Pseudo-marginal MCMC methods for inference in latent variable models

Arnaud Doucet
Department of Statistics, Oxford University Joint work with George Deligiannidis (Oxford) \& Mike Pitt (Kings)

$$
07 / 07 / 2016
$$

Organization of the talk

- Latent variable models

Organization of the talk

- Latent variable models
- The pseudo-marginal method

Organization of the talk

- Latent variable models
- The pseudo-marginal method
- Optimal tuning

Organization of the talk

- Latent variable models
- The pseudo-marginal method
- Optimal tuning
- The correlated pseudo-marginal method

Organization of the talk

- Latent variable models
- The pseudo-marginal method
- Optimal tuning
- The correlated pseudo-marginal method
- Illustrations

Latent Variable Models

- Assume

$$
X_{t} \stackrel{\text { i.i.d. }}{\sim} \mu_{\theta}(\cdot), \quad Y_{t} \mid\left(X_{t}=x\right) \sim g_{\theta}(\cdot \mid x) \text { for } t=1, \ldots, T
$$

where $\left(X_{t}\right)_{t \geq 1}$ are latent variables and $\left(Y_{t}\right)_{t \geq 1}$ correspond to observations.

Latent Variable Models

- Assume

$$
X_{t} \stackrel{\text { i.i.d. }}{\sim} \mu_{\theta}(\cdot), \quad Y_{t} \mid\left(X_{t}=x\right) \sim g_{\theta}(\cdot \mid x) \text { for } t=1, \ldots, T
$$

where $\left(X_{t}\right)_{t \geq 1}$ are latent variables and $\left(Y_{t}\right)_{t \geq 1}$ correspond to observations.

- The likelihood of $Y_{1: T}=y_{1: T}$ for parameter $\theta \in \mathbb{R}^{d}$ is

$$
p_{\theta}\left(y_{1: T}\right)=\prod_{t=1}^{T} p_{\theta}\left(y_{t}\right), \text { where } p_{\theta}\left(y_{t}\right)=\int \mu_{\theta}\left(x_{t}\right) g_{\theta}\left(y_{t} \mid x_{t}\right) \mathrm{d} x_{t}
$$

Latent Variable Models

- Assume

$$
X_{t} \stackrel{\text { i.i.d. }}{\sim} \mu_{\theta}(\cdot), \quad Y_{t} \mid\left(X_{t}=x\right) \sim g_{\theta}(\cdot \mid x) \text { for } t=1, \ldots, T
$$

where $\left(X_{t}\right)_{t \geq 1}$ are latent variables and $\left(Y_{t}\right)_{t \geq 1}$ correspond to observations.

- The likelihood of $Y_{1: T}=y_{1: T}$ for parameter $\theta \in \mathbb{R}^{d}$ is

$$
p_{\theta}\left(y_{1: T}\right)=\prod_{t=1}^{T} p_{\theta}\left(y_{t}\right), \text { where } p_{\theta}\left(y_{t}\right)=\int \mu_{\theta}\left(x_{t}\right) g_{\theta}\left(y_{t} \mid x_{t}\right) \mathrm{d} x_{t}
$$

- In many scenarios, $p_{\theta}\left(y_{1: T}\right)$ cannot be evaluated exactly.

Example: Multivariate Probit model

- Multivariate latent Gaussian variables

$$
X_{t}=Z_{t} \beta+\varepsilon_{t}, \quad \varepsilon_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0, R) .
$$

Example: Multivariate Probit model

- Multivariate latent Gaussian variables

$$
X_{t}=Z_{t} \beta+\varepsilon_{t}, \quad \varepsilon_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0, R) .
$$

- Multivariate binary observations

$$
Y_{t i}=\mathbb{I}\left(X_{t i} \geq 0\right), \quad i=1, \ldots, n
$$

Example: Multivariate Probit model

- Multivariate latent Gaussian variables

$$
X_{t}=Z_{t} \beta+\varepsilon_{t}, \quad \varepsilon_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0, R) .
$$

- Multivariate binary observations

$$
Y_{t i}=\mathbb{I}\left(X_{t i} \geq 0\right), \quad i=1, \ldots, n
$$

- Likelihood of (β, R) is the product of T integrals of n-dimensional truncated multivariate normals.

State-Space Models

- Assume $\left\{X_{t}\right\}_{t \geq 1}$ is a latent Markov process, i.e. $X_{1} \sim \mu_{\theta}(\cdot)$ and

$$
X_{t+1}\left|\left(X_{t}=x\right) \sim f_{\theta}(\cdot \mid x), \quad Y_{t}\right|\left(X_{t}=x\right) \sim g_{\theta}(\cdot \mid x)
$$

State-Space Models

- Assume $\left\{X_{t}\right\}_{t \geq 1}$ is a latent Markov process, i.e. $X_{1} \sim \mu_{\theta}(\cdot)$ and

$$
X_{t+1}\left|\left(X_{t}=x\right) \sim f_{\theta}(\cdot \mid x), \quad Y_{t}\right|\left(X_{t}=x\right) \sim g_{\theta}(\cdot \mid x)
$$

- The likelihood of observations $Y_{1: T}=y_{1: T}$ is

$$
p_{\theta}\left(y_{1: T}\right)=\int p_{\theta}\left(x_{1: T}, y_{1: T}\right) \mathrm{d} x_{1: T}
$$

where

$$
p_{\theta}\left(x_{1: T}, y_{1: T}\right)=\mu_{\theta}\left(x_{1}\right) g_{\theta}\left(y_{1} \mid x_{1}\right) \prod_{t=2}^{T} f_{\theta}\left(x_{t} \mid x_{t-1}\right) g_{\theta}\left(y_{t} \mid x_{t}\right)
$$

State-Space Models

- Assume $\left\{X_{t}\right\}_{t \geq 1}$ is a latent Markov process, i.e. $X_{1} \sim \mu_{\theta}(\cdot)$ and

$$
X_{t+1}\left|\left(X_{t}=x\right) \sim f_{\theta}(\cdot \mid x), \quad Y_{t}\right|\left(X_{t}=x\right) \sim g_{\theta}(\cdot \mid x)
$$

- The likelihood of observations $Y_{1: T}=y_{1: T}$ is

$$
p_{\theta}\left(y_{1: T}\right)=\int p_{\theta}\left(x_{1: T}, y_{1: T}\right) \mathrm{d} x_{1: T}
$$

where

$$
p_{\theta}\left(x_{1: T}, y_{1: T}\right)=\mu_{\theta}\left(x_{1}\right) g_{\theta}\left(y_{1} \mid x_{1}\right) \prod_{t=2}^{T} f_{\theta}\left(x_{t} \mid x_{t-1}\right) g_{\theta}\left(y_{t} \mid x_{t}\right) .
$$

- State-space models are ubiquitous in time series analysis but inference is difficult as $p_{\theta}\left(y_{1: T}\right)$ is intractable for non-linear/non-Gaussian models.

Stochastic kinetic model - Lotka-Volterra

- Two species X_{s}^{1} (prey) and X_{s}^{2} (predator)

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{s+d s}^{1}=x_{s}^{1}+1, X_{s+d s}^{2}=x_{s}^{2} \mid x_{s}^{1}, x_{s}^{2}\right)=\alpha x_{s}^{1} d s+o(d s), \\
& \operatorname{Pr}\left(X_{s+d s}^{1}=x_{s}^{1}-1, X_{s+d s}^{2}=x_{s}^{2}+1 \mid x_{s}^{1}, x_{s}^{2}\right)=\beta x_{s}^{1} x_{s}^{2} d s+o(d s), \\
& \operatorname{Pr}\left(X_{s+d s}^{1}=x_{t}^{1}, X_{s+d s}^{2}=x_{s}^{2}-1 \mid x_{s}^{1}, x_{s}^{2}\right)=\gamma x_{s}^{2} d s+o(d s),
\end{aligned}
$$

observed at discrete times

$$
Y_{t}=X_{\Delta t}^{1}+W_{t} \text { with } W_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)
$$

Stochastic kinetic model - Lotka-Volterra

- Two species X_{s}^{1} (prey) and X_{s}^{2} (predator)

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{s+d s}^{1}=x_{s}^{1}+1, X_{s+d s}^{2}=x_{s}^{2} \mid x_{s}^{1}, x_{s}^{2}\right)=\alpha x_{s}^{1} d s+o(d s), \\
& \operatorname{Pr}\left(X_{s+d s}^{1}=x_{s}^{1}-1, X_{s+d s}^{2}=x_{s}^{2}+1 \mid x_{s}^{1}, x_{s}^{2}\right)=\beta x_{s}^{1} x_{s}^{2} d s+o(d s), \\
& \operatorname{Pr}\left(X_{s+d s}^{1}=x_{t}^{1}, X_{s+d s}^{2}=x_{s}^{2}-1 \mid x_{s}^{1}, x_{s}^{2}\right)=\gamma x_{s}^{2} d s+o(d s),
\end{aligned}
$$

observed at discrete times

$$
Y_{t}=X_{\Delta t}^{1}+W_{t} \text { with } W_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)
$$

- Kinetic rate constants $\theta=(\alpha, \beta, \gamma)$.

Other Applications

- State-space models are ubiquitous: 16,700 hits on Google Scholar since January 2015.

Other Applications

- State-space models are ubiquitous: 16,700 hits on Google Scholar since January 2015.
- Econometrics: stochastic volatility models.

Other Applications

- State-space models are ubiquitous: 16,700 hits on Google Scholar since January 2015.
- Econometrics: stochastic volatility models.
- Epidemiology: disease dynamic models.

Other Applications

- State-space models are ubiquitous: 16,700 hits on Google Scholar since January 2015.
- Econometrics: stochastic volatility models.
- Epidemiology: disease dynamic models.
- Ecology: population dynamics.

Other Applications

- State-space models are ubiquitous: 16,700 hits on Google Scholar since January 2015.
- Econometrics: stochastic volatility models.
- Epidemiology: disease dynamic models.
- Ecology: population dynamics.
- Environmentrics: phytoplankton-zooplankton model, paleoclimate reconstruction.

Other Applications

- State-space models are ubiquitous: 16,700 hits on Google Scholar since January 2015.
- Econometrics: stochastic volatility models.
- Epidemiology: disease dynamic models.
- Ecology: population dynamics.
- Environmentrics: phytoplankton-zooplankton model, paleoclimate reconstruction.
- Macroeconomics: dynamic generalized stochastic equilibrium.

Other Applications

- State-space models are ubiquitous: 16,700 hits on Google Scholar since January 2015.
- Econometrics: stochastic volatility models.
- Epidemiology: disease dynamic models.
- Ecology: population dynamics.
- Environmentrics: phytoplankton-zooplankton model, paleoclimate reconstruction.
- Macroeconomics: dynamic generalized stochastic equilibrium.
- Signal Processing: target tracking.

Other Applications

- State-space models are ubiquitous: 16,700 hits on Google Scholar since January 2015.
- Econometrics: stochastic volatility models.
- Epidemiology: disease dynamic models.
- Ecology: population dynamics.
- Environmentrics: phytoplankton-zooplankton model, paleoclimate reconstruction.
- Macroeconomics: dynamic generalized stochastic equilibrium.
- Signal Processing: target tracking.
- Systems biology: stochastic kinetic models.

Bayesian Inference for Latent Variable Models

- Prior distribution of density $p(\theta)$.

Bayesian Inference for Latent Variable Models

- Prior distribution of density $p(\theta)$.
- Likelihood function $p_{\theta}\left(y_{1: T}\right)$.

Bayesian Inference for Latent Variable Models

- Prior distribution of density $p(\theta)$.
- Likelihood function $p_{\theta}\left(y_{1: T}\right)$.
- Bayesian inference relies on the posterior

$$
\pi(\theta)=p\left(\theta \mid y_{1: T}\right)=\frac{p_{\theta}\left(y_{1: T}\right) p(\theta)}{\int_{\Theta} p_{\theta^{\prime}}\left(y_{1: T}\right) p\left(\theta^{\prime}\right) \mathrm{d} \theta^{\prime}}
$$

Bayesian Inference for Latent Variable Models

- Prior distribution of density $p(\theta)$.
- Likelihood function $p_{\theta}\left(y_{1: T}\right)$.
- Bayesian inference relies on the posterior

$$
\pi(\theta)=p\left(\theta \mid y_{1: T}\right)=\frac{p_{\theta}\left(y_{1: T}\right) p(\theta)}{\int_{\Theta} p_{\theta^{\prime}}\left(y_{1: T}\right) p\left(\theta^{\prime}\right) \mathrm{d} \theta^{\prime}}
$$

- For non-trivial models, inference relies typically on MCMC.

