École Nationale Supérieure des Télécommunications de Bretagne

Turbo-égalisation **ENST-Bretagne Département Signal et Communications Christophe Laot** R. Le Bidan, E. Hardouin et N. Le Josse

Ecole d'été GdR-ISIS, Peyresq, juillet 2007

- 1. Introduction générale
- 2. Principe de la turbo-égalisation MAP
- 3. Principe de la turbo-égalisation MMSE
- 4. Extension à l'annulation d'interférences
- 5. Analyse des performances : diagramme EXIT
- 6. Conclusions

⊖ Partie 1 : introduction générale

- Le canal radio-mobile
- Le « principe Turbo »
- Introduction à la turbo-égalisation
- Performances

Bretagne

• Transmissions sur canal radiomobile

Principe de l'égalisation

- Solutions pour traiter l'IES
 - Modulation mono-porteuse avec égalisation en réception
 - Modulations multi-porteuses (OFDM, DMT)
 - Étalement de spectre
- Techniques d'égalisation classiques
 - Détection de séquence / symbole opérant sur le treillis
 - Algorithme de Viterbi (Maximum de Vraisemblance MLSE)
 - Algorithme BCJR-MAP (Maximum a Posteriori)
 - Égaliseurs à base de filtres linéaires
 - Structures :

- Égaliseur linéaire transverse (LE)
- Égaliseur à retour de décision (DFE)
- Critères d'optimisation :
 - Forçage à Zéro (ZF)
 - Min. de l'Erreur Quadratique Moyenne (MMSE)

⊖ La Turbo-Égalisation

Principe

Idée : exploiter les décisions du décodeur pour améliorer l'égalisation (et vice-versa)

La Turbo-Égalisation permet la suppression totale de l'IES, ainsi que l'exploitation de la diversité du canal.

➔ La Turbo-Égalisation

• Principe :

Exploiter les décisions du décodeur pour améliorer l'égalisation (et vice-versa)

• Rôle de l'égaliseur SISO (Soft In Soft Out) :

Calculer une mesure de fiabilité sur les bits codés à partir des observations en sortie du canal et de l'information extrinsèque délivrée par le décodeur à l'itération précédente.

Expression des données en sortie d'un canal de fonction de transfert H(z)

 $\mathbf{Y}(z) = \mathbf{H}(z)\mathbf{D}(z) + \mathbf{W}(z)$

• Deux approches possibles pour réaliser l'égaliseur SISO.

M désigne l'ordre de la modulation et L désigne le nombre de coefficients du canal.

Réalisation de l'égaliseur SISO par la théorie de la détection

- Critère optimal en communications : critère MAP \rightarrow égaliseur MAP.
- Ce critère se prête naturellement à la gestion des mesures de fiabilité.
- Les données en sortie du canal suivent un processus de Gauss-Markov.
- L'ensemble des séquences admissibles à la sortie du canal (en l'absence de bruit) peut être représenté par un diagramme en treillis.

- Il existe des algorithmes qui exploitent la représentation en treillis pour simplifier l'implémentation du critère MAP. Exemple : algorithme BCJR-MAP.
- Problème : la complexité de ces algorithmes est en O(M^L)
 - M : ordre de la modulation
 - L : nombre de coefficients du canal discret équivalent

→ Réalisation de l'égaliseur SISO par la théorie de l'estimation

• Approche classique : égaliseur linéaire MMSE

Les coefficients du filtre P(z) sont optimisés de manière à minimiser l'erreur quadratique moyenne

- Problème : solution généralement peu performante, et qui ne permet la manipulation de mesures de fiabilité.
- Évolution : égaliseur SISO MMSE ou MEQM avec informations a priori

Les filtres P(z) et Q(z) sont optimisés suivant le critère MEQM en tenant compte des mesures de fiabilité à l'entrée.

La forme de l'égaliseur évolue au fil des itérations, en fonction des mesures de fiabilités délivrées par le décodeur

⊖ Exemple de performances

La Turbo-Égalisation permet la suppression totale de l'IES à partir d'un rapport signal sur bruit suffisant (seuil de convergence).

⊕ Égaliseurs SISO (Soft In Soft Out) avec informations a priori

Égalisation optimale => critère MAP

- Complexité prohibitive pour des étalements temporels importants
- Complexité prohibitive pour des modulations à grand nombre d'états
- Algorithmes de type BCJR MAP, Log MAP ou max Log MAP
- Réduction de complexité : algorithmes à états réduits : DDFSE, RSSE, ...
- Appelé turbo-détecteur ou turbo-égaliseur MAP

Égalisation sous-optimale => critère MMSE

- Complexité raisonnable pour des étalements temporels importants
- Complexité raisonnable pour les modulations à grand nombre d'états
- Basé sur du filtrage linéaire
- Appelé turbo-égaliseur MMSE

→ Applications du Principe Turbo

- Un récepteur numérique doit réaliser un certain nombre de tâches :
 - Synchronisation (trame)
 - Démodulation
 - Synchronisation (porteuse, phase)
 - Égalisation, détection multi-utilisateurs, annulation d'interférences
 - Décodage de canal
- Exemples d'application du Principe Turbo :
 - Turbo-Égalisation (égalisation et décodage itératif)
 - Turbo-Synchronisation (synchronisation et décodage itératif)
 - Turbo-Démodulation (démodulation et décodage itératif)
 - Turbo-Annulation d'Interférences (CDMA, MIMO et décodage itératif)

Le principe Turbo s'applique aussi bien à des problèmes de **détection** / décodage qu'à des problèmes d'**estimation**.

Illustration : la Turbo-Égalisation

- Principe de la turbo-égalisation MAP
- Canal discret équivalent
- Modélisation en treillis
- Détecteur MAP Algorithme BCJR
- Détecteur à états réduits

⊖ Approche itérative : la Turbo-Égalisation

• Principe

Échange réciproque (**itératif**) d'information **probabiliste** (Logarithme de Rapport de Vraisemblance) entre égaliseur et décodeur.

