Pseudo-marginal MCMC methods for inference in latent variable models

Arnaud Doucet Department of Statistics, Oxford University Joint work with George Deligiannidis (Oxford) & Mike Pitt (Kings)

07/07/2016

• Latent variable models

æ

▶ ▲ 돈 ▶ ▲ 돈 ▶

Image: Image:

- Latent variable models
- The pseudo-marginal method

∃ ► < ∃ ►</p>

- Latent variable models
- The pseudo-marginal method
- Optimal tuning

.∋...>

- Latent variable models
- The pseudo-marginal method
- Optimal tuning
- The correlated pseudo-marginal method

- Latent variable models
- The pseudo-marginal method
- Optimal tuning
- The correlated pseudo-marginal method
- Illustrations

Assume

$$X_{t} \stackrel{\text{i.i.d.}}{\sim} \mu_{\theta}\left(\cdot\right)$$
, $Y_{t} | \left(X_{t} = x\right) \sim g_{\theta}\left(\cdot | x\right)$ for $t = 1, ..., T$

where $(X_t)_{t\geq 1}$ are latent variables and $(Y_t)_{t\geq 1}$ correspond to observations.

Assume

$$X_t \overset{ ext{i.i.d.}}{\sim} \mu_{ heta}\left(\cdot\right)$$
, $Y_t | \left(X_t = x
ight) \sim g_{ heta}\left(\cdot \mid x
ight)$ for $t = 1, ..., T$

where $(X_t)_{t\geq 1}$ are latent variables and $(Y_t)_{t\geq 1}$ correspond to observations.

• The likelihood of $Y_{1:\mathcal{T}} = y_{1:\mathcal{T}}$ for parameter $heta \in \mathbb{R}^d$ is

$$p_{\theta}\left(y_{1:T}\right) = \prod_{t=1}^{T} p_{\theta}\left(y_{t}\right), \text{ where } p_{\theta}\left(y_{t}\right) = \int \mu_{\theta}\left(x_{t}\right) g_{\theta}\left(y_{t} \middle| x_{t}\right) \mathrm{d}x_{t}.$$

御 と くき とくき とうき

Assume

$$X_t \overset{ ext{i.i.d.}}{\sim} \mu_{ heta}\left(\cdot\right)$$
, $Y_t | \left(X_t = x
ight) \sim g_{ heta}\left(\cdot \mid x
ight)$ for $t = 1, ..., T$

where $(X_t)_{t\geq 1}$ are latent variables and $(Y_t)_{t\geq 1}$ correspond to observations.

• The likelihood of $Y_{1:\mathcal{T}} = y_{1:\mathcal{T}}$ for parameter $heta \in \mathbb{R}^d$ is

$$p_{\theta}\left(y_{1:T}
ight) = \prod_{t=1}^{T} p_{\theta}\left(y_{t}
ight)$$
, where $p_{\theta}\left(y_{t}
ight) = \int \mu_{\theta}\left(x_{t}
ight) g_{\theta}\left(y_{t} \mid x_{t}
ight) \mathrm{d}x_{t}$.

• In many scenarios, $p_{ heta}\left(y_{1:T}
ight)$ cannot be evaluated exactly.

• Multivariate latent Gaussian variables

$$X_t = Z_t \beta + \varepsilon_t, \quad \varepsilon_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, R).$$

< 3 > < 3 >

• Multivariate latent Gaussian variables

$$X_t = Z_t \beta + \varepsilon_t, \quad \varepsilon_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, R).$$

• Multivariate binary observations

$$Y_{ti} = \mathbb{I}\left(X_{ti} \geq 0
ight), \ i = 1, ..., n$$

- ∢ ∃ ▶

• Multivariate latent Gaussian variables

$$X_t = Z_t \beta + \varepsilon_t, \quad \varepsilon_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, R).$$

Multivariate binary observations

$$Y_{ti} = \mathbb{I}(X_{ti} \ge 0)$$
, $i = 1, ..., n$

• Likelihood of (β, R) is the product of T integrals of *n*-dimensional truncated multivariate normals.