Standard MCMC Approaches

- Standard MCMC schemes target $p\left(\theta, x_{1: T} \mid y_{1: T}\right)$ where

$$
p\left(\theta, x_{1: T} \mid y_{1: T}\right) \propto p(\theta) p_{\theta}\left(x_{1: T}, y_{1: T}\right)
$$

using Gibbs type strategy; i.e. sample alternately $X_{1: T} \sim p_{\theta}\left(\cdot \mid y_{1: T}\right)$ and $\theta \sim p\left(\cdot \mid y_{1: T}, X_{1: T}\right)$.

Standard MCMC Approaches

- Standard MCMC schemes target $p\left(\theta, x_{1: T} \mid y_{1: T}\right)$ where

$$
p\left(\theta, x_{1: T} \mid y_{1: T}\right) \propto p(\theta) p_{\theta}\left(x_{1: T}, y_{1: T}\right)
$$

using Gibbs type strategy; i.e. sample alternately $X_{1: T} \sim p_{\theta}\left(\cdot \mid y_{1: T}\right)$ and $\theta \sim p\left(\cdot \mid y_{1: T}, X_{1: T}\right)$.

- Problem 1: it can be difficult to sample $p_{\theta}\left(x_{1: T} \mid y_{1: T}\right)$; e.g. state-space models.

Standard MCMC Approaches

- Standard MCMC schemes target $p\left(\theta, x_{1: T} \mid y_{1: T}\right)$ where

$$
p\left(\theta, x_{1: T} \mid y_{1: T}\right) \propto p(\theta) p_{\theta}\left(x_{1: T}, y_{1: T}\right)
$$

using Gibbs type strategy; i.e. sample alternately $X_{1: T} \sim p_{\theta}\left(\cdot \mid y_{1: T}\right)$ and $\theta \sim p\left(\cdot \mid y_{1: T}, X_{1: T}\right)$.

- Problem 1: it can be difficult to sample $p_{\theta}\left(x_{1: T} \mid y_{1: T}\right)$; e.g. state-space models.
- Problem 2: Even when it is implementable, Gibbs can converge very slowly.

Standard MCMC Approaches

- Standard MCMC schemes target $p\left(\theta, x_{1: T} \mid y_{1: T}\right)$ where

$$
p\left(\theta, x_{1: T} \mid y_{1: T}\right) \propto p(\theta) p_{\theta}\left(x_{1: T}, y_{1: T}\right)
$$

using Gibbs type strategy; i.e. sample alternately $X_{1: T} \sim p_{\theta}\left(\cdot \mid y_{1: T}\right)$ and $\theta \sim p\left(\cdot \mid y_{1: T}, X_{1: T}\right)$.

- Problem 1: it can be difficult to sample $p_{\theta}\left(x_{1: T} \mid y_{1: T}\right)$; e.g. state-space models.
- Problem 2: Even when it is implementable, Gibbs can converge very slowly.
- Pseudo-marginal methods mimick an algorithm targetting directly $p\left(\theta \mid y_{1: T}\right)$ instead of $p\left(\theta, x_{1: T} \mid y_{1: T}\right)$.

Ideal Marginal Metropolis-Hastings algorithm

- Metropolis-Hastings (MH) algorithm simulates an ergodic Markov chain $\left\{\vartheta_{i}\right\}_{i \geq 1}$ of limiting distribution $\pi(\theta)$.

Ideal Marginal Metropolis-Hastings algorithm

- Metropolis-Hastings (MH) algorithm simulates an ergodic Markov chain $\left\{\vartheta_{i}\right\}_{i \geq 1}$ of limiting distribution $\pi(\theta)$.

Ideal Marginal Metropolis-Hastings algorithm

- Metropolis-Hastings (MH) algorithm simulates an ergodic Markov chain $\left\{\vartheta_{i}\right\}_{i \geq 1}$ of limiting distribution $\pi(\theta)$.
At iteration i
- Sample $\vartheta \sim q\left(\cdot \mid \vartheta_{i-1}\right)$.

Ideal Marginal Metropolis-Hastings algorithm

- Metropolis-Hastings (MH) algorithm simulates an ergodic Markov chain $\left\{\vartheta_{i}\right\}_{i \geq 1}$ of limiting distribution $\pi(\theta)$.

At iteration i

- Sample $\vartheta \sim q\left(\cdot \mid \vartheta_{i-1}\right)$.
- With probability
$\min \left\{1, \frac{\pi(\vartheta)}{\pi\left(\vartheta_{i-1}\right)} \frac{q\left(\vartheta_{i-1} \mid \vartheta\right)}{q\left(\vartheta \mid \vartheta_{i-1}\right)}\right\}=\min \left\{1, \frac{p_{\vartheta}\left(y_{1: T}\right) p(\vartheta)}{p_{\vartheta_{i-1}}\left(y_{1: T}\right) p\left(\vartheta_{i-1}\right)} \frac{q\left(\vartheta_{i-1} \mid \vartheta\right)}{q\left(\vartheta \mid \vartheta_{i-1}\right)}\right\}$
set $\vartheta_{i}=\vartheta$, otherwise set $\vartheta_{i}=\vartheta_{i-1}$.

Ideal Marginal Metropolis-Hastings algorithm

- Metropolis-Hastings (MH) algorithm simulates an ergodic Markov chain $\left\{\vartheta_{i}\right\}_{i \geq 1}$ of limiting distribution $\pi(\theta)$.
At iteration i
- Sample $\vartheta \sim q\left(\cdot \mid \vartheta_{i-1}\right)$.
- With probability
$\min \left\{1, \frac{\pi(\vartheta)}{\pi\left(\vartheta_{i-1}\right)} \frac{q\left(\vartheta_{i-1} \mid \vartheta\right)}{q\left(\vartheta \mid \vartheta_{i-1}\right)}\right\}=\min \left\{1, \frac{p_{\vartheta}\left(y_{1: T}\right) p(\vartheta)}{p_{\vartheta_{i-1}}\left(y_{1: T}\right) p\left(\vartheta_{i-1}\right)} \frac{q\left(\vartheta_{i-1} \mid \vartheta\right)}{q\left(\vartheta \mid \vartheta_{i-1}\right)}\right\}$,
set $\vartheta_{i}=\vartheta$, otherwise set $\vartheta_{i}=\vartheta_{i-1}$.
- Problem: MH cannot be implemented if $p_{\vartheta}\left(y_{1: T}\right)$ cannot be evaluated.

Pseudo-Marginal Metropolis-Hastings algorithm

- "Idea": Replace $p_{\vartheta}\left(y_{1: T}\right)$ by an estimate $\widehat{p}_{\vartheta}\left(y_{1: T}\right)$ in MH .

Pseudo-Marginal Metropolis-Hastings algorithm

- "Idea": Replace $p_{\vartheta}\left(y_{1: T}\right)$ by an estimate $\widehat{p}_{\vartheta}\left(y_{1: T}\right)$ in MH .

Pseudo-Marginal Metropolis-Hastings algorithm

- "Idea": Replace $p_{\vartheta}\left(y_{1: T}\right)$ by an estimate $\widehat{p}_{\vartheta}\left(y_{1: T}\right)$ in MH . At iteration i
- Sample $\vartheta \sim q\left(\cdot \mid \vartheta_{i-1}\right)$.

Pseudo-Marginal Metropolis-Hastings algorithm

- "Idea": Replace $p_{\vartheta}\left(y_{1: T}\right)$ by an estimate $\widehat{p}_{\vartheta}\left(y_{1: T}\right)$ in MH . At iteration i
- Sample $\vartheta \sim q\left(\cdot \mid \vartheta_{i-1}\right)$.
- Compute an estimate $\widehat{p}_{\vartheta}\left(y_{1: T}\right)$ of $p_{\vartheta}\left(y_{1: T}\right)$.

Pseudo-Marginal Metropolis-Hastings algorithm

- "Idea": Replace $p_{\vartheta}\left(y_{1: T}\right)$ by an estimate $\widehat{p}_{\vartheta}\left(y_{1: T}\right)$ in MH .

At iteration i

- Sample $\vartheta \sim q\left(\cdot \mid \vartheta_{i-1}\right)$.
- Compute an estimate $\widehat{p}_{\vartheta}\left(y_{1: T}\right)$ of $p_{\vartheta}\left(y_{1: T}\right)$.
- With probability

$$
\begin{aligned}
& \min \{1, \underbrace{\frac{p_{\vartheta}\left(y_{1: T}\right)}{p_{\vartheta_{i-1}}\left(y_{1: T}\right)} \frac{p(\vartheta)}{p\left(\vartheta_{i-1}\right)} \frac{q\left(\vartheta_{i-1} \mid \vartheta\right)}{q\left(\vartheta \mid \vartheta_{i-1}\right)}}_{\text {exact MH ratio }} \times \underbrace{\frac{\hat{p}_{\vartheta}\left(y_{1: T}\right) / p_{\vartheta}\left(y_{1: T}\right)}{\hat{p}_{\vartheta_{i-1}}\left(y_{1: T}\right) / p_{\vartheta_{i-1}}\left(y_{1: T}\right)}}_{\text {noise }}\} \\
& \quad=\min \left\{1, \frac{\widehat{p}_{\vartheta}\left(y_{1: T}\right) p(\vartheta)}{\hat{p}_{\vartheta_{i-1}}\left(y_{1: T}\right) p\left(\vartheta_{i-1}\right)} \frac{q\left(\vartheta_{i-1} \mid \vartheta\right)}{q\left(\vartheta \mid \vartheta_{i-1}\right)}\right\} \\
& \text { set } \vartheta_{i}=\vartheta, \widehat{p}_{\vartheta_{i}}\left(y_{1: T}\right)=\widehat{p}_{\vartheta}\left(y_{1: T}\right) \text { otherwise set } \vartheta_{i}=\vartheta_{i-1}, \\
& \widehat{p}_{\vartheta_{i}}\left(y_{1: T}\right)=\widehat{p}_{\vartheta_{i-1}}\left(y_{1: T}\right) .
\end{aligned}
$$

Key Result

- Proposition (Lin, Liu \& Sloan, 2000; Andrieu \& Roberts, 2009): If $\widehat{p}_{\vartheta}\left(y_{1: T}\right)$ is a non-negative unbiased estimator of $p_{\theta}\left(y_{1: T}\right)$ then the pseudo-marginal MH kernel admits $\pi(\theta)$ as invariant density.

Key Result

- Proposition (Lin, Liu \& Sloan, 2000; Andrieu \& Roberts, 2009): If $\widehat{p}_{\vartheta}\left(y_{1: T}\right)$ is a non-negative unbiased estimator of $p_{\theta}\left(y_{1: T}\right)$ then the pseudo-marginal MH kernel admits $\pi(\theta)$ as invariant density.
- Let U be the r.v. such that $\hat{p}_{\theta}\left(y_{1: T}\right)=\widehat{p}_{\theta}\left(y_{1: T} ; U\right)$ and $\mathbb{E}\left[\widehat{p}_{\theta}\left(y_{1: T} ; U\right)\right]=p_{\theta}\left(y_{1: T}\right)$ when $U \sim m(\cdot)$.

