldots X_{N}\right)=H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+\ldots+H\left(X_{N} \mid X_{1} \ldots X_{N-1}\right)
\end{gathered}
$$

Mutual Information

The mutual information between X and Y is

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y) \\
& =H(Y)-H(Y \mid X)
\end{aligned}
$$

$$
0 \leq I(X ; Y) \leq \min [H(X), H(Y)]
$$

equality on left if X and Y independent equality on right if X essentially determines Y or vice-versa
$I(X ; Y)$ is a function of the joint distribution $P_{X Y}$

The essence of Mutual Information ftW.

- $I(X ; Y)$ tells us how much uncertainty is reduced about X by knowing Y (or vice-versa)
- $I(X ; Y)$ tells us how much information X gives about Y (or vice-versa)
- $I(X ; Y)$ is a very general type of correlation measure: it is 0 when X and Y are independent (and thus uncorrelated) and maximized when X is a function of Y or vice-versa

Mutual Information

ft w .

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} P_{B}=0 \Rightarrow \lim _{N \rightarrow \infty} I(\underline{U} ; \underline{\hat{U}})=K \\
& \quad \Rightarrow \lim _{N \rightarrow \infty} I(\underline{U} ; \underline{\hat{U}}) / N=\lim _{N \rightarrow \infty} I(\underline{X} ; \underline{y}) / N=R
\end{aligned}
$$

$$
\begin{aligned}
\lim _{N \rightarrow \infty} P_{b}=0 \Rightarrow \lim I\left(U_{i} ; \hat{U}_{i}\right) & =\lim I\left(U_{i} ; \bar{Y}\right) \\
& =\lim I\left(X_{i} ; \bar{Y}\right) \\
& =1, \text { for all } i
\end{aligned}
$$

(for binary codes)

Iterative Decoding

- How does the mutual information evolve in an iterative decoding algorithm?
- We have learned that it is possible to optimize LDPC codes so as to maximize their threshold
- We will see that we can design capacity-achieving, iteratively decodable families of LDPC codes!! (i.e., threshold \rightarrow capacity)
- What is the implication in terms of mutual information?

Iterative = Cascaded Decoding!

ft w .

Mutual Information Trajectory

Mutual Information Trajectory

- The L-values calculated in the tree are optimal in the sense of a MAP-calculator, i.e., $L\left(X_{i} \mid \underline{Y}_{[i+]}\right)$ is a sufficient statistic for $\underline{X}_{[i+]}$:

$$
I\left(X_{i} ; L\left(X_{i} \mid \underline{Y}_{[i+]}\right)\right)=I\left(X_{i} ; \underline{Y}_{[i+]}\right)
$$

- We can also draw the trajectory at half-iterations (after variable nodes \& after check nodes)
- But: the output messages of variable nodes and check nodes are extrinsic L-values, whereas the mutual information trajectory we consider now is for a-posteriori L-values
ftw.

Tracking of Messages

Tracking of messages would mean tracking of pdfs
(\rightarrow Density Evolution)
Instead of tracking the pdfs we reduce the problem to tracking of mutual information between the messages and the codeword which are scalar quantities

$$
\begin{aligned}
& I_{A}=\frac{1}{N} \sum_{n=1}^{N} I\left(X_{i} ; A_{i}\right) \\
& I_{E}=\frac{1}{N} \sum_{n=1}^{N} I\left(X_{i} ; E_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& I_{A}^{(1)}=0 \\
\Rightarrow & I_{E}^{(1)} \rightarrow I_{A}^{(2)} \\
\Rightarrow & I_{E}^{(2)} \rightarrow I_{A}^{(1)}
\end{aligned}
$$

$I_{A}, I_{E} \ldots .$. average symbolwise mutual information

Extrinsic Information Transfer Chart ftw.

Intersecting Curves

Extrinsic Information Transfer Charts (Stephan ten Brink)

Stephan did his PhD at the U of Stuttgart, then worked for Bell Labs U.K., then New Jersey. He is currently with RealTek, California.