State-Space Models

• Assume $\{X_t\}_{t\geq 1}$ is a latent Markov process, i.e. $X_1\sim \mu_ heta(\cdot)$ and

$$X_{t+1}|(X_t = x) \sim f_{\theta}(\cdot|x), \quad Y_t|(X_t = x) \sim g_{\theta}(\cdot|x).$$

-2

イロン イ理と イヨン イヨン

State-Space Models

.

• Assume $\{X_t\}_{t \geq 1}$ is a latent Markov process, i.e. $X_1 \sim \mu_{ heta}(\cdot)$ and

$$X_{t+1}|(X_t = x) \sim f_{\theta}(\cdot|x), \quad Y_t|(X_t = x) \sim g_{\theta}(\cdot|x).$$

• The likelihood of observations $Y_{1:T} = y_{1:T}$ is

$$p_{\theta}(y_{1:T}) = \int p_{\theta}(x_{1:T}, y_{1:T}) \mathrm{d}x_{1:T}$$

where

$$p_{\theta}(x_{1:T}, y_{1:T}) = \mu_{\theta}(x_1)g_{\theta}(y_1|x_1)\prod_{t=2}^{T} f_{\theta}(x_t|x_{t-1})g_{\theta}(y_t|x_t).$$

・ロト ・聞 と ・ 臣 と ・ 臣 と … 臣

State-Space Models

• Assume $\{X_t\}_{t \geq 1}$ is a latent Markov process, i.e. $X_1 \sim \mu_{ heta}(\cdot)$ and

$$X_{t+1} | (X_t = x) \sim f_{\theta}(\cdot | x), \quad Y_t | (X_t = x) \sim g_{\theta}(\cdot | x).$$

• The likelihood of observations $Y_{1:T} = y_{1:T}$ is

$$p_{\theta}(y_{1:T}) = \int p_{\theta}(x_{1:T}, y_{1:T}) \mathrm{d}x_{1:T}$$

where

$$p_{\theta}(x_{1:T}, y_{1:T}) = \mu_{\theta}(x_1)g_{\theta}(y_1|x_1)\prod_{t=2}^{T} f_{\theta}(x_t|x_{t-1})g_{\theta}(y_t|x_t).$$

 State-space models are ubiquitous in time series analysis but inference is difficult as p_θ(y_{1:T}) is intractable for non-linear/non-Gaussian models.

• Two species X_s^1 (prey) and X_s^2 (predator)

$$\begin{array}{l} \Pr\left(X_{s+ds}^{1}\!=\!\!x_{s}^{1}\!\!+\!\!1,X_{s+ds}^{2}\!=\!\!x_{s}^{2}\!\left|\,x_{s}^{1},x_{s}^{2}\right.\right) = \alpha\,x_{s}^{1}ds + o\left(ds\right), \\ \Pr\left(X_{s+ds}^{1}\!=\!\!x_{s}^{1}\!\!-\!\!1,X_{s+ds}^{2}\!=\!\!x_{s}^{2}\!\!+\!\!1\!\left|\,x_{s}^{1},x_{s}^{2}\right.\right) = \beta\,x_{s}^{1}\,x_{s}^{2}ds + o\left(ds\right), \\ \Pr\left(X_{s+ds}^{1}\!=\!\!x_{t}^{1},X_{s+ds}^{2}\!=\!\!x_{s}^{2}\!\!-\!\!1\!\left|\,x_{s}^{1},x_{s}^{2}\right.\right) = \gamma\,x_{s}^{2}ds + o\left(ds\right), \end{array}$$

observed at discrete times

$$Y_t = X^1_{\Delta t} + W_t$$
 with $W_t \stackrel{ ext{i.i.d.}}{\sim} \mathcal{N}\left(0, \sigma^2
ight)$.

▲ 臣 ▶ → ● 臣 ▶ …

• Two species X_s^1 (prey) and X_s^2 (predator)