• Synoptique général du turbo-égaliseur

- Égaliseur BCJR-MAP → Turbo-Égalisation MAP ("Turbo-Détection")
- Égaliseur MMSE → *Turbo-Égalisation MMSE ("Turbo-Égalisation")*

• Schéma classique de turbo-détection, introduit par [Douillard, 95]

 L_a : LRV a priori $=L_e$: LRV extrinsèque

- Échange de LRV binaires entre égaliseur et décodeur
- SISO = Soft-Input Soft-Output ("à entrée et sortie pondérées")
- A l'origine, égaliseur et décodeur de type SOVA
- Évolution vers un égaliseur et décodeur de type MAP [Bauch, 97]

$$d_n = a_n + jb_n \equiv (a_n, b_n) \equiv \left(\underbrace{\begin{bmatrix} c_{n,1} & \cdots & c_{n,m} \end{bmatrix}}_{\text{bits codés}} \begin{bmatrix} c_{n,m+1} & \cdots & c_{n,2m} \end{bmatrix} \right)$$

⊖ Notations

 α_n C_n d_n W_n H(z) \mathcal{Y}_n $\frac{Z_n}{\overline{d}_n}$

bits d'informations $\alpha_n \in \{\pm 1\}$ bits codés c_n ou $c_{n,i} \in \{\pm 1\}$ symboles de modulations $d_{n} = a_{n} + jb_{n} \equiv (a_{n}, b_{n}) \equiv ([c_{n,1}, \dots, c_{n,m}], [c_{n,m+1}, \dots, c_{n,2m}])$ bruit blanc additif gaussien canal discret équivalent sortie du canal sortie du détecteur ou de l'égaliseur symbole estimés

⊖ L'interférence entre symboles (IES)

- Conséquence de la propagation multi-trajets entre Tx et Rx
- L'IES peut affecter sévèrement la qualité du message reçu

→ Représentation en treillis (1)

• Expression du signal reçu :

$$y_n = x_n + w_n$$
, avec $x_n = \sum_{k=0}^{L-1} h_k d_{n-k}$

• x_n peut être vu comme la sortie d'un registre à décalage

→ Représentation en treillis (2)

- L'action du registre peut être modélisée par un treillis à M^{L-1} états
 - *L* nombre de coefficients du canal discret équivalent
 - *M* nombre de symboles d_n dans la constellation ($M = 2^m$)
- Exemple : M=2 , L=3, $H(z)=1/\sqrt{3} + (1/\sqrt{3}) z^{-1} + (1/\sqrt{3}) z^{-2}$

Étiquette de branche $x_n = 1\sqrt{3} (d_n + d_{n-1} + d_{n-2})$

$$(S_n, S_{n+1}) \Leftrightarrow (d_n, d_{n-1}, d_{n-2}) \Leftrightarrow x_n$$

$$\min_{\{d_n\}\in\text{treillis}}\sum_{n=0}^{K-1}|y_n-x_n|^2$$

 L_c coefficients de puissance identique

0 1 2 3 4 5 6 7 8 9 1011121314Eb/No (un trajet supplémentaire entraîne une perte

un trajet supplémentaire entraîne un gain (diversité)

MDP2 sur canal sélectif en fréquence

• Le détecteur MAP évalue les LRV *a posteriori* sur les bits codés :

$$L(c_n) = \ln \left(\frac{\Pr(c_n = 1 | \mathbf{Y})}{\Pr(c_n = -1 | \mathbf{Y})} \right)$$

L'information extrinsèque est alors obtenue comme :

$$L_e(c_n) = L(c_n) - L_a(c_n)$$

- Algorithme optimal
- **Représentation en treillis:** *nbEtats=M^{L-1}* états

$$L(c_{n,k}) \cong \ln \left(\frac{\Pr(c_{n,k} = 1 | \mathbf{Y})}{\Pr(c_{n,k} = -1 | \mathbf{Y})} \right) \qquad k = 1, \dots, 2m \qquad n = 0, \dots, K-1$$
$$L(c_{n,k}) = \ln \frac{\sum_{(s_n \to s_{n+1}):c_{n,k} = 1} \alpha_n(s_n) \cdot \gamma_n(s_n, s_{n+1}, y_n) \cdot \beta_{n+1}(s_{n+1})}{\sum_{(s_n \to s_{n+1}):c_{n,k} = -1} \alpha_n(s_n) \cdot \gamma_n(s_n, s_{n+1}, y_n) \cdot \beta_{n+1}(s_{n+1})}$$

métrique de branche métrique de la récursion aller

métrique de la récursion retour

$$\beta_n(s_n^i) = \sum_{s_n^i \to s_{n+1}^j} \gamma_n(s_n^i, s_{n+1}^j, y_n) \beta_{n+1}(s_{n+1}^j)$$

 Le décodeur MAP calcule les LRV a posteriori à la fois sur les bits d'information et sur les bits codés :

$$L(c_n) = \ln\left(\frac{\Pr(c_n = 1|\mathbf{L}_a)}{\Pr(c_n = -1|\mathbf{L}_a)}\right)$$

$$L(\alpha_n) = \ln\left(\frac{\Pr(\alpha_n = 1|\mathbf{L}_a)}{\Pr(\alpha_n = -1|\mathbf{L}_a)}\right)$$

NB: Le décodeur accepte / délivre une info. pondérée sur les bits codés !

Canal Proakis C (canal sévère, L=5) – Entrelaceur de 65532 bits (64K)

L'IES est totalement supprimée à la 5ième itération, à partir d'un RSB seuil de 6 dB.

L'itération 1 du turbodétecteur correspond à l'approche classique disjointe (avec échange de décisions pondérées).

2 objectifs principaux dans le choix de l'entrelaceur

- Disperser les paquets d'erreurs entre égaliseur et décodeur
- Favoriser la convergence du processus itératif

En général, plus l'entrelaceur est grand et plus la permutation est de nature aléatoire, meilleures sont les performances du turbo-détecteur.

Toutefois, un entrelaceur de grande taille introduit un retard de restitution important.

➔ Influence de l'entrelaceur

Canal Proakis C (canal sévère, L=5) – Entrelaceurs 1K et 64K

La taille et la nature de l'entrelaceur ont une influence sur la convergence du processus itératif.