Computing EXIT transfer functions ftw.

A-priori messages are modeled as independent noisy observations of the encoded source.

Assumptions:

- independent observations
- model for extrinsic channel

$$
I_{A}=I\left(X_{i} ; A_{i}\right)=I\left(V_{i} ; A_{i}\right)
$$

$$
I_{E}=I\left(X_{i} ; E_{i}\right) \leq I\left(X_{i} ; \underline{Y} A_{\backslash i}\right)
$$

with equality if the decoder is "optimal"

Transfer Functions

ft w .

Assuming a model for the extrinsic channel we can vary I_{A} by varying the channel parameter.

At the output of the decoder we can measure/calculate $I_{E} \quad \Rightarrow I_{E}=f\left(I_{A}\right)$

This is only exact if the model of the extrinsic channel is correct!

Variable Nodes and BEC

ft w .

Extrinsic channel is modeled as BEC (exact).

$$
\begin{aligned}
& I_{A}=I\left(X_{i} ; A_{i}\right)=I\left(V_{i} ; A_{i}\right)=1-p \\
& I_{E}=I\left(X_{i} ; \underline{Y A}_{\backslash i}\right)=1-q p^{d_{v}-1} \\
& I_{E}=1-q\left(1-I_{A}\right)^{d_{v}-1}
\end{aligned}
$$

Check Nodes and BEC

ft w .

SPC ... single parity check

$$
\begin{aligned}
& I_{A}=I\left(X_{i} ; A_{i}\right)=I\left(V_{i} ; A_{i}\right)=1-p \\
& I_{E}=I\left(X_{i} ; \underline{Y A_{\backslash i}}\right)=(1-p)^{d_{c}-1} \\
& I_{E}=\left(I_{A}\right)^{d_{c}-1}
\end{aligned}
$$

Other Channels

Modeling the extrinsic channel as a BEC is exact if the communication channel is a BEC.

For other communication channels, the assumption of the extrinsic channel is in general an approximation.

If the communication channel is an AWGN channel, we model the extrinsic channel also as an AWGN, but this is only an approximation!

AWGN Channel

variable nodes

check nodes

Convolutional Codes

Fig. 2. Extrinsic information transfer characteristics of soft in/soft out decoder for rate $2 / 3$ convolutional code; E_{b} / N_{0} of channel observations serves as parameter to curves.
Stephan ten Brink, "Convergence Behavior of Iteratively Decoded Parallel Concatenated Codes", IEEE Trans. Comm. October 2001

Serial / Parallel Concatenation
 ft w .

Serial concatenation:
$\underline{e}=\underline{a p p}-\underline{a}$
Parallel concatenation:
$\underline{e}=\underline{a p p}-\underline{a}-\underline{y}$
© ftw. 2007

Summing LLRs

What is the effect on mutual information when we add L-values?

$$
\begin{aligned}
& I_{1}=I\left(X ; L_{1}\right)=1-\delta_{1} \\
& I_{2}=I\left(X ; L_{2}\right)=1-\delta_{2}
\end{aligned}
$$

$$
I\left(X ; L_{1} L_{2}\right)=1-\delta_{1} \delta_{2}
$$

$$
=1-\left(1-I_{1}\right)\left(1-I_{2}\right)
$$

Intersecting Curves

BER from EXIT Chart (BEC)

ftw.
$\underline{a p p}=\underline{a}+\underline{e}$
$I(X ; A P P)=1-P_{b}=1-\left(1-I_{A}\right)\left(1-I_{E}\right)$

Independent Observations

ftw.