$$\begin{array}{l} \Pr\left(X_{s+ds}^{1} \!=\! \! x_{s}^{1} \!+\! 1, X_{s+ds}^{2} \!=\! \! x_{s}^{2} \!\mid \! x_{s}^{1}, x_{s}^{2}\right) = \alpha \, x_{s}^{1} ds + o\left(ds\right), \\ \Pr\left(X_{s+ds}^{1} \!=\! \! x_{s}^{1} \!-\! 1, X_{s+ds}^{2} \!=\! \! x_{s}^{2} \!+\! 1 \!\mid \! x_{s}^{1}, x_{s}^{2}\right) = \beta \, x_{s}^{1} \, x_{s}^{2} ds + o\left(ds\right), \\ \Pr\left(X_{s+ds}^{1} \!=\! \! x_{t}^{1}, X_{s+ds}^{2} \!=\! \! x_{s}^{2} \!-\! 1 \!\mid \! x_{s}^{1}, x_{s}^{2}\right) = \gamma \, x_{s}^{2} ds + o\left(ds\right), \end{array}$$

observed at discrete times

$$Y_t = X^1_{\Delta t} + W_t$$
 with $W_t \stackrel{ ext{i.i.d.}}{\sim} \mathcal{N}\left(0, \sigma^2
ight)$.

• Kinetic rate constants $\theta = (\alpha, \beta, \gamma)$.

(문) (문)

• State-space models are ubiquitous: 16,700 hits on Google Scholar since January 2015.

- State-space models are ubiquitous: 16,700 hits on Google Scholar since January 2015.
- Econometrics: stochastic volatility models.

∃ ► < ∃ ►</p>

- State-space models are ubiquitous: 16,700 hits on Google Scholar since January 2015.
- Econometrics: stochastic volatility models.
- **Epidemiology**: disease dynamic models.

- State-space models are ubiquitous: 16,700 hits on Google Scholar since January 2015.
- Econometrics: stochastic volatility models.
- **Epidemiology**: disease dynamic models.
- Ecology: population dynamics.

- State-space models are ubiquitous: 16,700 hits on Google Scholar since January 2015.
- Econometrics: stochastic volatility models.
- **Epidemiology**: disease dynamic models.
- Ecology: population dynamics.
- **Environmentrics**: phytoplankton-zooplankton model, paleoclimate reconstruction.

- State-space models are ubiquitous: 16,700 hits on Google Scholar since January 2015.
- Econometrics: stochastic volatility models.
- **Epidemiology**: disease dynamic models.
- Ecology: population dynamics.
- **Environmentrics**: phytoplankton-zooplankton model, paleoclimate reconstruction.
- Macroeconomics: dynamic generalized stochastic equilibrium.

伺下 イヨト イヨト

- State-space models are ubiquitous: 16,700 hits on Google Scholar since January 2015.
- Econometrics: stochastic volatility models.
- **Epidemiology**: disease dynamic models.
- Ecology: population dynamics.
- Environmentrics: phytoplankton-zooplankton model, paleoclimate reconstruction.
- Macroeconomics: dynamic generalized stochastic equilibrium.
- Signal Processing: target tracking.

伺下 イヨト イヨト

- State-space models are ubiquitous: 16,700 hits on Google Scholar since January 2015.
- Econometrics: stochastic volatility models.
- **Epidemiology**: disease dynamic models.
- Ecology: population dynamics.
- **Environmentrics**: phytoplankton-zooplankton model, paleoclimate reconstruction.
- Macroeconomics: dynamic generalized stochastic equilibrium.
- Signal Processing: target tracking.
- Systems biology: stochastic kinetic models.

伺下 イヨト イヨト

• Prior distribution of density $p\left(heta
ight)$.

• • = • • = •

- Prior distribution of density $p(\theta)$.
- Likelihood function $p_{\theta}(y_{1:T})$.

< 3 > < 3 >

- Prior distribution of density $p(\theta)$.
- Likelihood function $p_{\theta}(y_{1:T})$.
- Bayesian inference relies on the posterior

$$\pi\left(\theta\right) = p\left(\left.\theta\right| y_{1:T}\right) = \frac{p_{\theta}\left(y_{1:T}\right) p\left(\theta\right)}{\int_{\Theta} p_{\theta'}\left(y_{1:T}\right) p\left(\theta'\right) \mathrm{d}\theta'}.$$

- Prior distribution of density $p(\theta)$.
- Likelihood function $p_{\theta}(y_{1:T})$.
- Bayesian inference relies on the posterior

$$\pi\left(\theta\right) = p\left(\left.\theta\right| y_{1:T}\right) = \frac{p_{\theta}\left(y_{1:T}\right) p\left(\theta\right)}{\int_{\Theta} p_{\theta'}\left(y_{1:T}\right) p\left(\theta'\right) \mathrm{d}\theta'}.$$

• For non-trivial models, inference relies typically on MCMC.