- Réception de toute la trame
- Complexité: ∞ nombre de branches

Complexité
$$\propto M^L$$

- \uparrow dispersion du canal (L)
- \uparrow taille de la constellation (*M*)

• **Problème:** EDGE \rightarrow MDP-8 et L_{max} =6

 $M^{L} = M^{L-1} \cdot M = 8^{6} = 262144 \longrightarrow IRREALISABLE$

• Solution: algorithmes sous-optimaux de moindre complexité

nombre d'états réduits

- Construction par troncature d'un treillis à états réduits à partir des L' < L premiers coefficients du canal
- Exemple : modulation BPSK, canal à L = 3

 $L=3 \Rightarrow 4 \text{ états}$

 $L'=2 \Rightarrow 2 \text{ états}$ $S_n = (d_{n-1}) \qquad S_{n+1} = (d_n)$ $(-1) \qquad (-1) \qquad (-1)$ $(+1) \qquad (+1)$

2 transitions parallèles par branche du treillis réduit

• Utilisation d'un *traitement par survivant* (*Per Survivor Processing*) au niveau des métriques de branche, pour compenser la troncature

$$\ln P(y_n | S_n, S_{n+1}) \propto -\frac{1}{\sigma_w^2} | y_n - h_0 d_n - \sum_{k=1}^{L'-1} h_k d_{n-k} - \sum_{k=L'}^{L-1} h_k \hat{d}_{n-k} |^2$$

Déduit de la transition Déduit de la connaissance de l'état de départ Déduit du chemin survivant associé à l'état de départ

- Réduction de complexité significative pour les canaux longs
- Préfiltrage blanchissant nécessaire, afin de concentrer l'énergie du canal dans ses premiers coefficients
- Amélioration possible : liste de survivants au niveau de chaque état

⊖ Exemple : l'algorithme DDFSE

• Canal ECHO $L_c=10$

 $h = \{0.65, \, 0.56, \, 0.32 \,, \, 0.16, \, 0.04, \, 0.08, \, 0.16, \, 0.28, \, 0.09, \, 0.04\}$

- *L'* = 3
- MDP-2 \rightarrow *M* = 2

ComplexitéNbEtatsMAP
$$M^L = 2^{10} = 1024$$
 $M^{L-1} = 512$ IRREALISABLEDDFSE $M^{L'} = 2^3 = 8$ $M^{L'-1} = 4$

➔ Limites de la Turbo-Détection

Problème du turbo-détecteur

Complexité prohibitive de l'égaliseur BCJR-MAP ...

- lorsque l'on augmente l'ordre M de la modulation ($M \ge 4$)
- en présence de canaux avec des retards importants ($L \ge 6$)
- Alternative : égaliseurs SISO à complexité réduite
 - Solution sous-optimale
 - Deux grandes approches
 - Détection SISO à complexité réduite (simplification du MAP)
 - Égalisation SISO à base de filtres linéaires (critère MMSE)

⊖ En résumé

- Les deux ingrédients de la turbo-égalisation
 - concaténation de codes en série avec entrelacement à l'émission
 - Égalisation et décodage itératif en réception (principe Turbo)
- Turbo-Détection = Turbo-Égalisation MAP
- Convergence vers les performances du récepteur optimal conjoint (irréalisable), avec une complexité "raisonnable"
- La convergence se produit à partir d'un RSB minimal : seuil de convergence (fonction du canal, du code, de l'égaliseur, du décodeur)
- La Turbo-Détection devient cependant trop complexe pour
 - Les transmissions à forte efficacité spectrale (MAQ-M avec $M \ge 16$)
 - Les transmissions sur canaux à forte dispersion temporelle (*L* grand)
- Alternatives de moindre complexité :
 - Turbo-Détection à complexité réduite
 - Turbo-Égalisation MMSE

- Principe de la turbo-égalisation MMSE
- Egalisation à base de filtre
- Critères d'optimisation
 - ZF, MMSE
- Structure d'égaliseurs
 - linéaire, DFE, annuleur d'interférences
 - Égalisation MMSE avec information a priori
- Turbo-égalisation MMSE
 - Performances et complexité

Mise en cascade de plusieurs modules associant égalisation et décodage de canal (SISO).

Les opérations d'égalisation et décodage de canal sont réalisées de manière conjointe selon un processus itératif.

Modulation Codée à entrelacement bit (BICM)

Les symboles M-aire émis sur le canal dépendent de 2*m* bits codés $d_n = a_n + jb_n \equiv (a_n, b_n) \equiv \left(\underbrace{[c_{n,1} \cdots c_{n,m}], [c_{n,m+1} \cdots c_{n,2m}]}_{\text{hits and } bits} \right)$

En turbo-égalisation, le codage de Gray :

- permet la convergence la plus rapide en terme de nombre d'itérations
- ne donne pas les meilleures performances asymptotiques (turbo démodulation)

• Expression du signal reçu :

$$y_n = x_n + w_n$$
, avec $x_n = \sum_{k=0}^{n} h_k d_{n-k}$

$$H(z) = \sum_{l=0}^{L-1} h_l z^{-l}$$
$$\sigma_d^2 = E\left\{ \left| d_n \right|^2 \right\}$$

• x_n peut être vu comme la sortie d'un registre à décalage

L-1

Évanouissements en fréquences

Problèmes :L'inversion du canal n'est pas toujours réalisable (ZF).Le bruit en sortie de l'égaliseur peut devenir très fort.La réponse de l'égaliseur est infinie.Nécessite en général l'insertion d'un retard en entrée.

Solutions : Critère de l'erreur quadratique moyenne (MSE).

Cet égaliseur possède des performances médiocres lorsque le canal est fortement sélectif en fréquences.

Critère d'optimisation : EQM ou MSE

$$C_{MSE}(z) = z^{-\Delta} H^*(1/z^*) \sigma_d^2 DS \{ (H(z)H^*(1/z^*) \sigma_d^2 + \sigma_w^2)^{-1} \}$$

Nécessite une réalisation transverse tronquée

$$z_n = \sum_{l=0}^{N-1} c_l y_{n-l} = \mathbf{c}^T \mathbf{y}_n \quad \text{avec} \quad \mathbf{c} = \begin{bmatrix} c_0 & \cdots & c_{N-1} \end{bmatrix}^T$$
$$C(z) = \sum_{l=0}^{N-1} c_l z^{-l}$$

Des pertes liées à la troncature apparaissent

⊖ Égaliseur transverse MMSE

L'égaliseur linéaire pour le canal P&F réalisé sous forme transverse nécessite 70 coefficients pour atteindre les performances asymptotiques.

⊕ Égaliseur transverse MMSE

Performances d'un égaliseur transverse pour un rapport signal sur bruit de 15 dB sur le canal P&F.

⊖ Factorisation spectrale

$$H(z)H^*(1/z^*)\sigma_d^2 + \sigma_w^2 = S_\lambda G_\lambda(z)G_\lambda^*(1/z^*)$$

 $G_{\lambda}(z)$ Phase minimale (zéros internes au cercle unité) $G_{\lambda}^*(1/z^*)$ Phase maximale (zéros externes au cercle unité) S_{λ} Constante positive

Le polynôme à phase minimale est inversible. On peut alors construire un égaliseur récursif linéaire.

$$C_{MSE}(z) = \frac{1}{G_{\lambda}(z)} \frac{z^{-\Delta} H^*(1/z^*) \sigma_d^2}{S_{\lambda} G_{\lambda}^*(1/z^*)}$$

Ses performances sont supérieures à celles d'un égaliseur linéaire, sauf si il est soumis à un phénomène de propagation d'erreurs.