Key Result

- Proposition (Lin, Liu \& Sloan, 2000; Andrieu \& Roberts, 2009): If $\widehat{p}_{\vartheta}\left(y_{1: T}\right)$ is a non-negative unbiased estimator of $p_{\theta}\left(y_{1: T}\right)$ then the pseudo-marginal MH kernel admits $\pi(\theta)$ as invariant density.
- Let U be the r.v. such that $\widehat{p}_{\theta}\left(y_{1: T}\right)=\widehat{p}_{\theta}\left(y_{1: T} ; U\right)$ and $\mathbb{E}\left[\widehat{p}_{\theta}\left(y_{1: T} ; U\right)\right]=p_{\theta}\left(y_{1: T}\right)$ when $U \sim m(\cdot)$.
- Consider the auxiliary target density on $\Theta \times \mathcal{U}$

$$
\bar{\pi}(\theta, u)=\pi(\theta) \underbrace{\frac{\widehat{p}_{\theta}\left(y_{1: T} ; u\right)}{p_{\theta}\left(y_{1: T}\right)} m(u)}_{\int(.) \mathrm{d} u=1}
$$

Key Result

- Proposition (Lin, Liu \& Sloan, 2000; Andrieu \& Roberts, 2009): If $\widehat{p}_{\vartheta}\left(y_{1: T}\right)$ is a non-negative unbiased estimator of $p_{\theta}\left(y_{1: T}\right)$ then the pseudo-marginal MH kernel admits $\pi(\theta)$ as invariant density.
- Let U be the r.v. such that $\widehat{p}_{\theta}\left(y_{1: T}\right)=\widehat{p}_{\theta}\left(y_{1: T} ; U\right)$ and $\mathbb{E}\left[\widehat{p}_{\theta}\left(y_{1: T} ; U\right)\right]=p_{\theta}\left(y_{1: T}\right)$ when $U \sim m(\cdot)$.
- Consider the auxiliary target density on $\Theta \times \mathcal{U}$

$$
\bar{\pi}(\theta, u)=\pi(\theta) \underbrace{\frac{\widehat{p}_{\theta}\left(y_{1: T} ; u\right)}{p_{\theta}\left(y_{1: T}\right)} m(u)}_{\int(.) \mathrm{d} u=1}
$$

- Pseudo-marginal MH is a standard MH with target $\bar{\pi}(\theta, u)$ and proposal $q(\vartheta \mid \theta) m(v)$ as

$$
\frac{\bar{\pi}(\vartheta, v)}{\bar{\pi}(\theta, u)} \frac{q(\theta \mid \vartheta) m(u)}{q(\vartheta \mid \theta) m(v)}=\frac{\widehat{p}_{\vartheta}\left(y_{1: T} ; v\right)}{\widehat{p}_{\theta}\left(y_{1: T} ; u\right)} \frac{p(\vartheta)}{p(\theta)} \frac{q(\theta \mid \vartheta)}{q(\vartheta \mid \theta)}
$$

Importance Sampling Estimator

- For latent variable models, one has

$$
p_{\theta}\left(y_{t}\right)=\int \mu_{\theta}\left(x_{t}\right) g_{\theta}\left(y_{t} \mid x_{t}\right) \mathrm{d} x_{t}
$$

Importance Sampling Estimator

- For latent variable models, one has

$$
p_{\theta}\left(y_{t}\right)=\int \mu_{\theta}\left(x_{t}\right) g_{\theta}\left(y_{t} \mid x_{t}\right) \mathrm{d} x_{t} .
$$

- An non-negative unbiased estimator is given by

$$
\widehat{p}_{\theta}\left(y_{1: T}\right)=\prod_{t=1}^{T} \widehat{p}_{\theta}\left(y_{t}\right)=\prod_{t=1}^{T}\left\{\frac{1}{N} \sum_{k=1}^{N} g_{\theta}\left(y_{t} \mid X_{t}^{k}\right)\right\}, \quad X_{t}^{k} \stackrel{\text { i.i.d. }}{\sim} \mu_{\theta},
$$

i.e.

$$
m(u)=\prod_{t=1}^{T} \prod_{k=1}^{N} \mu_{\theta}\left(x_{t}^{k}\right)
$$

Importance Sampling Estimator

- For latent variable models, one has

$$
p_{\theta}\left(y_{t}\right)=\int \mu_{\theta}\left(x_{t}\right) g_{\theta}\left(y_{t} \mid x_{t}\right) \mathrm{d} x_{t} .
$$

- An non-negative unbiased estimator is given by

$$
\widehat{p}_{\theta}\left(y_{1: T}\right)=\prod_{t=1}^{T} \widehat{p}_{\theta}\left(y_{t}\right)=\prod_{t=1}^{T}\left\{\frac{1}{N} \sum_{k=1}^{N} g_{\theta}\left(y_{t} \mid X_{t}^{k}\right)\right\}, X_{t}^{k} \stackrel{\text { i.i.d. }}{\sim} \mu_{\theta}
$$

i.e.

$$
m(u)=\prod_{t=1}^{T} \prod_{k=1}^{N} \mu_{\theta}\left(x_{t}^{k}\right)
$$

- Computational complexity is $O(N T)$.

Particle Filter Estimator

- For state-space models, previous approach provides an estimator whose relative variance scales typically exponentially with T.

Particle Filter Estimator

- For state-space models, previous approach provides an estimator whose relative variance scales typically exponentially with T.
- An alternative is to use particle filter where

$$
\begin{aligned}
\widehat{p}_{\theta}\left(y_{1: T}\right) & =\widehat{p}_{\theta}\left(y_{1}\right) \prod_{t=2}^{T} \widehat{p}_{\theta}\left(y_{t} \mid y_{1: t-1}\right) \\
& =\prod_{t=1}^{T}\left\{\frac{1}{N} \sum_{k=1}^{N} g_{\theta}\left(y_{t} \mid X_{n}^{k}\right)\right\}
\end{aligned}
$$

where

$$
m(u)=\prod_{k=1}^{N} \mu_{\theta}\left(x_{1}^{k}\right) \prod_{t=2}^{T}\left\{\prod_{k=1}^{N} w_{t}^{a_{t-1}^{k}} f\left(x_{t}^{k} \mid x_{t-1}^{a_{t-1}^{k}}\right)\right\}
$$

with $a_{t-1}^{k} \in\{1, \ldots, N\}, w_{t}^{j} \propto g_{\theta}\left(y_{t} \mid X_{t}^{j}\right), \sum_{j} w_{t}^{j}=1$.

Particle Filter Estimator

- For state-space models, previous approach provides an estimator whose relative variance scales typically exponentially with T.
- An alternative is to use particle filter where

$$
\begin{aligned}
\widehat{p}_{\theta}\left(y_{1: T}\right) & =\widehat{p}_{\theta}\left(y_{1}\right) \prod_{t=2}^{T} \hat{p}_{\theta}\left(y_{t} \mid y_{1: t-1}\right) \\
& =\prod_{t=1}^{T}\left\{\frac{1}{N} \sum_{k=1}^{N} g_{\theta}\left(y_{t} \mid X_{n}^{k}\right)\right\}
\end{aligned}
$$

where

$$
m(u)=\prod_{k=1}^{N} \mu_{\theta}\left(x_{1}^{k}\right) \prod_{t=2}^{T}\left\{\prod_{k=1}^{N} w_{t}^{a_{t-1}^{k}} f\left(x_{t}^{k} \mid x_{t-1}^{a_{t-1}^{k}}\right)\right\}
$$

with $a_{t-1}^{k} \in\{1, \ldots, N\}, w_{t}^{j} \propto g_{\theta}\left(y_{t} \mid X_{t}^{j}\right), \sum_{j} w_{t}^{j}=1$.

- Computational complexity is $O(N T)$.

Particle Filter Estimator

- For state-space models, previous approach provides an estimator whose relative variance scales typically exponentially with T.
- An alternative is to use particle filter where

$$
\begin{aligned}
\widehat{p}_{\theta}\left(y_{1: T}\right) & =\widehat{p}_{\theta}\left(y_{1}\right) \prod_{t=2}^{T} \widehat{p}_{\theta}\left(y_{t} \mid y_{1: t-1}\right) \\
& =\prod_{t=1}^{T}\left\{\frac{1}{N} \sum_{k=1}^{N} g_{\theta}\left(y_{t} \mid X_{n}^{k}\right)\right\}
\end{aligned}
$$

where

$$
m(u)=\prod_{k=1}^{N} \mu_{\theta}\left(x_{1}^{k}\right) \prod_{t=2}^{T}\left\{\prod_{k=1}^{N} w_{t}^{a_{t-1}^{k}} f\left(x_{t}^{k} \mid x_{t-1}^{a_{t-1}^{k}}\right)\right\}
$$

with $a_{t-1}^{k} \in\{1, \ldots, N\}, w_{t}^{j} \propto g_{\theta}\left(y_{t} \mid X_{t}^{j}\right), \sum_{j} w_{t}^{j}=1$.

- Computational complexity is $O(N T)$.
- The estimator $\hat{p}_{\theta}\left(y_{1: T}\right)$ of $p_{\theta}\left(y_{1: T}\right)$ is unbiased and its relative variance is bounded uniformly over T if $N \propto T$ (Cerou; Del Moral \&

Pseudo-Marginal Metropolis-Hastings algorithm

Pseudo-Marginal Metropolis-Hastings algorithm

At iteration i

- Sample $\vartheta \sim q\left(\cdot \mid \vartheta_{i-1}\right)$.

Pseudo-Marginal Metropolis-Hastings algorithm

At iteration i

- Sample $\vartheta \sim q\left(\cdot \mid \vartheta_{i-1}\right)$.
- Use particle filter to compute an estimate $\widehat{p}_{\vartheta}\left(y_{1: T}\right)$ of $p_{\vartheta}\left(y_{1: T}\right)$.

Pseudo-Marginal Metropolis-Hastings algorithm

At iteration i

- Sample $\vartheta \sim q\left(\cdot \mid \vartheta_{i-1}\right)$.
- Use particle filter to compute an estimate $\widehat{p}_{\vartheta}\left(y_{1: T}\right)$ of $p_{\vartheta}\left(y_{1: T}\right)$.
- With probability

$$
\min \left\{1, \frac{\hat{p}_{\vartheta}\left(y_{1: T}\right) p(\vartheta)}{\hat{p}_{\vartheta_{i-1}}\left(y_{1: T}\right) p\left(\vartheta_{i-1}\right)} \frac{q\left(\vartheta_{i-1} \mid \vartheta\right)}{q\left(\vartheta \mid \vartheta_{i-1}\right)}\right\}
$$

set $\vartheta_{i}=\vartheta, \widehat{p}_{\vartheta_{i}}\left(y_{1: T}\right)=\widehat{p}_{\vartheta}\left(y_{1: T}\right)$ otherwise set $\vartheta_{i}=\vartheta_{i-1}$, $\widehat{p}_{\vartheta_{i}}\left(y_{1: T}\right)=\widehat{p}_{\vartheta_{i-1}}\left(y_{1: T}\right)$.

Empirical performance: Stochastic kinetic model

- Two species X_{s}^{1} (prey) and X_{s}^{2} (predator)

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{s+d s}^{1}=x_{s}^{1}+1, X_{s+d s}^{2}=x_{s}^{2} \mid x_{s}^{1}, x_{s}^{2}\right)=\alpha x_{s}^{1} d s+o(d s), \\
& \operatorname{Pr}\left(X_{s+d s}^{1}=x_{s}^{1}-1, X_{s+d s}^{2}=x_{s}^{2}+1 \mid x_{s}^{1}, x_{s}^{2}\right)=\beta x_{s}^{1} x_{s}^{2} d s+o(d s), \\
& \operatorname{Pr}\left(X_{s+d s}^{1}=x_{t}^{1}, X_{s+d s}^{2}=x_{s}^{2}-1 \mid x_{s}^{1}, x_{s}^{2}\right)=\gamma x_{s}^{2} d s+o(d s),
\end{aligned}
$$

observed at discrete times

$$
Y_{t}=X_{\Delta t}^{1}+W_{t} \text { with } W_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)
$$

Empirical performance: Stochastic kinetic model

- Two species X_{s}^{1} (prey) and X_{s}^{2} (predator)

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{s+d s}^{1}=x_{s}^{1}+1, X_{s+d s}^{2}=x_{s}^{2} \mid x_{s}^{1}, x_{s}^{2}\right)=\alpha x_{s}^{1} d s+o(d s), \\
& \operatorname{Pr}\left(X_{s+d s}^{1}=x_{s}^{1}-1, X_{s+d s}^{2}=x_{s}^{2}+1 \mid x_{s}^{1}, x_{s}^{2}\right)=\beta x_{s}^{1} x_{s}^{2} d s+o(d s), \\
& \operatorname{Pr}\left(X_{s+d s}^{1}=x_{t}^{1}, X_{s+d s}^{2}=x_{s}^{2}-1 \mid x_{s}^{1}, x_{s}^{2}\right)=\gamma x_{s}^{2} d s+o(d s),
\end{aligned}
$$

observed at discrete times

$$
Y_{t}=X_{\Delta t}^{1}+W_{t} \text { with } W_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)
$$