Messages received from the extrinsic channel are independent observations, which is only fulfilled if $N \rightarrow \infty$

Fig. 8. Averaged decoding trajectories for different interleaver lengths; PCC rate $1 / 2$ memory $4,\left(G_{r}, G\right)=(023,037)$; averaged over 10^{8} information

Statistics

ft w .

$$
\begin{aligned}
& \text { We use } \\
& \text { statistical } \\
& \text { quantities, which } \\
& \text { are only correct } \\
& \text { if } \mathrm{N} \rightarrow \infty \\
& \left.\begin{array}{l}
E_{s}=R \cdot E_{b} \quad \sigma^{2}=\frac{N_{0}}{2} \\
E_{s}:=1 \\
\frac{E_{b}}{N_{0}}=\frac{E_{s}}{R 2 \sigma^{2}} \Rightarrow \sigma^{2}=\frac{1}{2 R} \cdot\left(\frac{E_{b}}{N_{0}}\right)
\end{array}{ }^{2}\right)
\end{aligned}
$$

Summary of Assumptions

- Messages received from the extrinsic channel are independent observations, which is only fulfilled if $N \rightarrow \infty$
- We use statistical quantities, which are only correct if $\mathrm{N} \rightarrow \infty$
- We model extrinsic messages with an extrinsic channel. This can only be done exact for the BEC. The Gaussian assumption is an approximation.

Area of LDPC Component Codes

$$
\mathcal{A}_{v}=1-\frac{1-C}{d_{v}}
$$

$$
\mathcal{A}_{c}=\frac{1}{d_{c}}
$$

Necessary condition for successful decoding:

$$
1-\mathcal{A}_{v}<\mathcal{A}_{c}
$$

Consequences of Area Property

$$
\begin{array}{r}
1-\mathcal{A}_{v}<\mathcal{A}_{c} \\
1-1+\frac{1-C}{d_{v}}<\frac{1}{d_{c}} \\
1-C<\frac{d_{v}}{d_{c}} \\
C>1-\frac{d_{v}}{d_{c}}=R
\end{array}
$$

"Surprising" result:

The area property tells us that the decoder can only converge if the rate is smaller than capacity!

More Consequences...

Suppose the condition for convergence is fulfilled

$$
\begin{gathered}
1-\mathcal{A}_{v}=\gamma \cdot \mathcal{A}_{c}<\mathcal{A}_{c} \quad 0 \leq \gamma<1 \\
\mathcal{A}_{c}=\frac{1}{d_{c}} \\
1-\mathcal{A}_{v}=\gamma \cdot \mathcal{A}_{c}=\frac{1-C}{d_{v}} \\
R=1-\frac{d_{v}}{d_{c}}=1-\frac{1-C}{\gamma}=\frac{C-(1-\gamma)}{\gamma}<C
\end{gathered}
$$

What is the result of this inequality?

Area and Rate Loss

ftw.

$$
R=1-\frac{d_{v}}{d_{c}}=1-\frac{1-C}{\gamma}=\frac{C-(1-\gamma)}{\gamma}<C
$$

If $\gamma \rightarrow 1$ we can transmit at rates that approach capacity. If $\gamma<1$ we are bounded from capacity.

$$
\gamma \rightarrow 1 \text { means that } 1-A_{v}=A_{c}
$$

Furthermore, the curves must not intersect.
\Rightarrow The curves have to be matched.

Code design reduces to curve fitting!

Curve Fitting - Code Mixture

We only considered regular codes, where every symbol has the same properties. Therefore, averaging over all symbols is equivalent to the mutual information of an arbitrarily symbol.

$$
I_{E}=\frac{1}{m} \sum_{i=1}^{m} I\left(V_{i} ; E_{i}\right)=I\left(V_{1} ; E_{1}\right)
$$

If we partition m into n_{u} groups $j=1 \ldots n_{u}$ each with length I_{j}, we can write I_{E} as

$$
I_{E}=\sum_{j=1}^{n_{u}} \frac{l_{j}}{m}\left[\frac{1}{l_{j}} \sum_{i=1}^{l_{j}} I\left(V_{j i} ; E_{j i}\right)\right]=\sum_{j=1}^{n_{u}} \gamma_{j} I_{E_{j}} \quad \gamma_{j}=\frac{l_{j}}{m}=\frac{l_{j}}{\sum_{j=1}^{n_{u}} l_{j}}
$$

The resulting EXIT function is the weighted average of the EXIT functions of the groups.

