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Understand the difference between clustering and classification

Understand when to apply clustering

Understand the EM algorithm

Being able to derive the EM updates of a mixture models

Being able to learn by yourself!
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What is clustering

The goal is to identify some structure in the .data

Typically groups of data points sharing same properties

Falls into unsupervised learning bucket (as opposed to classification)

Discovered structure is based on some strong assumptions about the data
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Mixture models
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Mixture of Gaussians

pθk
(x) = Gaussian(µk ,Σk).

How shall we learn the parameters?

By maximimum likelihood?

ln
∏
i

p(x i ) =
∑
i

ln
∑
k

πkGaussian(µk ,Σk).

No closed form solution :-(
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Mixture models: latent variable view
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Some definitions

The differential entropy is defined as

H[p(x)] = −
∫

p(x) ln p(x) dx .

The entropy of a Gaussian random variable is given by D
2 ln 2πe + 1

2 ln |Σ|.

The Kullback-Leibler divergence measures the difference between two
densities:

KL[q‖p] =

∫
q(x) ln

q(x)

p(x)
dx > 0.

The KL is asymmetric (thus not a distance) and only zero if q(x) = p(x) for
all x .
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Expectation-Maximisation (EM)

The EM algorithm maximises a lower bound to the log-marginal likelihood (in
presence of latent variables, like parameters):

Using Jensen’s inequality, we get for a distribution q(Z ) within a tractable
family:

ln p(x |θ) = ln

∫
p(x ,Z |θ)dZ

>
∫

q(Z ) ln
p(x ,Z |θ)

q(Z )
dZ

≡ −F(q,θ).

The quantity F(q,θ) can be interpretted as the (variational) free energy
from statistical physics.
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EM algorithm

The variational free energy F(q,θ) can be decomposed into two different ways:

−F(q,θ) = ln p(x |θ)−KL[q(Z )‖p(Z |x ,θ)], (E step)

−F(q,θ) = 〈ln p(x ,Z |θ)〉q(Z) + H[q(Z )]. (M step)

EM maximises the lower bound by alternating between these two steps; it
converges to local optimum of ln p(x |θ).

By construction, the EM algorithm ensures a monotonic increase of the
bound.

Still ok if q is a good approximation of the true posterior (approximate E
step).

EM can be viewed as type II maximum likelihood (ML2).
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EM in pictures

ln p(X|θ)L(q,θ)

KL(q||p)

ln p(X|θold)L(q,θold)

KL(q||p) = 0

ln p(X|θnew)L(q,θnew)

KL(q||p)

Maximise lower bound by alternating between:

E step: Set q(Z ) = p(Z |x ,θ) for fixed θ.
M step: Maximise 〈ln p(x ,Z |θ)〉 for given q(Z ).

Gradient ascent to local maxima of ln p(x |θ).
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Mixture of Gaussians

xn
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N

µ Σ

π

p(x |z) = Gaussian(µz ,Σz),

P(z) = Categorical (π) .

Log-complete likelihood:

ln
∏
i

p(x i , zi ) =
∑
i

∑
k

δk(zi ) (lnπk + lnGaussian(µk ,Σk)) .

Responsibilities (E step):

ρki ≡ P(z = k|x i ) =
πkGaussian (µk ,Σk)∑
l πlGaussian (µl ,Σl)

. (?)
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Mixture of Gaussians (Old Faithful geyser data)
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Relation to Kmeans

1 Assign data point x i to its closest cluster:

rki =

{
1 if k = arg minl ‖x i − µl‖2,
0 otherwise.

2 Recompute the cluster means after having assigned all data points.

Let us consider pθk
(x) = Gaussian(µk , εI ):

ρki =
πk exp

(
− 1

2ε‖x i − µk‖2
)∑

l πl exp
(
− 1

2ε‖x i − µl‖2
) .
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Other use cases?

Density estimation:
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Failure mode

x

p(x)



Probabilistic principal component analysis (PPCA)

PCA is a standard pre-processing tool for (linear)
dimensionality reduction.

It uses a maximal variance criterion (or minimal
mean squared reconstruction error).

Standard algorithms are O(D3) (e.g. Gaussian
elimination).
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PPCA assumes a single Gaussian latent variable
and a Gaussian likelihood.

ML solution spans same subspace as PCA
solution.

Standard EM is O(DNd) per iteration.
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Probabilistic principal component analysis (PPCA)

x i = Wz i + µ + εi

xn

zn

N

µ

σ2

W

Likelihood (noise model):

x i |z i ∼ Gaussian(Wz i + µ, σ2ID).