- We are interested in the kinetic rate constants $\theta=(\alpha, \beta, \gamma)$ a priori distributed as (Boys et al., 2008; Kunsch, 2011)

$$
\alpha \sim \mathcal{G}(1,10), \quad \beta \sim \mathcal{G}(1,0.25), \quad \gamma \sim \mathcal{G}(1,7.5)
$$

Empirical performance: Stochastic kinetic model

- Two species X_{s}^{1} (prey) and X_{s}^{2} (predator)

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{s+d s}^{1}=x_{s}^{1}+1, X_{s+d s}^{2}=x_{s}^{2} \mid x_{s}^{1}, x_{s}^{2}\right)=\alpha x_{s}^{1} d s+o(d s), \\
& \operatorname{Pr}\left(X_{s+d s}^{1}=x_{s}^{1}-1, X_{s+d s}^{2}=x_{s}^{2}+1 \mid x_{s}^{1}, x_{s}^{2}\right)=\beta x_{s}^{1} x_{s}^{2} d s+o(d s), \\
& \operatorname{Pr}\left(X_{s+d s}^{1}=x_{t}^{1}, X_{s+d s}^{2}=x_{s}^{2}-1 \mid x_{s}^{1}, x_{s}^{2}\right)=\gamma x_{s}^{2} d s+o(d s),
\end{aligned}
$$

observed at discrete times

$$
Y_{t}=X_{\Delta t}^{1}+W_{t} \text { with } W_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)
$$

- We are interested in the kinetic rate constants $\theta=(\alpha, \beta, \gamma)$ a priori distributed as (Boys et al., 2008; Kunsch, 2011)

$$
\alpha \sim \mathcal{G}(1,10), \quad \beta \sim \mathcal{G}(1,0.25), \quad \gamma \sim \mathcal{G}(1,7.5)
$$

- Pseudo-marginal MH with RW proposal, likelihood is approximated using particle filter.

Empirical performance: Stochastic kinetic model

Simulated data
Estimated posteriors

Empirical performance: Stochastic kinetic model

Autocorrelation of α (left) and β (right) for the PM sampler for various N.

Empirical performance: Stochastic volatility model

- Huang \& Tauchen, J. Financial Econometrics (2005):

$$
\begin{aligned}
\mathrm{d} v_{1}(s) & =-k_{1}\left\{v_{1}(s)-\mu_{1}\right\} \mathrm{d} s+\sigma_{1} \mathrm{~d} W_{1}(s), \\
\mathrm{d} v_{2}(s) & =-k_{2} v_{2}(s) \mathrm{d} s+\left\{1+\beta_{12} v_{2}(s)\right\} \mathrm{d} W_{2}(s), \\
\mathrm{d} \log P(s) & =\mu_{y} \mathrm{~d} s+\mathrm{s}-\exp \left[\left\{v_{1}(s)+\beta_{2} v_{2}(s)\right\} / 2\right] \mathrm{d} B(s),
\end{aligned}
$$

with $\phi_{1}=\operatorname{corr}\left\{B(s), W_{1}(s)\right\}$ and $\phi_{2}=\operatorname{corr}\left\{B(s), W_{2}(s)\right\}$.

Empirical performance: Stochastic volatility model

- Huang \& Tauchen, J. Financial Econometrics (2005):

$$
\begin{aligned}
\mathrm{d} v_{1}(s) & =-k_{1}\left\{v_{1}(s)-\mu_{1}\right\} \mathrm{d} s+\sigma_{1} \mathrm{~d} W_{1}(s), \\
\mathrm{d} v_{2}(s) & =-k_{2} v_{2}(s) \mathrm{d} s+\left\{1+\beta_{12} v_{2}(s)\right\} \mathrm{d} W_{2}(s), \\
\mathrm{d} \log P(s) & =\mu_{y} \mathrm{~d} s+\mathrm{s}-\exp \left[\left\{v_{1}(s)+\beta_{2} v_{2}(s)\right\} / 2\right] \mathrm{d} B(s),
\end{aligned}
$$

with $\phi_{1}=\operatorname{corr}\left\{B(s), W_{1}(s)\right\}$ and $\phi_{2}=\operatorname{corr}\left\{B(s), W_{2}(s)\right\}$.

- Euler discretization of the volatilities $v_{1}(s)$ and $v_{2}(s)$ provides closed form expression for $Y_{t}=\log P(\Delta t)-\log P(\Delta(t-1))$.

Empirical performance: Stochastic volatility model

- Huang \& Tauchen, J. Financial Econometrics (2005):

$$
\begin{aligned}
\mathrm{d} v_{1}(s) & =-k_{1}\left\{v_{1}(s)-\mu_{1}\right\} \mathrm{d} s+\sigma_{1} \mathrm{~d} W_{1}(s), \\
\mathrm{d} v_{2}(s) & =-k_{2} v_{2}(s) \mathrm{d} s+\left\{1+\beta_{12} v_{2}(s)\right\} \mathrm{d} W_{2}(s), \\
\mathrm{d} \log P(s) & =\mu_{y} \mathrm{~d} s+s-\exp \left[\left\{v_{1}(s)+\beta_{2} v_{2}(s)\right\} / 2\right] \mathrm{d} B(s),
\end{aligned}
$$

with $\phi_{1}=\operatorname{corr}\left\{B(s), W_{1}(s)\right\}$ and $\phi_{2}=\operatorname{corr}\left\{B(s), W_{2}(s)\right\}$.

- Euler discretization of the volatilities $v_{1}(s)$ and $v_{2}(s)$ provides closed form expression for $Y_{t}=\log P(\Delta t)-\log P(\Delta(t-1))$.
- Daily returns $y=\left(y_{1}, \ldots, y_{T}\right)$ of the S\&P 500 index.

Empirical performance: Stochastic volatility model

- Huang \& Tauchen, J. Financial Econometrics (2005):

$$
\begin{aligned}
\mathrm{d} v_{1}(s) & =-k_{1}\left\{v_{1}(s)-\mu_{1}\right\} \mathrm{d} s+\sigma_{1} \mathrm{~d} W_{1}(s), \\
\mathrm{d} v_{2}(s) & =-k_{2} v_{2}(s) \mathrm{d} s+\left\{1+\beta_{12} v_{2}(s)\right\} \mathrm{d} W_{2}(s), \\
\mathrm{d} \log P(s) & =\mu_{y} \mathrm{~d} s+\mathrm{s}-\exp \left[\left\{v_{1}(s)+\beta_{2} v_{2}(s)\right\} / 2\right] \mathrm{d} B(s),
\end{aligned}
$$

with $\phi_{1}=\operatorname{corr}\left\{B(s), W_{1}(s)\right\}$ and $\phi_{2}=\operatorname{corr}\left\{B(s), W_{2}(s)\right\}$.

- Euler discretization of the volatilities $v_{1}(s)$ and $v_{2}(s)$ provides closed form expression for $Y_{t}=\log P(\Delta t)-\log P(\Delta(t-1))$.
- Daily returns $y=\left(y_{1}, \ldots, y_{T}\right)$ of the S\&P 500 index.
- Bayesian Inference on $\theta=\left(k_{1}, \mu_{1}, \sigma_{1}, k_{2}, \beta_{12}, \beta_{2}, \mu_{y}, \phi_{1}, \phi_{2}\right)$.

Empirical performance: Stochastic volatility model

- Huang \& Tauchen, J. Financial Econometrics (2005):

$$
\begin{aligned}
\mathrm{d} v_{1}(s) & =-k_{1}\left\{v_{1}(s)-\mu_{1}\right\} \mathrm{d} s+\sigma_{1} \mathrm{~d} W_{1}(s), \\
\mathrm{d} v_{2}(s) & =-k_{2} v_{2}(s) \mathrm{d} s+\left\{1+\beta_{12} v_{2}(s)\right\} \mathrm{d} W_{2}(s), \\
\mathrm{d} \log P(s) & =\mu_{y} \mathrm{~d} s+\mathrm{s}-\exp \left[\left\{v_{1}(s)+\beta_{2} v_{2}(s)\right\} / 2\right] \mathrm{d} B(s),
\end{aligned}
$$

with $\phi_{1}=\operatorname{corr}\left\{B(s), W_{1}(s)\right\}$ and $\phi_{2}=\operatorname{corr}\left\{B(s), W_{2}(s)\right\}$.

- Euler discretization of the volatilities $v_{1}(s)$ and $v_{2}(s)$ provides closed form expression for $Y_{t}=\log P(\Delta t)-\log P(\Delta(t-1))$.
- Daily returns $y=\left(y_{1}, \ldots, y_{T}\right)$ of the S\&P 500 index.
- Bayesian Inference on $\theta=\left(k_{1}, \mu_{1}, \sigma_{1}, k_{2}, \beta_{12}, \beta_{2}, \mu_{y}, \phi_{1}, \phi_{2}\right)$.
- Performance of the pseudo-marginal for RW proposal w.r.t σ, standard deviation of $\log \widehat{p}_{\theta}(y)$ at posterior mean $\bar{\theta}$.

Integrated Autocorrelation Time of Pseudo-Marginal MH

Figure: Average over the 9 parameter components of the log-integrated autocorrelation time of pseudo-marginal chain as a function of σ for $T=300$.

How precise should the log-likelihood estimator be?

- Aim: Minimize the computational time

$$
C T_{h}^{Q}=I F_{h}^{Q} / \sigma^{2}
$$

as $\sigma^{2} \propto 1 / N$ and computational efforts proportional to N, where $I F_{h}^{Q}=$ Integrated Autocorrelation Time of PM average

How precise should the log-likelihood estimator be?

- Aim: Minimize the computational time

$$
C T_{h}^{Q}=I F_{h}^{Q} / \sigma^{2}
$$

as $\sigma^{2} \propto 1 / N$ and computational efforts proportional to N, where

$$
I F_{h}^{Q}=\text { Integrated Autocorrelation Time of PM average }
$$

- Call the IACT the inefficiency

$$
I F_{h}^{Q}=1+2 \sum_{\tau=1}^{\infty} \operatorname{corr}_{\bar{\pi}, Q}\left\{h\left(\theta_{0}\right), h\left(\theta_{\tau}\right)\right\}
$$

where Q is the pseudo-marginal kernel given for $(\theta, z) \neq(\vartheta, w)$ by
$Q\{(\theta, z),(\mathrm{d} \vartheta, \mathrm{d} w)\}=q(\vartheta \mid \theta) g_{\vartheta}(w) \min \left\{1, \frac{\pi(\vartheta)}{\pi(\theta)} \exp (w-z)\right\} \mathrm{d} \vartheta \mathrm{d} w$, where

$$
\begin{aligned}
z & =\log \left\{\widehat{p}_{\theta}\left(y_{1: T}\right) / p_{\theta}\left(y_{1: T}\right)\right\} \\
w & =\log \left\{\widehat{p}_{\vartheta}\left(y_{1: T}\right) / p_{\vartheta}\left(y_{1}: T\right)\right\}
\end{aligned}
$$

Computational time for the SV model

Figure: Computational time as a function of σ

Analysis in the large data regime

- Standard asymptotic study of MCMC relies on $d \rightarrow \infty$ and independence assumption on the target, interested here in fixed d, large T.

Analysis in the large data regime

- Standard asymptotic study of MCMC relies on $d \rightarrow \infty$ and independence assumption on the target, interested here in fixed d, large T.
- Assumption 1 - Asymptotic Normality: We have

$$
\int\left|p\left(\theta \mid Y_{1: T}\right)-\phi\left(\theta ; \hat{\theta}^{T}, \Sigma / T\right)\right| \mathrm{d} \theta \xrightarrow{P} 0
$$

where $\hat{\theta}^{T} \xrightarrow{P} \bar{\theta}$ and Σ is a p.d. matrix.

Analysis in the large data regime

- Standard asymptotic study of MCMC relies on $d \rightarrow \infty$ and independence assumption on the target, interested here in fixed d, large T.
- Assumption 1 - Asymptotic Normality: We have

$$
\int\left|p\left(\theta \mid Y_{1: T}\right)-\phi\left(\theta ; \hat{\theta}^{T}, \Sigma / T\right)\right| \mathrm{d} \theta \xrightarrow{P} 0
$$

where $\hat{\theta}^{T} \xrightarrow{P} \bar{\theta}$ and Σ is a p.d. matrix.