⊖ Égaliseur à retour de décisions

Le nombre de coefficients nécessaire pour un égaliseur DFE est plus faible que celui d'un égaliseur transverse.

⊖ Égaliseur à retour de décisions

Performances d'un égaliseur à retour de décisions (DFE) pour un rapport signal sur bruit de 15 dB sur le canal P&F.

⊖ Comparaisons de performances

Performances des égaliseurs linéaires (LE) et non linéaires (DFE) pour un rapport signal sur bruit de 15 dB sur le canal P&F.

➔ Décodeur de canal SISO

Décodeur unique (SISO binaire) quelque soit le type de modulation

- conversion symbole à binaire (CSB) en entrée du décodeur.
- conversion binaire à symbole (CBS) en sortie du décodeur.

Décodeur de faible complexité algorithmique.

Sortie de l'égaliseur $z_k = \mu_k d_{k-\Delta} + \text{IES} + \text{Bruit}$

L'IES résiduelle peut souvent être approchée par une V.A. Gaussienne.

La sortie de l'égaliseur suit alors une loi Gaussienne complexe conditionnellement à la connaissance du symbole $d_{k-\Delta}$.

$$z_k \rightarrow \mathsf{N}\left(\mu_k d_{k-\Delta}, \sigma_k^2\right)$$

Les paramètres μ_k et σ_k^2 seront définies ultérieurement.

Objectif : fournir une entrée pondérée (soft) binaire au décodeur de canal à partir des symboles provenant de l'égaliseur.

Sortie de l'égaliseur $z_k = \mu_k d_{k-\Delta} + \eta_k$

Les symboles M-aire émis sur le canal dépendent de 2m e.b. codés

$$d_k = a_k + jb_k \equiv (a_k, b_k) \equiv ([c_{k,1} \quad \cdots \quad c_{k,m}], [c_{k,m+1} \quad \cdots \quad c_{k,2m}])$$

Logarithme de Rapport de Vraisemblance (LRV) d'un bit codé

$$L_{eq}(c_{k,i}) = \ln \frac{\Pr(c_{k,i} = 1 | z_k)}{\Pr(c_{k,i} = -1 | z_k)} \quad i = 1, \dots, 2m$$

Logarithme de Rapport de Vraisemblance (LRV) d'un bit codé

$$L_{eq}(c_{k,i}) = \ln \frac{\sum_{\mathbf{c}_k:c_{k,i}=1} p\{z_k | \mathbf{c}_k\} \Pr\{\mathbf{c}_k\}}{\sum_{\mathbf{c}_k:c_{k,i}=-1} p\{z_k | \mathbf{c}_k\} \Pr\{\mathbf{c}_k\}} \quad i = 1, \dots, 2m \qquad \mathbf{c}_k = \begin{bmatrix} c_{k,1} & \cdots & c_{k,2m} \end{bmatrix}$$

Pour un codage de Gray, le gain apportée par une information *a priori* $Pr{\mathbf{c}_k}$ provenant d'un traitement précédent est négligeable, alors :

$$L_{eq}(c_{k,i}) = \ln \frac{\sum_{\mathbf{c}_k:c_{k,i}=1} p\{z_k | \mathbf{c}_k\}}{\sum_{\mathbf{c}_k:c_{k,i}=-1} p\{z_k | \mathbf{c}_k\}} \quad i = 1, \dots, 2m$$

 $z_k \to \mathsf{N}\left(\mu_k d_{k-\Delta}, \sigma_k^2\right) \qquad d_k \equiv (a_k, b_k) \equiv \left(\begin{bmatrix} c_{k,1} & \cdots & c_{k,m} \end{bmatrix}, \begin{bmatrix} c_{k,m+1} & \cdots & c_{k,2m} \end{bmatrix}\right)$

Objectif : corriger des erreurs de transmission et déterminer la fiabilité des sorties du décodeur de canal.

Décodeur SISO : Soft Input Soft Output

Calcul d'un Logarithme de Rapport de Vraisemblance (LRV)

$$L_{dec}(c_{k,i}) = \ln \frac{\Pr\left\{c_{k,i} = 1 \middle| \mathbf{L}_{eq}\right\}}{\Pr\left\{c_{k,i} = -1 \middle| \mathbf{L}_{eq}\right\}} \quad i = 1, \dots, 2m$$

Plusieurs algorithmes existent pour déterminer ce LRV [MAP, log-MAP, max-log-MAP, SOVA]

Objectif : fournir une estimée des symboles émis à l'égaliseur connaissant les LRVs provenant du décodeur de canal.

Cette estimée peut être obtenue par un calcul de valeur moyenne

$$\overline{a}_{k} = E\left\{a_{k} \middle| \mathbf{L}_{eq}\right\} \quad \begin{cases} a_{k} \equiv \begin{bmatrix} c_{k,1} & \cdots & c_{k,m} \end{bmatrix} \\ \mathbf{L}_{eq} \equiv \begin{bmatrix} L_{eq}(c_{k,1}) & \cdots & L_{eq}(c_{k,m}) \end{bmatrix} \end{cases}$$

en utilisant un codage de Gray

MAQ4
$$a_k = c_{k,1} \implies \overline{a}_k = E\left\{c_{k,1} | \mathbf{L}_{eq}\right\}$$

 $b_k = c_{k,2} \implies \overline{b}_k = E\left\{c_{k,2} | \mathbf{L}_{eq}\right\}$

 $E\left\{c_{k,i} | \mathbf{L}_{eq}\right\} = \tanh\left(L_{dec}(c_{k,i})/2\right)$ est déterminé à partir de la sortie du décodeur