Continuous latent variable:

z i ∼ Gaussian(0, I d).

ML estimate of the projection matrix: W = Ud(Λd − σ2I d)1/2R.

ML estimate is equivalent to PCA solution up to a rotation R.

Residual variance σ2 is given by 1
D−d

∑
j>d λj .
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PPCA: interpretation
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p(x) = Gaussian(µ,WW> + σ2ID).
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Mixtures of probabilistic principal component analysers

p(x) =
∑

kπkp(x |z = k),

p(x |z = k) = Gaussian(µk ,W kW>
k + σ2ID),

P(z) = Categorical (π) .

Clustering (very) high-dimensional data:
I Stable due to low rank approximation of the covariance matrices.
I Captures correlations between local leading directions.
I Rotational ambiguity vanishes.

Combining local analysers to obtain nonlinear generative models.

Possible issues are component misalignments and dimension mismatches.
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Can we fix this?

Models based on Gaussian noise are sensitive to outliers!

A robust reformulation is based on the Student-t density:
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Replace the Gaussian components by Student-t components:

p(x) =
∑

kπkp(x |z = k),

p(x |z = k) = Student(µk ,W kW>
k + σ2ID , νk),

P(z) = Categorical (π) .
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Multivariate Student-t density

The Student-t density is defined as follows:1

Student(µ,Σ, ν) =
Γ(ν+D

2 )

Γ(ν2 )(νπ)D/2|Σ|1/2

(
1 +

1

ν
(x − µ)>Σ−1(x − µ)

)− ν+D
2

.

Parameter ν > 0 is the shape parameter:

The Cauchy density is recovered for ν = 1.

The Gaussian density is recovered when ν →∞.

The Student-t density can be reformulated as an infinite mixture of scaled
Gaussians:

Student(µ,Σ, ν) =

∫ ∞
0

Gaussian(µ,Σ/u) Gamma(ν2 ,
ν
2 ) du,

where u is a (latent) scale parameter.

1Student’s t density was published in 1908 by William S. Gosset, while he worked at Guinness
Brewery in Dublin and was not allowed to publish under his own name.
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Gamma density

For x ∈ R+, the Gamma density is defined as follows:

Gamma(α, β) =
βα

Γ(α)
xα−1 exp{−βx}, α, β > 0,

where Γ(u) ≡
∫∞

0
vu−1e−vdv is the gamma function.
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Example (revisited)
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(b) Robust PPCA.



USPS handwritten digits 2 and 3

USPS data set: 16× 16 pixels images of digits (0 to 9).

Only (respectively 731 and 658) images of digits 2 and 3 are kept.

100 (randomly chosen) images of digit 0.

Mixture of PPCAs. Mixture of robuts PPCAs.

Standard mixture of Gaussians and diagonal mixtures collapse...
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Revisiting the digit recognition problem

Pixelised digits converted from grey scale to binary images by thresholding.

Images are represented by a binary vector x = (x1, . . . , xd).

Goal is to cluster the images (∼recognise digit automatically):

P(x) =
∑
k

πkPθk
(x),

∑
k

πk = 1, πk > 0.

Each component is a product of Bernoulli distributions:

Pθk
(x) =

∏
j

Bernoulli(µkj).
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Mixture of Bernoulli distributions

x

z

P(x |z) =
∏
j

Bernoulli(µzj),

P(z) = Categorical (π) .

Log-complete likelihood:

ln
∏
i

p(x i , zi ) =
∑
i

∑
k

δk(zi )

lnπk +
∑
j

lnBernoulli(µzj)

 .

Responsibilities (E step):

ρki ≡ P(z = k|x i ) =
πk
∏

j Bernoulli (µkj)∑
l πl
∏

j Bernoulli (µlj)
.

Mean and mixture proportions (M step):

µk =
1

nk

∑
i

ρikx i , πk =
nk
n
, nk=

∑
i

ρik .



Mixture of Bernoulli distributions

x

z

P(x |z) =
∏
j

Bernoulli(µzj),

P(z) = Categorical (π) .

Log-complete likelihood:

ln
∏
i

p(x i , zi ) =
∑
i

∑
k

δk(zi )

lnπk +
∑
j

lnBernoulli(µzj)

 .

Responsibilities (E step):

ρki ≡ P(z = k|x i ) =
πk
∏

j Bernoulli (µkj)∑
l πl
∏

j Bernoulli (µlj)
.

Mean and mixture proportions (M step):

µk =
1

nk

∑
i

ρikx i , πk =
nk
n
, nk=

∑
i

ρik .