- Assumption 2 - CLT: For any θ in a neighbourhood of $\bar{\theta}$,

$$
\left.\log \frac{\widehat{p}_{\theta}\left(Y_{1: T}\right)}{p_{\theta}\left(Y_{1: T}\right)} \right\rvert\, \mathcal{Y}^{T} \Rightarrow \mathcal{N}\left(-\sigma^{2}(\theta) / 2, \sigma^{2}(\theta)\right)
$$

in probability and $\sigma^{2}(\cdot)$ continuous at $\bar{\theta}$.

Analysis in the large data regime

- Standard asymptotic study of MCMC relies on $d \rightarrow \infty$ and independence assumption on the target, interested here in fixed d, large T.
- Assumption 1 - Asymptotic Normality: We have

$$
\int\left|p\left(\theta \mid Y_{1: T}\right)-\phi\left(\theta ; \hat{\theta}^{T}, \Sigma / T\right)\right| \mathrm{d} \theta \xrightarrow{P} 0
$$

where $\widehat{\theta}^{T} \xrightarrow{P} \bar{\theta}$ and Σ is a p.d. matrix.

- Assumption 2 - CLT: For any θ in a neighbourhood of $\bar{\theta}$,

$$
\left.\log \frac{\widehat{p}_{\theta}\left(Y_{1: T}\right)}{p_{\theta}\left(Y_{1: T}\right)} \right\rvert\, \mathcal{Y}^{T} \Rightarrow \mathcal{N}\left(-\sigma^{2}(\theta) / 2, \sigma^{2}(\theta)\right)
$$

in probability and $\sigma^{2}(\cdot)$ continuous at $\bar{\theta}$.

- Assumption 3 - Proposal: $\vartheta=\theta+\varepsilon / \sqrt{T}$ where $\varepsilon \sim v(\cdot)$ with $v(\varepsilon)=v(-\varepsilon)$.

Analysis in the large data regime

- Assumption 1 holds if for example Bernstein-von Mises holds (in correctly specified/misspecified scenarios).

Analysis in the large data regime

- Assumption 1 holds if for example Bernstein-von Mises holds (in correctly specified/misspecified scenarios).
- Assumption 2 has been shown to hold under regularity assumptions if $N \propto T$ (Berard et al, 2014, Deligiannidis et al, 2015).

Analysis in the large data regime

- Assumption 1 holds if for example Bernstein-von Mises holds (in correctly specified/misspecified scenarios).
- Assumption 2 has been shown to hold under regularity assumptions if $N \propto T$ (Berard et al, 2014, Deligiannidis et al, 2015).
- Assumption 3 can be easily enforced.

Weak convergence

- Let $\left\{\vartheta_{i}^{T}, Z_{i}^{T}:=\log \widehat{p}_{\vartheta_{i}^{T}}\left(Y_{1: T}\right) / p_{\vartheta_{i}^{T}}\left(Y_{1: T}\right)\right\}_{i \geq 0}$ the stationary PM Markov chain of invariant density $p\left(\theta \mid Y_{1: T}\right) \exp (z) g_{\theta}^{T}(z)$.

Weak convergence

- Let $\left\{\vartheta_{i}^{T}, Z_{i}^{T}:=\log \widehat{p}_{\vartheta_{i}^{T}}\left(Y_{1: T}\right) / p_{\vartheta_{i}^{T}}\left(Y_{1: T}\right)\right\}_{i \geq 0}$ the stationary PM Markov chain of invariant density $p\left(\theta \mid Y_{1: T}\right) \exp (z) g_{\theta}^{T}(z)$.
- Proposition (Schmon et al, 2016): The F.D.D. of the rescaled sequence $\left\{\tilde{\vartheta}_{i}^{T}=\sqrt{T}\left(\vartheta_{i}^{T}-\widehat{\theta}_{T}\right), Z_{i}^{T}\right\}_{i \geq 0}$ converge weakly as $T \rightarrow \infty$ to those of a stationary Markov chain of invariant density $\phi(\widetilde{\theta} ; 0, \Sigma) \phi\left(z ;-\sigma^{2}(\bar{\theta}) / 2, \sigma^{2}(\bar{\theta})\right)$ and kernel given by

$$
\begin{aligned}
\widetilde{Q}\{(\widetilde{\theta}, z),(\mathrm{d} \widetilde{\vartheta}, \mathrm{~d} w)\}= & v(\widetilde{\vartheta}-\widetilde{\theta}) \phi\left(w ;-\sigma^{2}(\bar{\theta}) / 2, \sigma^{2}(\bar{\theta})\right) \\
& \times \min \left\{1, \frac{\phi(\widetilde{\vartheta} ; 0, \Sigma)}{\phi(\widetilde{\theta} ; 0, \Sigma)} \exp (w-z)\right\} \mathrm{d} \widetilde{\vartheta} \mathrm{~d} w
\end{aligned}
$$

for $(\widetilde{\theta}, z) \neq(\widetilde{\vartheta}, w)$.

Weak convergence

- These results suggests that a simplified analysis of the PM chain can be performed by looking at

$$
\begin{aligned}
\widehat{Q}\{(\theta, z),(\mathrm{d} \vartheta, \mathrm{~d} w)\}= & q(\vartheta \mid \theta) \phi\left(w ;-\sigma^{2} / 2, \sigma^{2}\right) \\
& \times \min \left\{1, \frac{\pi(\vartheta)}{\pi(\theta)} \exp (w-z)\right\} \mathrm{d} \vartheta \mathrm{~d} w
\end{aligned}
$$

where $\sigma^{2}=\sigma^{2}(\bar{\theta})$.

Weak convergence

- These results suggests that a simplified analysis of the PM chain can be performed by looking at

$$
\begin{aligned}
\widehat{Q}\{(\theta, z),(\mathrm{d} \vartheta, \mathrm{~d} w)\}= & q(\vartheta \mid \theta) \phi\left(w ;-\sigma^{2} / 2, \sigma^{2}\right) \\
& \times \min \left\{1, \frac{\pi(\vartheta)}{\pi(\theta)} \exp (w-z)\right\} \mathrm{d} \vartheta \mathrm{~d} w,
\end{aligned}
$$

where $\sigma^{2}=\sigma^{2}(\bar{\theta})$.

- It would be more satisfactory to show that

$$
\left|I F_{h}^{Q}-I F_{h}^{\widehat{Q}}\right| \rightarrow 0
$$

as $T \rightarrow \infty$. The analysis relies on (Andrieu \& Vihola, 2015) and is much more involved.

Empirical vs Assumed Distributions for SV model

Figure: Empirical distributions (dashed) vs assumed Gaussians (solid) of Z at $\bar{\theta}$ (left) and marginalized over samples from $\pi(\theta)$ (center) and $\int \pi(d \vartheta) q(\theta \mid \vartheta)$ (right) for $T=40, T=300$ and $T=2700$.

Available Results

- Aim: Minimize the computational cost

$$
C T_{h}^{\widehat{Q}}(\sigma)=I F_{h}^{\widehat{Q}}(\sigma) / \sigma^{2}
$$

Available Results

- Aim: Minimize the computational cost

$$
C T_{h}^{\widehat{Q}}(\sigma)=I F_{h}^{\widehat{Q}}(\sigma) / \sigma^{2}
$$

- Special cases:

Available Results

- Aim: Minimize the computational cost

$$
C T_{h}^{\widehat{Q}}(\sigma)=I F_{h}^{\widehat{Q}}(\sigma) / \sigma^{2}
$$

- Special cases:
(1) When $q(\vartheta \mid \theta)=p(\vartheta \mid y), \sigma_{\text {opt }}=0.92$ (Pitt et al., 2012).

Available Results

- Aim: Minimize the computational cost

$$
C T_{h}^{\widehat{Q}}(\sigma)=I F_{h}^{\widehat{Q}}(\sigma) / \sigma^{2}
$$

- Special cases:
(1) When $q(\vartheta \mid \theta)=p(\vartheta \mid y), \sigma_{\text {opt }}=0.92$ (Pitt et al., 2012).
(2) When $\pi(\theta)=\prod_{i=1}^{d} f\left(\theta_{i}\right)$ and $q(\vartheta \mid \theta)$ is an isotropic Gaussian random walk then, as $d \rightarrow \infty$, diffusion limit suggests $\sigma_{\text {opt }}=1.81$ (Sherlock et al., 2015).

Sketch of the Analysis

- For general proposals and targets, direct minimization of $C T_{h}^{\widehat{Q}}(\sigma)=I F_{h}^{\widehat{Q}}(\sigma) / \sigma^{2}$ impossible so minimize an upper bound over it.

Sketch of the Analysis

- For general proposals and targets, direct minimization of $C T_{h}^{\widehat{Q}}(\sigma)=I F_{h}^{\widehat{Q}}(\sigma) / \sigma^{2}$ impossible so minimize an upper bound over it.
- Theoretical study relies on $\bar{\pi}$-invariant kernel Q^{*} given for $(\theta, z) \neq(\vartheta, w)$ by
$q(\vartheta \mid \theta) \phi\left(w ;-\sigma^{2} / 2, \sigma^{2}\right) \min \left\{1, \frac{\pi(\vartheta)}{\pi(\theta)}\right\} \min \{1, \exp (w-z)\} \mathrm{d} \vartheta \mathrm{d} w$,
instead of

$$
q(\vartheta \mid \theta) \phi\left(w ;-\sigma^{2} / 2, \sigma^{2}\right) \min \left\{1, \frac{\pi(\vartheta)}{\pi(\theta)} \exp (w-z)\right\} \mathrm{d} \vartheta \mathrm{~d} w .
$$

Sketch of the Analysis

- For general proposals and targets, direct minimization of $C T_{h}^{\widehat{Q}}(\sigma)=I F_{h}^{\widehat{Q}}(\sigma) / \sigma^{2}$ impossible so minimize an upper bound over it.
- Theoretical study relies on $\bar{\pi}$-invariant kernel Q^{*} given for $(\theta, z) \neq(\vartheta, w)$ by
$q(\vartheta \mid \theta) \phi\left(w ;-\sigma^{2} / 2, \sigma^{2}\right) \min \left\{1, \frac{\pi(\vartheta)}{\pi(\theta)}\right\} \min \{1, \exp (w-z)\} \mathrm{d} \vartheta \mathrm{d} w$,
instead of

$$
q(\vartheta \mid \theta) \phi\left(w ;-\sigma^{2} / 2, \sigma^{2}\right) \min \left\{1, \frac{\pi(\vartheta)}{\pi(\theta)} \exp (w-z)\right\} \mathrm{d} \vartheta \mathrm{~d} w .
$$

- Peskun's theorem (1973) guarantees that $I F_{h}^{\widehat{Q}}(\sigma) \leq I F_{h}^{Q^{*}}(\sigma)$ so that $C T_{h}^{\widehat{Q}}(\sigma) \leq C T_{h}^{Q^{*}}(\sigma)$.

Main Theoretical Result

- Proposition: If $I F_{h}^{Q^{*}}(\sigma)<\infty$ then $I F_{h}^{\widehat{Q}}(\sigma) \leq I F_{h}^{Q^{*}}(\sigma)$ and

$$
\begin{aligned}
I F_{h}^{Q^{*}}(\sigma)= & 2 \frac{\left\{1+I F_{h}^{\mathrm{EX}}\right\}}{1+I I_{h / Q_{\mathrm{EX}}}^{\tilde{\mathrm{EXP}}^{\mathrm{EX}}}}\left\{\pi_{\mathrm{Z}}^{\sigma}(z)\left(1 / \varrho_{\mathrm{Z}}^{\sigma}\right)-1 / \pi_{\mathrm{Z}}^{\sigma}(z)\left(\varrho_{\mathrm{Z}}^{\sigma}\right)\right\} \\
& \times \sum_{n=0}^{\infty} \phi_{n}\left(h / \varrho_{\mathrm{EX}}, \widetilde{Q}^{\mathrm{EX}}\right) \phi_{n}\left(1 / \varrho_{\mathrm{Z}}, \widetilde{Q}_{\sigma}^{\mathrm{Z}}\right) \\
& +\frac{1+I F_{h}^{\mathrm{EX}}}{\pi_{\mathrm{Z}}^{\sigma}\left(\varrho_{\mathrm{Z}}^{\sigma}\right)}-1,
\end{aligned}
$$

where $\phi_{n}(\varphi, P)$ denotes the autocorrelation at lag n under a Markov kernel P.