Sortie du décodeur :

$$L_{dec}(c_{k,i}) = \ln \frac{\Pr\{c_{k,i} = 1 | \mathbf{L}_{eq}\}}{\Pr\{c_{k,i} = -1 | \mathbf{L}_{eq}\}} \quad i = 1, ..., 2m$$

$$\exp(L_{dec}(c_{k,i})) = \frac{\Pr\{c_{k,i} = 1 | \mathbf{L}_{eq}\}}{1 - \Pr\{c_{k,i} = 1 | \mathbf{L}_{eq}\}}$$

$$\exp(L_{dec}(c_{k,i})) = \frac{1 - \Pr\{c_{k,i} = -1 | \mathbf{L}_{eq}\}}{\Pr\{c_{k,i} = -1 | \mathbf{L}_{eq}\}}$$

$$\Pr\{c_{k,i} = 1 | \mathbf{L}_{eq}\} = \frac{\exp(L_{dec}(c_{k,i}))}{1 + \exp(L_{dec}(c_{k,i}))} \qquad \qquad \Pr\{c_{k,i} = -1 | \mathbf{L}_{eq}\} = \frac{1}{1 + \exp(L_{dec}(c_{k,i}))}$$

$$E\{c_{k,i}|\mathbf{L}_{eq}\} = (1) \cdot \Pr\{c_{k,i} = 1|\mathbf{L}_{eq}\} + (-1)\Pr\{c_{k,i} = -1|\mathbf{L}_{eq}\}$$

$$E\{c_{k,i} | \mathbf{L}_{eq}\} = \frac{\exp(L_{dec}(c_{k,i})) - 1}{\exp(L_{dec}(c_{k,i})) + 1} = \tanh\left(\frac{L_{dec}(c_{k,i})}{2}\right)$$

Symboles estimés

Constellation de l'information a priori

65

Modulation MAQ64 Canal de Porat et Friedlander Rapport signal à bruit 10 dB

=> amélioration successive de la constellation

=> phénomène de saturation (tanh)

→ Annuleur d'interférences Interference Canceller (IC) MMSE (génie)

⊖ Comparaison des performances

LE : DFE :

IC :

68

- égaliseur linéaire
- égaliseur à retour de décisions
- annuleur d'interférences (génie)

Les informations a priori (symboles estimés) alimentent l'égaliseur.

L'égaliseur optimise P(z) et Q(z) en fonction des symboles estimés

- à la première itération l'égaliseur est transverse (LE MMSE).
- à la dernière itération l'égaliseur est très proche de l'IC génie.
- aux autres itérations l'égaliseur est fonction des informations a priori

⊖ Filtre de Wiener : longueur finie

$$\mathbf{c} = \left(E\left\{ \mathbf{y}_{n}^{*} \mathbf{y}_{n}^{T} \right\} \right)^{-1} E\left\{ \mathbf{y}_{n}^{*} d_{n-\Delta} \right\}$$

L'optimisation dépend du retard

⊖ Égaliseur linéaire à longueur finie

$$\frac{d_n}{\mathbf{H}} \mathbf{v}_n \mathbf{v}_n \mathbf{v}_n \mathbf{v}_n = \mathbf{H}\mathbf{d}_n + \mathbf{w}_n \text{ avec } \begin{cases} \mathbf{y}_n = \begin{bmatrix} y_n & \cdots & y_{n-N+1} \end{bmatrix}^T \\ \mathbf{w}_n = \begin{bmatrix} w_n & \cdots & w_{n-N+1} \end{bmatrix}^T \\ \mathbf{d}_n = \begin{bmatrix} d_n & \cdots & d_{n-N-L+1} \end{bmatrix}^T \end{cases}$$

$$\mathbf{H} = \begin{bmatrix} h_0 & h_1 & \cdots & h_{L-1} & 0 & \cdots & 0 \\ 0 & h_0 & h_1 & \cdots & h_{L-1} & & \vdots \\ \vdots & & \ddots & & & \ddots & \vdots \\ 0 & \cdots & 0 & h_0 & h_1 & \cdots & h_{L-1} \end{bmatrix}$$

112

Matrice de Toeplitz N x (N+L-1)

Égaliseur transverse de longueur finie $z_n = \mathbf{c}^T \mathbf{y}_n$ avec $\mathbf{c} = \begin{bmatrix} c_0 & \cdots & c_{N-1} \end{bmatrix}^T$

$$\min_{\mathbf{c}} MSE = E\left\{\left|z_{n} - d_{n-\Delta}\right|^{2}\right\} \implies \mathbf{c}^{*} = \sigma_{d}^{2} \left(\sigma_{d}^{2} \mathbf{H} \mathbf{H}^{H} + \sigma_{w}^{2} \mathbf{I}\right)^{-1} \mathbf{H} \mathbf{e}_{\Delta}$$

avec
$$\mathbf{e}_{\Delta} = \begin{bmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}^T$$

Les filtres changent à chaque durée symbole !!!

Deux structures équivalentes d'égaliseurs MMSE avec informations *a priori*

⊖ Canaux difficiles

Modulation MAQ4

Taux d'erreurs binaires après décodage en fonction du rapport signal à bruit

- Canal connu
- Codeur convolutif 7 / 5
- Entrelaceur aléatoire 256x256 bits

- \Rightarrow Amélioration successive des performances
- \Rightarrow IES totalement supprimée lorsque le RSB est suffisant | e

Modulation MAQ4

Taux d'erreurs binaires après décodage en fonction du rapport signal à bruit (Après 15 itérations)

- Canal connu
- Codeur convolutif 7/5
- Entrelaceur aléatoire 256x256 bits

 \Rightarrow performances du turbo égaliseur très proches de celles du turbo détecteur

 \Rightarrow complexité moindre pour le turbo égaliseur

$$\mathbf{y}_{n} = \mathbf{H}\mathbf{d}_{n} + \mathbf{w}_{n}$$

$$\mathbf{y}_{n} = \mathbf{H}\mathbf{d}_{n} + \mathbf{w}_{n}$$

$$\mathbf{y}_{n} = \mathbf{H}\mathbf{d}_{n} + \mathbf{w}_{n}$$

$$\mathbf{g}_{n} = \mathbf{h}_{eq} \wedge \mathbf{N} \left(\mu d_{n-\Delta}, \overline{\sigma}^{2}\right)$$

$$\mathbf{g}_{n,\mathbf{q}_{n}} = \mathbf{L}_{eq} \wedge L_{eq} \left(c_{n-\Delta,i}\right)$$

$$\mathbf{g}_{n,\mathbf{q}_{n}} = \mathbf{h}_{eq} \left(\overline{\sigma} + \mathbf{H}\mathbf{H}^{H} + \sigma_{w}^{2}\mathbf{I}\right)^{-1} \mathbf{H}\mathbf{e}_{\Delta}$$

$$\mathbf{g}_{n} = \mathbf{H}^{T}\mathbf{p} - \mu\mathbf{e}_{\Delta}$$

$$\mathbf{Approximation}: \quad \sigma_{n}^{2} \approx \overline{\sigma}^{2} = \frac{1}{K}\sum_{k=1}^{K} \sigma_{k}^{2}$$

Les filtres sont invariant sur une trame de taille K !!!