Mixture of Bernoulli distributions

x

z

P(x |z) =
∏
j

Bernoulli(µzj),

P(z) = Categorical (π) .

Log-complete likelihood:

ln
∏
i

p(x i , zi ) =
∑
i

∑
k

δk(zi )

lnπk +
∑
j

lnBernoulli(µzj)

 .

Responsibilities (E step):

ρki ≡ P(z = k |x i ) =
πk
∏

j Bernoulli (µkj)∑
l πl
∏

j Bernoulli (µlj)
.

Mean and mixture proportions (M step):

µk =
1

nk

∑
i

ρikx i , πk =
nk
n
, nk=

∑
i

ρik .



Mixture of Bernoulli distributions

x

z

P(x |z) =
∏
j

Bernoulli(µzj),

P(z) = Categorical (π) .

Log-complete likelihood:

ln
∏
i

p(x i , zi ) =
∑
i

∑
k

δk(zi )

lnπk +
∑
j

lnBernoulli(µzj)

 .

Responsibilities (E step):

ρki ≡ P(z = k |x i ) =
πk
∏

j Bernoulli (µkj)∑
l πl
∏

j Bernoulli (µlj)
.

Mean and mixture proportions (M step):

µk =
1

nk

∑
i

ρikx i , πk =
nk
n
, nk=

∑
i

ρik .



Cluster means

3 components

1 component



Cluster means

3 components 1 component



Outline

1 What is clustering?

2 Mixture models

3 Admixtures

4 Summary

5 Exercises



Admixtures

Mixture model:

π∼ Dirichlet (α),

zi |π ∼ Categorical (π) ,

x i |zi ∼ pθzi
(x i ).

Admixture model:

πi ∼ Dirichlet (α) ,

zij |πi∼ Categorical (πi ),

x ij |zij ∼ pθzij
(x ij).
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Dirichlet distribution

µ ∼ Dirichlet (α) =
Γ(
∑

j αj)∏
j Γ(αj)

∏
j

µ
αj−1
j , αj > 0.

Conjugate prior to the Multinomial distribution (and Categorical):

p(µ|x) ∝ P(x |µ)p(µ) ∝
∏
j

µ
xj+αj−1
j .

Defines a distribution over the simplex:∑
j

µj = 1, µj > 0.
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Topic models

Extremely popular (e.g., more than 14k citations in Google Scholar)

Organise and browse large document collections

Capture underlying semantic structure (in an unsupervised way)

Easily extended to discover trends, to account for the author, to model
multilingual documents, to relate to the social network, etc.
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Latent Dirichlet allocation (LDA) (Blei et al., JMLR 2003)

document index
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Observations are word counts per
document. LDA assumes an admix-
ture model:

X ∈ NV×D ,

xd ∼
Nd∏
i=1

∑
k

θkdCategorical(φk).

LDA infers a low-rank approximation of the matrix of counts:

E (X) ≈ ΦΘ>, xd ∼ Multinomial(Φθd ,Nd)

where Φ ∈ RV×K
+ , Θ ∈ RD×K

+ and K is small.

Simple generative model for text, based on a bag-of-words representation.
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Generative model for documents

Let V be the size of the vocabulary and K the number of topics.

Topic k is defined as the categorical distribution φk over the vocabulary.

Document d is summarised as a mixture of these topics.

Document d is generated as follows:
1 The number of words Nd in document d is drawn from a Poisson.

2 The topic proportions θd in document d are drawn from a Dirichlet; this vector
defines a categorical distribution over the topics.

3 The topic zi associated to word wi is drawn from θd ; word wi is then drawn from
the categorical distribution φzi .
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Graphical model and inference

D
Nd K

α θd zi wi φk β

θd ∼ Dirichlet (α1K ) , zi |θd ∼ Categorical(θd),

φk ∼ Dirichlet (β1V ) , wi |zi , {φk}Kk=1 ∼ Categorical(φzi ).

Collapsed Gibbs sampler (Griffiths and Steyvers, PNAS 2004):

p(zi = k|w , z\i ) ∝ p(w |z)p(z) ∝ (α + n
\i
·kd)(β + n

\i
vk·)

Vβ + n
\i
·k·

,

where nvkd is the number of times word v is assigned to topic k in document d .
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Applications and extensions of topic models

Author topic model

Topics over time

N-gram topic models

Hierarchical topic models

Multi-lingual topic models

Topic model for images

Population genetics

. . .
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Summary

Gaussian, Student, Bernoulli mixtures

Alternative view of EM algorithm

Latent Dirichlet Allocation
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Exercise

Derive the M step for a mixture of Gaussians.
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