Main Theoretical Result

- Proposition: If $I F_{h}^{Q^{*}}(\sigma)<\infty$ then $I F_{h}^{\widehat{Q}}(\sigma) \leq I F_{h}^{Q^{*}}(\sigma)$ and

$$
\begin{aligned}
I F_{h}^{Q^{*}}(\sigma)= & 2 \frac{\left\{1+I F_{h}^{\mathrm{EX}}\right\}}{1+I I_{h / Q_{\mathrm{EX}}}^{\tilde{\mathrm{E}}^{\mathrm{EX}}}}\left\{\pi_{\mathrm{Z}}^{\sigma}(z)\left(1 / \varrho_{\mathrm{Z}}^{\sigma}\right)-1 / \pi_{\mathrm{Z}}^{\sigma}(z)\left(\varrho_{\mathrm{Z}}^{\sigma}\right)\right\} \\
& \times \sum_{n=0}^{\infty} \phi_{n}\left(h / \varrho_{\mathrm{EX}}, \widetilde{Q}^{\mathrm{EX}}\right) \phi_{n}\left(1 / \varrho_{\mathrm{Z}}, \widetilde{Q}_{\sigma}^{\mathrm{Z}}\right) \\
& +\frac{1+I F_{h}^{\mathrm{EX}}}{\pi_{\mathrm{Z}}^{\sigma}\left(\rho_{\mathrm{Z}}^{\sigma}\right)}-1,
\end{aligned}
$$

where $\phi_{n}(\varphi, P)$ denotes the autocorrelation at lag n under a Markov kernel P.

- $\widetilde{Q}^{\mathrm{EX}}$ and $\widetilde{Q}_{\sigma}^{Z}$ correspond to the jump kernels associated to Q^{EX} and $Q_{\sigma}^{\mathrm{Z}}, \varrho_{\mathrm{EX}}(\theta)$ and $\varrho_{\mathrm{Z}}^{\sigma}(z)$ are acceptance proba of Q^{EX} and Q_{σ}^{Z}.

Main Theoretical Result

- Proposition: If $I F_{h}^{Q^{*}}(\sigma)<\infty$ then $I F_{h}^{\widehat{Q}}(\sigma) \leq I F_{h}^{Q^{*}}(\sigma)$ and

$$
\begin{aligned}
I F_{h}^{Q^{*}}(\sigma)= & 2 \frac{\left\{1+I F_{h}^{\mathrm{EX}}\right\}}{1+I F_{h / \varrho_{\mathrm{EX}}}^{\widetilde{\mathrm{Ex}}^{\mathrm{E}}}}\left\{\pi_{\mathrm{Z}}^{\sigma}(z)\left(1 / \varrho_{\mathrm{Z}}^{\sigma}\right)-1 / \pi_{\mathrm{Z}}^{\sigma}(z)\left(\varrho_{\mathrm{Z}}^{\sigma}\right)\right\} \\
& \times \sum_{n=0}^{\infty} \phi_{n}\left(h / \varrho_{\mathrm{EX}}, \widetilde{Q}^{\mathrm{EX}}\right) \phi_{n}\left(1 / \varrho_{\mathrm{Z}}, \widetilde{Q}_{\sigma}^{\mathrm{Z}}\right) \\
& +\frac{1+I F_{h}^{\mathrm{EX}}}{\pi_{\mathrm{Z}}^{\sigma}\left(\varrho_{\mathrm{Z}}^{\sigma}\right)}-1
\end{aligned}
$$

where $\phi_{n}(\varphi, P)$ denotes the autocorrelation at lag n under a Markov kernel P.

- $\widetilde{Q}^{\mathrm{EX}}$ and $\widetilde{Q}_{\sigma}^{\mathrm{Z}}$ correspond to the jump kernels associated to Q^{EX} and $Q_{\sigma}^{\mathrm{Z}}, \varrho_{\mathrm{EX}}(\theta)$ and $\varrho_{\mathrm{Z}}^{\sigma}(z)$ are acceptance proba of Q^{EX} and Q_{σ}^{Z}.
- This identity allows us to "decouple" the influence of the parameter and noise components on $I F_{h}^{Q^{*}}(\sigma)$.

Simpler Bounds on the Relative Inefficiency

- If $I F_{h / \varrho_{\mathrm{EX}}}^{\widetilde{Q}^{\mathrm{EX}}} \geq 1$, e.g. $\widetilde{Q}^{\mathrm{EX}}$ is a positive kernel, then

$$
\frac{I F_{h}^{\widehat{Q}}(\sigma)}{I F_{h}^{E X}} \leq \frac{I F_{h}^{Q^{*}}(\sigma)}{I F_{h}^{E X}} \leq \frac{1}{2}\left(1+1 / I F_{h}^{\mathrm{EX}}\right) \pi_{\mathrm{Z}}^{\sigma}\left(1 / \varrho_{\mathrm{Z}}^{\sigma}\right)-\frac{1}{I F_{h}^{\mathrm{EX}}}
$$

and the bound is tight as $I F_{h}^{E X} \rightarrow 1$ or $\sigma \rightarrow 0$.

Simpler Bounds on the Relative Inefficiency

- If $I F_{h / \varrho_{\mathrm{EX}}}^{\widetilde{Q}^{\mathrm{EX}}} \geq 1$, e.g. $\widetilde{Q}^{\mathrm{EX}}$ is a positive kernel, then

$$
\frac{I F_{h}^{\widehat{Q}}(\sigma)}{I F_{h}^{\mathrm{EX}}} \leq \frac{I F_{h}^{Q^{*}}(\sigma)}{I F_{h}^{\mathrm{EX}}} \leq \frac{1}{2}\left(1+1 / I F_{h}^{\mathrm{EX}}\right) \pi_{\mathrm{Z}}^{\sigma}\left(1 / \varrho_{\mathrm{Z}}^{\sigma}\right)-\frac{1}{I F_{h}^{\mathrm{EX}}}
$$

and the bound is tight as $I F_{h}^{E X} \rightarrow 1$ or $\sigma \rightarrow 0$.

- As $I F_{J, h / \rho_{\text {EX }}}^{\mathrm{EX}} \rightarrow \infty$,

$$
\frac{I F_{h}^{Q^{*}}(\sigma)}{I F_{h}^{E X}} \rightarrow \frac{1}{\pi_{Z}^{\sigma}\left(\varrho_{Z}^{\sigma}\right)}
$$

Simpler Bounds on the Relative Inefficiency

- If $I F_{h / \varrho_{\mathrm{EX}}}^{\widetilde{Q}^{\mathrm{EX}}} \geq 1$, e.g. $\widetilde{Q}^{\mathrm{EX}}$ is a positive kernel, then

$$
\frac{I F_{h}^{\widehat{Q}}(\sigma)}{I F_{h}^{E X}} \leq \frac{I F_{h}^{Q^{*}}(\sigma)}{I F_{h}^{E X}} \leq \frac{1}{2}\left(1+1 / I F_{h}^{\mathrm{EX}}\right) \pi_{\mathrm{Z}}^{\sigma}\left(1 / \varrho_{\mathrm{Z}}^{\sigma}\right)-\frac{1}{I F_{h}^{E X}}
$$

and the bound is tight as $I F_{h}^{E X} \rightarrow 1$ or $\sigma \rightarrow 0$.

- As $I F_{J, h / \rho_{\text {EX }}}^{\mathrm{EX}} \rightarrow \infty$,

$$
\frac{I F_{h}^{Q^{*}}(\sigma)}{I F_{h}^{E X}} \rightarrow \frac{1}{\pi_{Z}^{\sigma}\left(\varrho_{Z}^{\sigma}\right)}
$$

- Results used to minimize w.r.t σ upper bounds on $C T_{h}^{\widehat{Q}}(\sigma)=I F_{h}^{\widehat{Q}}(\sigma) / \sigma^{2}$.

Bounds on Relative Computational Time

Left: upper bound on $C T_{h}^{Q^{*}}(\sigma) / I F_{h}^{E X}$ as a function of σ for $I F_{h}^{E X}=1$ (square), 4 (crosses), 20 (circles), 80 (triangles). Right: upper bounds on $C T_{h}^{Q^{*}}(\sigma) / I F_{h}^{\mathrm{EX}}$ as a function of σ for $I F_{J, h / / \varrho_{\mathrm{EX}}}^{\mathrm{EX}}=1$ for $I F_{J, h / / \varrho_{\mathrm{EX}}}^{\mathrm{EX}}=1,4,20,80$ and lower bound (solid line).

Practical Guidelines

- For good proposals, select $\sigma \approx 1.0$ whereas for poor proposals, select $\sigma \approx 1.7$.

Practical Guidelines

- For good proposals, select $\sigma \approx 1.0$ whereas for poor proposals, select $\sigma \approx 1.7$.
- When you have no clue about the proposal efficiency,

Practical Guidelines

- For good proposals, select $\sigma \approx 1.0$ whereas for poor proposals, select $\sigma \approx 1.7$.
- When you have no clue about the proposal efficiency,
(1) If $\sigma_{\text {opt }}=1.0$ and you pick $\sigma=1.7$, computing time increases by $\approx 150 \%$.

Practical Guidelines

- For good proposals, select $\sigma \approx 1.0$ whereas for poor proposals, select $\sigma \approx 1.7$.
- When you have no clue about the proposal efficiency,
(1) If $\sigma_{\text {opt }}=1.0$ and you pick $\sigma=1.7$, computing time increases by $\approx 150 \%$.
(2) If $\sigma_{\text {opt }}=1.7$ and you pick $\sigma=1.0$, computing time increases by $\approx 50 \%$.

Practical Guidelines

- For good proposals, select $\sigma \approx 1.0$ whereas for poor proposals, select $\sigma \approx 1.7$.
- When you have no clue about the proposal efficiency,
(1) If $\sigma_{\text {opt }}=1.0$ and you pick $\sigma=1.7$, computing time increases by $\approx 150 \%$.
(2) If $\sigma_{\text {opt }}=1.7$ and you pick $\sigma=1.0$, computing time increases by $\approx 50 \%$.
(3) If $\sigma_{\text {opt }}=1.0$ or $\sigma_{\text {opt }}=1.7$ and you pick $\sigma=1.2-1.3$, computing time increases by $\approx 15 \%$.

Example: Noisy Autoregressive Example

- Consider

$$
\begin{aligned}
& X_{t}=\mu(1-\phi)+\phi X_{t}+V_{t}, \quad V_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{\eta}^{2}\right), \\
& Y_{t}=X_{t}+W_{t}, \quad W_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{\varepsilon}^{2}\right)
\end{aligned}
$$

where $\theta=\left(\phi, \mu, \sigma_{\eta}^{2}\right)$.

Example: Noisy Autoregressive Example

- Consider

$$
\begin{aligned}
& X_{t}=\mu(1-\phi)+\phi X_{t}+V_{t}, \quad V_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{\eta}^{2}\right), \\
& Y_{t}=X_{t}+W_{t}, \quad W_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{\varepsilon}^{2}\right)
\end{aligned}
$$

where $\theta=\left(\phi, \mu, \sigma_{\eta}^{2}\right)$.

- Likelihood can be computed exactly using Kalman.

Example: Noisy Autoregressive Example

- Consider

$$
\begin{aligned}
& X_{t}=\mu(1-\phi)+\phi X_{t}+V_{t}, \quad V_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{\eta}^{2}\right) \\
& Y_{t}=X_{t}+W_{t}, \quad W_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{\varepsilon}^{2}\right)
\end{aligned}
$$

where $\theta=\left(\phi, \mu, \sigma_{\eta}^{2}\right)$.

- Likelihood can be computed exactly using Kalman.
- Autoregressive Metropolis proposal of coefficient ρ for ϑ based on multivariate t-distribution.

Example: Noisy Autoregressive Example

- Consider

$$
\begin{aligned}
& X_{t}=\mu(1-\phi)+\phi X_{t}+V_{t}, \quad V_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{\eta}^{2}\right) \\
& Y_{t}=X_{t}+W_{t}, \quad W_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma_{\varepsilon}^{2}\right)
\end{aligned}
$$

where $\theta=\left(\phi, \mu, \sigma_{\eta}^{2}\right)$.