141

Cette structure s'adapte d'elle même suivant les itérations du turbo-égaliseur en fonction de la variance des données estimées

Comparaison des performances asymptotiques (grand entrelaceur) entre TE MAP, TE MMSE Tüchler et TE MMSE IC-LE

- Paquet de type GSM
- Turbo égaliseur MMSE
- Codage R=1/3 polynômes 133,171,145
- Entrelacement aléatoire bloc (X paquets soit 116.*m* bits codés)
- Canal stationnaire sur la durée d'un burst

- 8PSK : X=4 blocs entrelacés => 1392 bits codés

- forme d'onde GSM à l'émission (Décomposition de P.A. Laurent)
- filtre en racine de cosinus surélevé à la réception (roll-off=0.3)

Distribution des puissances moyennes des canaux testés

Modulation MDP8

Taux d'erreurs binaires après décodage en fonction du rapport signal à bruit

- Canaux de Rayleigh (iFH)
- Forme d' onde GMSK linéarisée
- Codeur convolutif 133,171,145
- Entrelaceur aléatoire sur 1392 bits répartis sur 4 bursts

La turbo égalisation peut être un candidat potentiel pour EDGE

L'égaliseur possède J+1 voies en entrée

- J antennes
- 1 voie de retour de l'information a priori du module précédent

Gain de diversité apporté par un traitement multi-antennes. On récupère la totalité de l'énergie et on supprime l'IES.

8PSK EGPRS/MCS5 Multi-capteurs **TE MMSE** Égaliseur IC-LE Codage R=0.37 1392 bits entrelacés 1392 sur 4 bursts Canal iFH par burst Canal connu

Obtention des coefficients des filtres

Turbo égaliseur MMSE avec estimation de canal :

- estimation des coefficients du canal par corrélation.
- détermination de l'égaliseur par calcul (inversion matricielle).
- réservé aux transmissions par paquets.
- charge de calcul relativement importante.

Turbo égaliseur MMSE adaptatif :

- actualisation des coefficients de l'égaliseur par un algorithme adaptatif.
- charge de calcul faible.
- nécessite des séquences d'entraînement parfois longues (perte de débit).

- 85 -

⊖ Séquence d'entraînement

$$\left\{d_n\right\}_{n=0,\cdots,L_{SA}-1}$$

- Séquence d'apprentissage ou d'entraînement
 - > données connues du récepteur
 - ➢ importance de la statistique de la séquence d'entraînement
 - réduction de l'efficacité spectrale de la transmission

⊖ Estimation du canal à la réception

En pratique, le récepteur nécessite l'estimation du canal

- Algorithmes MV, corrélation, EM, ...
- Algorithmes adaptatifs

86

8PSK
Mono-capteur
TE MMSE
Égaliseur IC-LE
1392 bits entrelacés
1392 sur 4 bursts
Canal iFH par burst

$$z_n = \sum_{l=0}^{N-1} c_l (n-1) y_{n-l} = \mathbf{c}_{n-1}^T \mathbf{y}_n \quad \text{avec} \quad \begin{cases} \mathbf{c}_n = [c_0(n) \cdots c_{N-1}(n)] \\ \mathbf{y}_n = [y(n) \cdots y(n-N+1)] \end{cases}$$

Algorithme LMS (Least Mean Square)

$$\mathbf{c}_n = \mathbf{c}_{n-1} - \mu_c (z_n - d_{n-\Delta}) \mathbf{y}_n^*$$

 μ_c pas d'adaptation de l'algorithme

⊕ Égaliseur <u>adaptatif</u> avec information a priori

RQ

Algorithme LMS (Least Mean Square)

Turbo-égaliseur MMSE : version adaptative [Glavieux, Laot, Labat 97]

⊖ Turbo-égalisation adaptative MMSE

Performances du turbo-égaliseur MMSE en régime adaptatif code convolutif (5,7) non récursif, entrelaceur pseudo-aléatoire 16384 bits, modulation MDP-2, canal Proakis C

Récepteur itératifs pour les systèmes MIMO

- émission par multiplexage spatial
- turbo-égalisation MMSE pour l'annulation d'interférences entre antennes
- Comparaison des performances entre OFDM et monoporteuse

⊙ Introduction aux systèmes MIM0

Technique de multiplexage spatial

- émission de symboles différents sur chaque antenne
- multiplie le débit par n_T sans augmenter la bande du signal émis

Canal MIMO : Rayleigh block fading channel

• IEA (interférences entre antennes)

93

• IES (interférences entre symboles

Minimisation du critère MMSE

⊖ Performances du turbo-égaliseur

• 8-PSK

95

- C(133,145,175)₈
- Système (2x2)
- 10 trajets

96

La transmission mono-porteuse avec égalisation permet d'exploiter la diversité des trajets multiples ce qui n'est pas le cas de l'OFDM.

⊖ Turbo-égalisation pour une modulation OFDM

L'OFDM exploite la diversité des trajets multiples par l'intermédiaire du codage de canal

⊖ Comparaison monoporteuse et OFDM

• 4-PSK

98

- C(5,7)₈
- Système (2x2)
- Trame 512 bits codés
- Canal Rayleigh
- 8 trajets

⊖ Comparaison monoporteuse et OFDM

- 16-QAM
- C(133,171)₈
- Système (2x2)
- Trame 512 bits codés
- Canal Rayleigh
- 8 trajets

- Récepteurs itératifs pour le CDMA
 - introduction au CDMA
 - voie descendante de l'UMTS
 - égalisation au niveau chip
 - turbo-égaliseur MMSE pour l'annulation d'interférences d'accès multiples

 L'interface radio des systèmes de communications mobiles 3G majoritaires (UMTS et cdma2000) est basée sur l'accès multiple à répartition par les codes (DS- CDMA)

- L'ensemble des utilisateurs du système transmettent leurs signaux simultanément dans la même bande de fréquences
- L'interférence (IAM, IEC) est le facteur limitant de la capacité !
- L'optimisation de l'efficacité du système nécessite la mise en oeuvre de techniques de réduction d'interférence avancées au récepteur

Détection multi-utilisateurs en CDMA (Turbo-CDMA)

Principe

02

Idée : exploiter les décisions de chaque décodeur pour améliorer la détection des différents utilisateurs, et réciproquement.