Example - Variable Mixture

ftw .

70% of the variable nodes have $d_{v}=2$ 30% of the variable nodes have $d_{v}=5$

$$
\begin{aligned}
& \gamma_{1}=\frac{0.7 \cdot k \cdot 2}{0.7 \cdot k \cdot 2+0.3 \cdot k \cdot 5}=0.48 \quad \gamma_{2}=\frac{0.3 \cdot k \cdot 5}{0.7 \cdot k \cdot 2+0.3 \cdot k \cdot 5}=0.52 \\
& I_{E_{j}}=1-q p^{d_{v j}-1} \quad I_{E}=\gamma_{1} \cdot\left[1-q p^{d_{v 1}-1}\right]+\gamma_{2} \cdot\left[1-q p^{d_{v 2}-1}\right]
\end{aligned}
$$

$$
I_{E}(p)=1-q \cdot \sum_{j=1}^{n_{u}} \gamma_{j} \cdot p^{d_{v j}-1}
$$

This is a polynomial in p
Note that $\sum \gamma_{j}=1$

Example - Variable Mixture

Curve Fitting

Lets fix the EXIT function of the check node decoder.

$$
I_{E c}=\left(I_{A c}\right)^{d_{c}-1}
$$

For curve fitting, we can exchange the following quantities

$$
I_{E c}=I_{A v} \quad I_{E v}=I_{A c}
$$

Therefore, we can write the EXIT function of the variable node decoder as the inverse EXIT function of the check node decoder.

$$
\begin{aligned}
& I_{A v}=\left(I_{E v}\right)^{d_{c}-1} \\
& I_{E v}=\left(I_{A v}\right)^{\frac{1}{d_{c}-1}}=(1-p)^{\frac{1}{d_{c}-1}}
\end{aligned}
$$

Taylor Series Expansion

$$
I_{E v}=\left(I_{A v}\right)^{\frac{1}{d_{c}-1}}=(1-p)^{\frac{1}{d_{c}-1}}
$$

Assuming for example $d_{c}=5$ we can expand $I_{E v}$ as a Taylor series

$$
I_{E v}=1-\left[\frac{1}{4} p+\frac{3}{32} p^{2}+\frac{7}{128} p^{3}+\cdots\right]
$$

Truncating the Taylor series and normalizing the coefficients to 1 results in

$$
I_{E v}=1-\frac{51}{128}\left[\frac{32}{51} p+\frac{12}{51} p^{2}+\frac{7}{51} p^{3}\right]
$$

Compare this with the transfer function of the mixture of variable nodes...

$$
I_{E}(p)=1-q \cdot \sum_{j=1}^{n_{u}} \gamma_{j} \cdot p^{d_{v j}-1}
$$

Curve Fitting

ft w .

Even more Consequences...

Using the same model as for the variable and check node decoder, it can be shown that the areas for a serial concatenated code with an outer code $R_{\text {out }}=k_{\text {out }} / n_{\text {out }}$ and an inner code $\mathrm{R}_{\text {in }}=\mathrm{k}_{\text {in }} / \mathrm{n}_{\text {in }}$ are given by

$$
\mathcal{A}_{\text {out }}=1-R_{\text {out }} \quad \mathcal{A}_{\text {in }}=\frac{I(\underline{X} ; \underline{Y})}{n_{\text {in }} \cdot R_{\text {in }}}
$$

The same necessary condition 1- $A_{\text {out }}<A_{\text {in }}$ leads to

$$
R_{\text {out }} \cdot R_{\text {in }}<\frac{I(\underline{X} ; \underline{Y})}{n_{i n}} \leq C
$$

If the inner code has rate < 1, i.e. $I(\underline{X} ; \underline{Y}) / n_{\text {in }}<C$ then we can not achieve capacity with serial concatenated codes!