- Likelihood can be computed exactly using Kalman.
- Autoregressive Metropolis proposal of coefficient ρ for ϑ based on multivariate t-distribution.
- N is selected so as to obtain $\sigma(\bar{\theta}) \approx$ constant where $\bar{\theta}$ posterior mean.

Relative Inefficiency and Computing Time

Figure: From left to right: $R C T_{h}^{Q}$ vs $N, R C T_{h}^{Q}$ vs $\sigma(\bar{\theta}), R I F_{h}^{Q}$ against N and $R I F_{h}^{Q}$ against $\sigma(\bar{\theta})$ for various values of ρ and different parameters.

Discussion

- Simplified quantitative analysis of the pseudo-marginal MH algorithm, useful in large data regime.

Discussion

- Simplified quantitative analysis of the pseudo-marginal MH algorithm, useful in large data regime.
- Optimal σ depends on efficiency of the ideal MH algorithm but $\sigma \approx 1.2$ is a sweet spot.

Discussion

- Simplified quantitative analysis of the pseudo-marginal MH algorithm, useful in large data regime.
- Optimal σ depends on efficiency of the ideal MH algorithm but $\sigma \approx 1.2$ is a sweet spot.
- Pseudo-marginal MH scales in $\mathcal{O}\left(T^{2}\right)$ as we require $N \propto T$, while simulated likelihood scales in $\mathcal{O}\left(T^{3 / 2}\right)$, i.e. $N \propto \sqrt{T}$.

Discussion

- Simplified quantitative analysis of the pseudo-marginal MH algorithm, useful in large data regime.
- Optimal σ depends on efficiency of the ideal MH algorithm but $\sigma \approx 1.2$ is a sweet spot.
- Pseudo-marginal MH scales in $\mathcal{O}\left(T^{2}\right)$ as we require $N \propto T$, while simulated likelihood scales in $\mathcal{O}\left(T^{3 / 2}\right)$, i.e. $N \propto \sqrt{T}$.
- However, pseudo-marginal MH much more generally applicable than simulated likelihood.

The Correlated Pseudo-Marginal Algorithm

- Reparameterize the likelihood estimator $\hat{p}_{\theta}\left(y_{1: T}\right)$ as a function of normal variates $U \sim \mathcal{N}(0, I)$

$$
\widehat{p}_{\theta}\left(y_{1: T}\right)=\widehat{p}_{\theta}\left(y_{1: T} ; U\right)
$$

The Correlated Pseudo-Marginal Algorithm

- Reparameterize the likelihood estimator $\widehat{p}_{\theta}\left(y_{1: T}\right)$ as a function of normal variates $U \sim \mathcal{N}(0, I)$

$$
\widehat{p}_{\theta}\left(y_{1: T}\right)=\widehat{p}_{\theta}\left(y_{1: T} ; U\right)
$$

- Correlate estimators of $p_{\theta}\left(y_{1: T}\right)$ and $p_{\vartheta}\left(y_{1: T}\right)$ by setting

$$
\widehat{p}_{\vartheta}\left(y_{1: T}\right)=\widehat{p}_{\vartheta}\left(y_{1: T} ; V\right)
$$

where

$$
V=\rho U+\sqrt{1-\rho^{2}} \varepsilon, \varepsilon \sim \mathcal{N}(0, I)
$$

for $\rho \in(-1,1)$.

The Correlated Pseudo-Marginal Algorithm

- Reparameterize the likelihood estimator $\widehat{p}_{\theta}\left(y_{1: T}\right)$ as a function of normal variates $U \sim \mathcal{N}(0, I)$

$$
\widehat{p}_{\theta}\left(y_{1: T}\right)=\widehat{p}_{\theta}\left(y_{1: T} ; U\right)
$$

- Correlate estimators of $p_{\theta}\left(y_{1: T}\right)$ and $p_{\vartheta}\left(y_{1: T}\right)$ by setting

$$
\widehat{p}_{\vartheta}\left(y_{1: T}\right)=\widehat{p}_{\vartheta}\left(y_{1: T} ; V\right)
$$

where

$$
V=\rho U+\sqrt{1-\rho^{2}} \varepsilon, \varepsilon \sim \mathcal{N}(0, I)
$$

for $\rho \in(-1,1)$.

- In practice, ρ will be select close to 1 .

Correlated Pseudo-Marginal Metropolis-Hastings algorithm

Correlated Pseudo-Marginal Metropolis-Hastings algorithm

At iteration i

- Sample $\vartheta \sim q\left(\cdot \mid \vartheta_{i-1}\right)$ and $V=\rho U_{i-1}+\sqrt{1-\rho^{2}} \varepsilon, \varepsilon \sim \mathcal{N}(0, I)$.

Correlated Pseudo-Marginal Metropolis-Hastings algorithm

At iteration i

- Sample $\vartheta \sim q\left(\cdot \mid \vartheta_{i-1}\right)$ and $V=\rho U_{i-1}+\sqrt{1-\rho^{2}} \varepsilon, \varepsilon \sim \mathcal{N}(0, I)$.
- Compute the estimate $\widehat{p}_{\vartheta}\left(y_{1: T} ; V\right)$ of $p_{\vartheta}\left(y_{1: T}\right)$.

Correlated Pseudo-Marginal Metropolis-Hastings algorithm

At iteration i

- Sample $\vartheta \sim q\left(\cdot \mid \vartheta_{i-1}\right)$ and $V=\rho U_{i-1}+\sqrt{1-\rho^{2}} \varepsilon, \varepsilon \sim \mathcal{N}(0, I)$.
- Compute the estimate $\widehat{p}_{\vartheta}\left(y_{1: T} ; V\right)$ of $p_{\vartheta}\left(y_{1: T}\right)$.
- With probability

$$
\min \left\{1, \frac{\widehat{p}_{\vartheta}\left(y_{1: T} ; V\right)}{\widehat{p}_{\vartheta_{i-1}}\left(y_{1: T} ; U_{i-1}\right)} \frac{p(\vartheta)}{p\left(\vartheta_{i-1}\right)} \frac{q\left(\vartheta_{i-1} \mid \vartheta\right)}{q\left(\vartheta \mid \vartheta_{i-1}\right)}\right\}
$$

set $\vartheta_{i}=\vartheta, U_{i}=V$, otherwise set $\vartheta_{i}=\vartheta_{i-1}, U_{i}=U_{i-1}$.

Analysis in the large data regime - i.i.d. case

Proposition. Let $N=N(T) \rightarrow \infty$ as $T \rightarrow \infty$ with $N=o(T)$. When $U \sim \bar{\pi}(\cdot \mid \theta)$ and $V=\rho_{T} U+\sqrt{1-\rho_{T}^{2}} \varepsilon$ with $\rho_{T}=\exp \left(-\psi \frac{N}{T}\right)$ then as $T \rightarrow \infty$

$$
\left.\log \left\{\frac{\widehat{p}_{\theta+\xi / \sqrt{T}}\left(y_{1: T} ; V\right)}{\widehat{p}_{\theta}\left(y_{1: T} ; U\right)} / \frac{p_{\theta+\tilde{\xi} / \sqrt{T}}\left(y_{1: T}\right)}{p_{\theta}\left(y_{1: T}\right)}\right\} \right\rvert\, \mathcal{Y}^{T}, \mathcal{U}^{T} \Rightarrow \mathcal{N}\left(-\frac{\kappa^{2}(\theta)}{2}, \kappa^{2}(\theta)\right) .
$$

- This CLT is conditional on the observation sequence and the current auxiliary variables.

Analysis in the large data regime - i.i.d. case

Proposition. Let $N=N(T) \rightarrow \infty$ as $T \rightarrow \infty$ with $N=o(T)$. When $U \sim \bar{\pi}(\cdot \mid \theta)$ and $V=\rho_{T} U+\sqrt{1-\rho_{T}^{2}} \varepsilon$ with $\rho_{T}=\exp \left(-\psi \frac{N}{T}\right)$ then as $T \rightarrow \infty$

$$
\left.\log \left\{\frac{\widehat{p}_{\theta+\xi / \sqrt{T}}\left(y_{1: T} ; V\right)}{\widehat{p}_{\theta}\left(y_{1: T} ; U\right)} / \frac{p_{\theta+\xi / \sqrt{T}}\left(y_{1: T}\right)}{p_{\theta}\left(y_{1: T}\right)}\right\} \right\rvert\, \mathcal{Y}^{T}, \mathcal{U}^{T} \Rightarrow \mathcal{N}\left(-\frac{\kappa^{2}(\theta)}{2}, \kappa^{2}(\theta)\right) .
$$

- This CLT is conditional on the observation sequence and the current auxiliary variables.
- Asymptotically the distribution of the log-ratio decouples from the current location of the Markov chain.

Analysis in the large data regime - i.i.d. case

Proposition. Let $N=N(T) \rightarrow \infty$ as $T \rightarrow \infty$ with $N=o(T)$. When $U \sim \bar{\pi}(\cdot \mid \theta)$ and $V=\rho_{T} U+\sqrt{1-\rho_{T}^{2}} \varepsilon$ with $\rho_{T}=\exp \left(-\psi \frac{N}{T}\right)$ then as $T \rightarrow \infty$

$$
\left.\log \left\{\frac{\widehat{p}_{\theta+\xi / \sqrt{T}}\left(y_{1: T} ; V\right)}{\widehat{p}_{\theta}\left(y_{1: T} ; U\right)} / \frac{p_{\theta+\xi / \sqrt{T}}\left(y_{1: T}\right)}{p_{\theta}\left(y_{1: T}\right)}\right\} \right\rvert\, \mathcal{Y}^{T}, \mathcal{U}^{T} \Rightarrow \mathcal{N}\left(-\frac{\kappa^{2}(\theta)}{2}, \kappa^{2}(\theta)\right) .
$$

- This CLT is conditional on the observation sequence and the current auxiliary variables.
- Asymptotically the distribution of the log-ratio decouples from the current location of the Markov chain.
- The asymptotic variance is $O(1)$ even for $N \sim \log (T)$.

Analysis in the large data regime

- Assumption 1 - Asymptotic Normality: We have

$$
\int\left|p\left(\theta \mid Y_{1: T}\right)-\phi\left(\theta ; \widehat{\theta}^{T}, \Sigma / T\right)\right| \mathrm{d} \theta \xrightarrow{P} 0
$$

where $\hat{\theta}^{T} \xrightarrow{P} \bar{\theta}$ and Σ is a p.d. matrix.

Analysis in the large data regime

- Assumption 1 - Asymptotic Normality: We have

$$
\int\left|p\left(\theta \mid Y_{1: T}\right)-\phi\left(\theta ; \widehat{\theta}^{T}, \Sigma / T\right)\right| \mathrm{d} \theta \xrightarrow{P} 0
$$

where $\hat{\theta}^{T} \xrightarrow{P} \bar{\theta}$ and Σ is a p.d. matrix.

- Assumption 2 - Proposal: $\vartheta=\theta+\xi / \sqrt{T}$ where $\varepsilon \sim v(\cdot)$ with $v(\xi)=v(-\xi)$.

Analysis in the large data regime

- Assumption 1 - Asymptotic Normality: We have

$$
\int\left|p\left(\theta \mid Y_{1: T}\right)-\phi\left(\theta ; \hat{\theta}^{T}, \Sigma / T\right)\right| \mathrm{d} \theta \xrightarrow{P} 0
$$

where $\hat{\theta}^{T} \xrightarrow{P} \bar{\theta}$ and Σ is a p.d. matrix.

- Assumption 2 - Proposal: $\vartheta=\theta+\xi / \sqrt{T}$ where $\varepsilon \sim v(\cdot)$ with $v(\xi)=v(-\xi)$.
- Assumption 3 - For any θ in a neighbourhood of $\bar{\theta}$, the conditional CLT holds and $\kappa^{2}(\cdot)$ is continuous at $\bar{\theta}$.

Weak convergence

- Let $\left\{\vartheta_{i}^{T}\right\}_{i \geq 0}$ the stationary non-Markovian sequence of the correlated PM of invariant density $p\left(\theta \mid Y_{1: T}\right)$.