Différentes stratégies pour réaliser la détection multi-utilisateurs

- Détecteur MU selon le MAP
- Égaliseur MMSE, annulation d'interférence

En émission, les signaux sont

- Embrouillés par une séquence pseudoaléatoire longue dépendant de la cellule
- Le récepteur (mobile)
- Ne connaît que les codes qu'il doit décoder
- Est limité en ressources de calcul

- Parmi les techniques de réception traditionnelles en CDMA
- → Détection multi-utilisateurs (MMSE, décorrélateur, PIC/SIC)
- → seul le récepteur en râteau (RAKE) est utilisable

Mais les signaux issus d'une station de base sont

émis de façon synchrone

- L'interférence intra-cellulaire est
- étalés par des codes orthogonaux **créée par les trajets multiples**.

L'interférence peut être combattue par l'égalisation

⊖ L'égalisation au niveau chip

Modèle discret équivalent de la liaison descendante

04

⊖ L'égalisation au niveau chip

05

 Principe : retrouver le signal multi-utilisateurs au rythme chip, de façon a restaurer l'orthogonalité entre les codes avant le désétalement [Bossert & Frey 95, Klein 97]

⊖ Comparaison de performances

- Les utilisateurs ont une puissance identique
- Le récepteur linéaire MMSE est toujours meilleur que le RAKE

⊖ Les transmissions multi-codes (MC)

- L'UMTS alloue plusieurs codes d'étalement à l'utilisateur d'intérêt afin d'accroître son débit
 - pour atteindre 2Mbits/s en mode circuit (= 3 MC de FE 4)
 - dans le HSDPA (jusqu'à 15 MC de FE 16)
- Conséquence : le récepteur connaît une grande partie des codes actifs
 - ➔ Autorise l'emploi de récepteurs à soustraction d'interférence
 - Multipath interference cancellers (MPIC) [Higuchi et al 02]

le CDMA-IC-LE (égalisation au niveau chip avec informations *a priori*)

Analogue aux récepteurs itératifs [Wang&Poor 99, Rößler 02] mais...

...l'égaliseur n'est calculé qu'une fois par itération

Complexité réduite, mieux adaptée aux terminaux mobiles

Basé sur l'égaliseur IC-LE avec information a priori (Linear Equalizer – Interference Canceller) [Laot et al 2005]

- Première itération : aucune information disponible \mathbf{O}
- → Égaliseur linéaire MMSE
- Estimation parfaite des symboles & tous les codes connus -> Annuleur d'IEC MMSE \mathbf{O}
- Entre ces deux situations (codes inconnus) \bigcirc

- → Structure hybride

avec décodage de canal dans la boucle ⇒ CDMA-IC-LE *fiabilisé*

Récepteurs idéaux, MDP-4, code convolutif (7,5) R=1/2, décodage MAP BCJR, Canal de Rayleigh, 6 trajets, V=3 km/h.

- Le CDMA-IC-LE converge en 3 étages, 5 sont nécessaires au MPIC
- Gain de ~1 dB @ 10⁻³ par rapport au MPIC

Le diagramme EXIT introduit par Ten Brink permet l'analyse de manière théorique du comportement du turbo-égaliseur.

- caractérise indépendamment l'égaliseur et le décodeur (module).
- les entrées et sorties des modules sont supposées Gaussiennes.
- utilise l'information mutuelle d'entrée et de sortie du module.
- suppose un entrelacement de taille infinie.
- superpose les caractéristiques de l'égaliseur et du décodeur sur un même graphe.

• Objectif

Identifier les facteurs qui conditionnent la convergence du processus itératif en turbo-égalisation (seuil et rapidité de convergence).

- Diagrammes *EXtrinsic Information Transfer* (EXIT) [ten Brink, 99]
 - Notion d'information mutuelle moyenne (IMM)
 - $IA \rightarrow IMM$ associée à l'info. *a priori* ; $IE \rightarrow IMM$ associée à l'info. extrinsèque
 - Caractérisation des modules SISO ⇒ fonction de transfert IE = T(IA)

- MDP2
- Canal Proakis C

 $[0.227\ 0.46\ 0.688\ 0.46\ 0.227]$

Canal connuIC-LE MMSE

- Décodeur MAP
- Code 5,7

- Décodeur MAP 5,7
- Canal Proakis C
- Eb/N0 (codé) = 5dB

- Convergence avec stabilité pour *Iin* (décodeur) = 0.45

- 115

- Décodeur MAP 5,7
- Canal Proakis C
- Eb/N0 (codé) = 6dB

- Convergence avec stabilité pour *Iin* (décodeur) = 0.9

- Décodeur MAP

Iin (décodeur) = $0.45 \implies 5dB \implies Teb=1.10e-1$ *Iin* (décodeur) = $0.9 \implies 6 dB \implies Teb=2.10e-5$

⊖ Performances : canal Proakis C

- MDP2
- Décodeur MAP 5,7
- Canal connu

Les résultats obtenus sont cohérents avec les résultats prévus

Diagramme EXIT = superposition des fonctions de transfert de l'égaliseur et du décodeur sur un même graphe.

Influence de la sévérité du canal

- Canal facile à égaliser
 - > Seuil de déclenchement à faible RSB
 - > Progression lente vers les performances sans IES
- Canal sévère à égaliser
 - > Seuil de déclenchement à fort RSB
 - Progression rapide vers les performances sans IES

Influence du pouvoir de correction du code convolutif (mémoire)

- Augmenter la mémoire ⇒ meilleures performances asymptotiques …
- ... mais seuil de déclenchement plus élevé
- → Compromis à trouver dans le choix du code

⊖ Partie 6 : conclusions

- turbo égalisation : égalisation et décodage conjoints itératifs.
- performances asymptotiques identiques en turbo égalisation MAP et MMSE.
- annulation de l'IES dès lors que le RSB est suffisant.
- la turbo égalisation MMSE reste de complexité raisonnable (filtrage linéaire)
- les performances sont fonctions du type et de la taille de l'entrelaceur.
- un entrelacement important induit un délai important.
- possibilité d'étendre le concept aux systèmes CDMA.
- possibilité d'étendre le concept aux systèmes MIMO.
- l'égalisation mono-porteuse est une alternative à l'OFDM.
- analyse graphique de la convergence par les diagrammes EXIT.

La turbo-égalisation traite les interférences,

mais beaucoup de systèmes sont conçus pour éviter les interférences !

Égalisation numérique

- J. G. Proakis, *Digital Communications*, 4th edition. McGraw-Hill, New-York, 2000.
- S. U. H. Qureshi, "Adaptive Equalization", *Proc. IEEE*, vol. 73, n°9, pp. 1349-1387, Sept. 1985.
- J.-M. Brossier, Signal et Communication Numérique Egalisation et Synchronisation, Hermès, Paris, 1997.
- G. D. Forney Jr, "Maximum-Likelihood Sequence Estimation of Digital Sequences in the Presence of Intersymbol Interference", *IEEE Trans. Inform. Theory*, vol. IT-18, n°3, pp. 363-378, May 1972.
- A. Duel-Hallen and C. Heegard, "Delayed Decision Feedback Sequence Estimation," *IEEE Trans. Commun.*, Vol. 37, pp 428-436, May 1989.
- J.M. Cioffi, G.P. Dudevoir, M. Vedat Eyuboglu, G.D. Forney Jr., "MMSE Decision-Feedback Equalizers and Coding Part I: Equalization Results," *IEEE Trans. on Commun.,* Vol 43, NO. 10, Oct. 1995.
- M. Bossert, T. Frey, "Interference Cancellation in the Synchronous Downlink of CDMA-Systems," *ITG-FACHTAGUNG: Mobile Kommunikation*, Sept. 1995.
- N. Al-Dhahir and J. M. Cioffi, "MMSE Decision-Feedback Equalizers: Finite-Length Results," IEEE Trans. On Information Theory, Vol. 41, N0. 4, July 1995.
- A. Gersho and T.L. Lim, "Adaptive cancellation of intersymbol interference for data transmission," *Bell Syst.Tech. J.*, vol 60, n°11, pp. 1997-2021, Nov. 1981.
- M.S. Muller and J. Salz, "A unified theory of data-aided equalization," *Bell Syst.Tech. J.,* vol 60, n°9, pp. 2023-2038, Nov. 1981.
- A.M. Chan, G.W. Wornell, "A Class of Block-Iterative Equalizers for Intersymbols Interference Channels : Fixed Channels Results," IEEE Trans. On Communications, VOL. 49, N0. 11, November 2001.

- Turbo-égalisation (ouvrages)
 - Codes et turbocodes, collection IRIS, sous la direction de C. Berrou, édition springer, 2007.
 - Signal et Télecoms, collection traitement du signal et de l'image IC2, sous la direction de P. Loubaton, édition Lavoisier- Hermès, 2004
- Turbo-égalisation SOVA
 - C. Douillard et al, "Iterative Correction of Intersymbol Interference : Turbo-Equalization", ETT, vol. 6, n°5, pp. 507-511, Sept.-Oct. 1995
 - P. Didier, *La Turbo-Égalisation et son Application aux Communications Radio-Mobiles*, Thèse de l'UBO, Brest, France, Dec. 1996
- Turbo-égalisation MAP
 - G. Bauch et al, "*Iterative Equalization and Decoding in Mobile Communication Systems*", EPMCC'97, Bonn, Germany, pp. 307-312, Sept-Oct. 1997
 - G. Bauch and V. Franz, "A Comparison of Soft-In Soft-Out Algorithms for Turbo-Detection", ICT'98, Porto Carras, Greece, pp. 259-263, Jun. 1998
- Turbo-égalisation MAP à complexité réduite
 - B. Penther et al, "A Modified Turbo-Detector for Long Delay Spread Channels", ISTC'00, Brest, France, pp. 295-298, Sept. 2000
 - R. Visoz, Iterative and Joint Processing for Wireless Mobile Systems, Thèse de l'ENST, Paris, 2000
 - M.V. Eyuboglu and S.U. Qureshi, "Reduced-State Sequence Estimation with Set Partitionning and Decision Feedback," *IEEE Trans. Commun.*, Vol. 36, pp. 13-20, Jan. 1988.
 - A. Duel-Hallen and C. Heegard, "Delayed Decision Feedback Sequence Estimation," *IEEE Trans. Commun.*, Vol. 37, pp 428-436, May 1989.

- Turbo-égalisation MMSE
 - C. Laot, "égalisation autodidacte et turbo-égalisation", Thèse de l'université de Rennes 1, 1997.
 - M. Tuechler, R. Koetter, A.C. Singer, "Turbo Equalization: principles and new results," *IEEE Trans. on Communications*, 2002.
 - R. Le Bidan, "Turbo-equalization for bandwith-efficient digital communications over frequency-selective channels", thèse de l'INSA de Rennes, le 7 novembre 2003.
 - C. Langlais, "Etude et amélioration d'une technique de réception numérique itérative : turbo-égalisation", Thèse e l'INSA de Rennes, le 18 novembre 2002.
 - R. Kötter, A. Singer and M. tüchler, "turbo equalization", IEEE Signal Proc. Mag., January 2004.
 - A. Roumy. " Egalisation et décodage conjoints : méthodes Turbo" Thèse Université de Cergy-Pontoise, 2000.
 - D. Reynolds and X. Wang, « Low-complexity Turbo-equalization for diversity channels, » Signal Processing, vol. 81, no. 5, pp. 989-995, May 2001.
- Turbo-CDMA
 - X. Wang and V. Poor, "Iterative (Turbo) Soft Interference Cancellation and Decoding for Coded CDMA," *IEEE Trans. Commun.*, Vol. 47, pp. 1046-1061, July 1999.
 - Eric Hardouin, "Egalisation au niveau chip pour la liaison descendante des systèmes de communications mobiles DS-CDMA", le 10 mai 2004
- Turbo-Détection pour les systèmes MIMO
 - G. Bauch and N. Al-Dhahir, "*Reduced Complexity Space-Time Turbo-Equalization for Frequency Selective MIMO channels*", IEEE Trans. Wireless. Commun, vol. 1, n°4, pp. 819-828, Oct. 2002
 - P.J. Bouvet, "Récepteurs itéraifs pour systèmes multi-antennes", Thèse de l'INSA de Rennes, 13 décembre 2005
 - N. Le Josse, Turbo-égalisation MIMO pour une transmission ST-BICM sur canaux sélectifs en fréquence, 2007.
 - Xavier Wautelet, Antoine Dejonghe, and Luc Vanderdorpe, « MMSE-Based Fractional Turbo Receiver for Space-Time BICM Over Frequency-Selective MIMO Fading Cahnnels, » IEEE Transactions on Signal Processing, vol. 52, no. 6, June 2004.