Weak convergence

- Let $\left\{\vartheta_{i}^{T}\right\}_{i \geq 0}$ the stationary non-Markovian sequence of the correlated PM of invariant density $p\left(\theta \mid Y_{1: T}\right)$.
- Proposition (Deligiannidis et al., 2016): The F.D.D. of the rescaled sequence $\left\{\widetilde{\vartheta}_{i}^{T}=\sqrt{T}\left(\vartheta_{i}^{T}-\hat{\theta}_{T}\right)\right\}_{i \geq 0}$ converge weakly as $T \rightarrow \infty$ to those of a stationary Markov chain of invariant density $\phi(\widetilde{\theta} ; 0, \Sigma)$ and kernel given for $\widetilde{\theta} \neq \widetilde{\vartheta}$ by

$$
\widetilde{Q}(\widetilde{\theta}, \mathrm{~d} \widetilde{\vartheta})=v(\widetilde{\vartheta}-\widetilde{\theta}) \mathbb{E}_{R}\left[\min \left\{1, \frac{\phi(\widetilde{\vartheta} ; 0, \Sigma)}{\phi(\widetilde{\theta} ; 0, \Sigma)} R\right\}\right] \mathrm{d} \widetilde{\vartheta}
$$

where $R \sim \mathcal{N}\left(-\kappa^{2}(\bar{\theta}) / 2, \kappa^{2}(\bar{\theta})\right)$.

Weak convergence

- Let $\left\{\vartheta_{i}^{T}\right\}_{i \geq 0}$ the stationary non-Markovian sequence of the correlated PM of invariant density $p\left(\theta \mid Y_{1: T}\right)$.
- Proposition (Deligiannidis et al., 2016): The F.D.D. of the rescaled sequence $\left\{\widetilde{\vartheta}_{i}^{T}=\sqrt{T}\left(\vartheta_{i}^{T}-\hat{\theta}_{T}\right)\right\}_{i \geq 0}$ converge weakly as $T \rightarrow \infty$ to those of a stationary Markov chain of invariant density $\phi(\widetilde{\theta} ; 0, \Sigma)$ and kernel given for $\widetilde{\theta} \neq \widetilde{\vartheta}$ by

$$
\widetilde{Q}(\widetilde{\theta}, \mathrm{~d} \widetilde{\vartheta})=v(\widetilde{\vartheta}-\widetilde{\theta}) \mathbb{E}_{R}\left[\min \left\{1, \frac{\phi(\widetilde{\vartheta} ; 0, \Sigma)}{\phi(\widetilde{\theta} ; 0, \Sigma)} R\right\}\right] \mathrm{d} \widetilde{\vartheta}
$$

where $R \sim \mathcal{N}\left(-\kappa^{2}(\bar{\theta}) / 2, \kappa^{2}(\bar{\theta})\right)$.

- These results suggests that a simplified analysis of the CPM chain can be performed by looking at

$$
\widehat{Q}(\theta, \mathrm{~d} \vartheta)=q(\vartheta \mid \theta) \mathbb{E}_{R}\left[\min \left\{1, \frac{\pi(\vartheta)}{\pi(\theta)} R\right\}\right] \mathrm{d} \vartheta
$$

where $R \sim \mathcal{N}\left(-\kappa^{2} / 2, \kappa^{2}\right)$.

Breakdown

- An analysis based on this limiting kernel shows that one should select $\kappa^{2} \approx 4.5$ to optimize the performance of the algorithm at fixed computational complexity.

Breakdown

- An analysis based on this limiting kernel shows that one should select $\kappa^{2} \approx 4.5$ to optimize the performance of the algorithm at fixed computational complexity.
- Too good to be true? Can I really pick N arbitrarily?

Breakdown

- An analysis based on this limiting kernel shows that one should select $\kappa^{2} \approx 4.5$ to optimize the performance of the algorithm at fixed computational complexity.
- Too good to be true? Can I really pick N arbitrarily?
- Weak convergence does NOT show that $\left|I F_{h}^{Q}-I F_{h}^{\widehat{Q}}\right| \rightarrow 0$.

Breakdown

- An analysis based on this limiting kernel shows that one should select $\kappa^{2} \approx 4.5$ to optimize the performance of the algorithm at fixed computational complexity.
- Too good to be true? Can I really pick N arbitrarily?
- Weak convergence does NOT show that $\left|I F_{h}^{Q}-I F_{h}^{\widehat{Q}}\right| \rightarrow 0$.
- Informally, we have for $h(\theta)=\theta$

$$
\operatorname{Cov}\left(\theta_{0}, \theta_{\tau}\right) \approx \underbrace{\mathbb{E}\left(\mathbb{C}\left(\theta_{0}, \theta_{\tau} \mid U_{0}, U_{\tau}\right)\right)}_{\text {fast }}+\underbrace{\mathbb{C}\left(\mathbb{E}\left(\theta_{0} \mid U_{0}\right), \mathbb{E}\left(\theta_{\tau} \mid U_{\tau}\right)\right)}_{\text {slow }}
$$

where $\mathbb{E}\left(\theta_{0} \mid U_{0}\right) \approx \widehat{\theta}^{T}+\Sigma / T \nabla_{\theta} \log \widehat{p}_{\theta}\left(y_{1: T} ; U\right) /\left.p_{\theta}\left(y_{1: T}\right)\right|_{\widehat{\theta}^{T}}$. and $I F_{h}^{Q} \rightarrow \infty$ if $N / \sqrt{T} \rightarrow 0$.

Breakdown

- An analysis based on this limiting kernel shows that one should select $\kappa^{2} \approx 4.5$ to optimize the performance of the algorithm at fixed computational complexity.
- Too good to be true? Can I really pick N arbitrarily?
- Weak convergence does NOT show that $\left|I F_{h}^{Q}-I F_{h}^{\widehat{Q}}\right| \rightarrow 0$.
- Informally, we have for $h(\theta)=\theta$

$$
\operatorname{Cov}\left(\theta_{0}, \theta_{\tau}\right) \approx \underbrace{\mathbb{E}\left(\mathbb{C}\left(\theta_{0}, \theta_{\tau} \mid U_{0}, U_{\tau}\right)\right)}_{\text {fast }}+\underbrace{\mathbb{C}\left(\mathbb{E}\left(\theta_{0} \mid U_{0}\right), \mathbb{E}\left(\theta_{\tau} \mid U_{\tau}\right)\right)}_{\text {slow }}
$$

where $\mathbb{E}\left(\theta_{0} \mid U_{0}\right) \approx \widehat{\theta}^{T}+\Sigma / T \nabla_{\theta} \log \widehat{p}_{\theta}\left(y_{1: T} ; U\right) /\left.p_{\theta}\left(y_{1: T}\right)\right|_{\widehat{\theta}^{T}}$. and $I F_{h}^{Q} \rightarrow \infty$ if $N / \sqrt{T} \rightarrow 0$.

- To ensure $I F_{h}^{Q}$, we need at least $N \propto \sqrt{T}$ and we conjecture it is sufficient.

Example: Gaussian Latent Variable Model

- Consider the toy model

$$
X_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(\theta, 1), \quad Y_{t} \mid X_{t} \sim \mathcal{N}\left(X_{t}, \sigma^{2}\right)
$$

Example: Gaussian Latent Variable Model

- Consider the toy model

$$
X_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(\theta, 1), \quad Y_{t} \mid X_{t} \sim \mathcal{N}\left(X_{t}, \sigma^{2}\right)
$$

- The likelihood can be computed exactly, allowing to implement the "exact" MH algorithm.

Example: Gaussian Latent Variable Model

- Consider the toy model

$$
X_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(\theta, 1), \quad Y_{t} \mid X_{t} \sim \mathcal{N}\left(X_{t}, \sigma^{2}\right)
$$

- The likelihood can be computed exactly, allowing to implement the "exact" MH algorithm.
- The likelihood estimator is based on importance sampling.

Example: Gaussian Latent Variable Model

- Consider the toy model

$$
X_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(\theta, 1), \quad Y_{t} \mid X_{t} \sim \mathcal{N}\left(X_{t}, \sigma^{2}\right)
$$

- The likelihood can be computed exactly, allowing to implement the "exact" MH algorithm.
- The likelihood estimator is based on importance sampling.
- Integrated Autocorrelation Time is referred to as the Inefficiency IF.

Example: Gaussian Latent Variable Model

$\mathrm{MH}(T=8192)$		$\mathrm{IF}(\theta)$	
$\mathrm{PM}(\rho=0.0)$		15.6	
N		$\mathrm{RIF}(\theta)$	$\mathrm{RCT}(\theta)$
5000		2.2	11210
$\mathrm{CPM}(\rho=0.9963)$			
N	κ	$\mathrm{RIF}(\theta)$	$\mathrm{RCT}(\theta)$
9	3.1	14.0	126.2
12	2.7	8.3	99.7
20	2.2	4.7	93.3
25	2.0	2.8	69.3
35	1.7	1.7	61.1
56	1.3	1.6	87.0
80	1.1	1.1	89.0
120	0.9	0.9	113.5

Here RIF $=\mathrm{IF} / \mathrm{IF}_{M H}$ and $\mathrm{RCT}=N \times$ RIF.

Discussion

- In i.i.d. case, very substantial improvement over the PM algorithm can be achieved by introducing a correlation scheme.

Discussion

- In i.i.d. case, very substantial improvement over the PM algorithm can be achieved by introducing a correlation scheme.
- Analysis suggests that complexity is $O(T \sqrt{T})$ vs $O\left(T^{2}\right)$.

Discussion

- In i.i.d. case, very substantial improvement over the PM algorithm can be achieved by introducing a correlation scheme.
- Analysis suggests that complexity is $O(T \sqrt{T})$ vs $O\left(T^{2}\right)$.
- In state-space models, implementation relies on non-standard particle filter scheme (Hilbert sorting): our analysis does not hold experimentally for state dimension >1 and theoretically and but still substantial gains.

Discussion

- In i.i.d. case, very substantial improvement over the PM algorithm can be achieved by introducing a correlation scheme.
- Analysis suggests that complexity is $O(T \sqrt{T})$ vs $O\left(T^{2}\right)$.
- In state-space models, implementation relies on non-standard particle filter scheme (Hilbert sorting): our analysis does not hold experimentally for state dimension >1 and theoretically and but still substantial gains.
- Novel pseudo-marginal scheme using Conditional Sequential Monte Carlo (Andrieu, A.D., Yildirim, 2016) appears to suggest $O(T)$ is feasible.

Experimental results using conditional SMC

	Novel c-SMC PM		Standard PM	
	σ_{v}^{2}	σ_{w}^{2}	σ_{v}^{2}	σ_{w}^{2}
$T=1000$	17.7	23.5	71.2	59.2
$T=2000$	17.5	23.7	759.0	757.9
$T=5000$	17.6	23.7	5808.6	5663.5
$T=10000$	17.6	23.6	7368.1	7176.9

Estimated IACT on a nonlinear state-space model for $N=200$ for novel c-SMC PM algorithm and $N=2000$ for standard PM algorithm

Some References

- C. Andrieu, A.D. \& R. Holenstein, "Particle Markov chain Monte Carlo Methods", JRSS B, 2010.
- C. Andrieu \& G.O. Roberts, "The Pseudo-Marginal Algorithm for Bayesian Computation", Ann. Stat., 2009.
- J. Berard, P. Del Moral \& A.D., "A Lognormal CLT for Particle Approximations of Normalizing Constants", Electronic J. Proba., 2014.
- A.D., M.K. Pitt, G. Deligiannidis and R. Kohn, "Efficient Implementation of Markov Chain Monte Carlo when Using an Unbiased Likelihood Estimator", Biometrika, 2015.
- L. Lin, K. Lin \& J. Sloan, "A Noisy Monte Carlo Algorithm", Phys. Rev. D, 2000.
- M.K. Pitt, R. Silva, P. Giordani \& R. Kohn, "On Some Properties of MCMC Simulation Methods Based of the Particle Filter", J. Econometrics, 2012.
- C. Sherlock, A. Thiery, G.O. Roberts \& J.S. Rosenthal, "On the $\underset{(07 / 07 / 2016)}{\substack{\text { Efficiency } \\ \text { of } \\ \text { the } \\ 47 / 47}}$