Standard MCMC Approaches

• Standard MCMC schemes target $p(\theta, x_{1:T} | y_{1:T})$ where

$$p(\theta, x_{1:T} | y_{1:T}) \propto p(\theta) p_{\theta}(x_{1:T}, y_{1:T})$$

using Gibbs type strategy; i.e. sample alternately $X_{1:T} \sim p_{\theta}(\cdot | y_{1:T})$ and $\theta \sim p(\cdot | y_{1:T}, X_{1:T})$. • Standard MCMC schemes target $p(\theta, x_{1:T} | y_{1:T})$ where

$$p(\theta, x_{1:T} | y_{1:T}) \propto p(\theta) p_{\theta}(x_{1:T}, y_{1:T})$$

using Gibbs type strategy; i.e. sample alternately $X_{1:T} \sim p_{\theta}(\cdot | y_{1:T})$ and $\theta \sim p(\cdot | y_{1:T}, X_{1:T})$.

Problem 1: it can be difficult to sample p_θ (x_{1:T} | y_{1:T}); e.g. state-space models.

• Standard MCMC schemes target $p(\theta, x_{1:T} | y_{1:T})$ where

$$p(\theta, x_{1:T} | y_{1:T}) \propto p(\theta) p_{\theta}(x_{1:T}, y_{1:T})$$

using Gibbs type strategy; i.e. sample alternately $X_{1:T} \sim p_{\theta}(\cdot | y_{1:T})$ and $\theta \sim p(\cdot | y_{1:T}, X_{1:T})$.

- **Problem** 1: it can be difficult to sample $p_{\theta}(x_{1:T} | y_{1:T})$; e.g. state-space models.
- **Problem** 2: Even when it is implementable, Gibbs can converge very slowly.

• Standard MCMC schemes target $p(\theta, x_{1:T} | y_{1:T})$ where

$$p(\theta, x_{1:T} | y_{1:T}) \propto p(\theta) p_{\theta}(x_{1:T}, y_{1:T})$$

using Gibbs type strategy; i.e. sample alternately $X_{1:T} \sim p_{\theta}(\cdot | y_{1:T})$ and $\theta \sim p(\cdot | y_{1:T}, X_{1:T})$.

- Problem 1: it can be difficult to sample p_θ (x_{1:T} | y_{1:T}); e.g. state-space models.
- **Problem** 2: Even when it is implementable, Gibbs can converge very slowly.
- Pseudo-marginal methods mimick an algorithm targetting directly $p(\theta|y_{1:T})$ instead of $p(\theta, x_{1:T}|y_{1:T})$.

・ロト ・聞 と ・ 臣 と ・ 臣 と … 臣

Ideal Marginal Metropolis-Hastings algorithm

• Metropolis–Hastings (MH) algorithm simulates an ergodic Markov chain $\{\vartheta_i\}_{i\geq 1}$ of limiting distribution $\pi(\theta)$.

- < A > < B > < B >

Ideal Marginal Metropolis-Hastings algorithm

• Metropolis–Hastings (MH) algorithm simulates an ergodic Markov chain $\{\vartheta_i\}_{i\geq 1}$ of limiting distribution $\pi(\theta)$.

- < A > < B > < B >

Ideal Marginal Metropolis-Hastings algorithm

• Metropolis–Hastings (MH) algorithm simulates an ergodic Markov chain $\{\vartheta_i\}_{i\geq 1}$ of limiting distribution $\pi(\theta)$.

<u>At iteration i</u>

• Sample $\vartheta \sim q(\cdot | \vartheta_{i-1})$.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶
• Metropolis–Hastings (MH) algorithm simulates an ergodic Markov chain $\{\vartheta_i\}_{i\geq 1}$ of limiting distribution $\pi(\theta)$.

<u>At iteration i</u>

• Sample
$$\vartheta \sim q(\cdot | \vartheta_{i-1}).$$

With probability

$$\min\left\{1, \frac{\pi\left(\vartheta\right)}{\pi\left(\vartheta_{i-1}\right)} \frac{q\left(\vartheta_{i-1} \middle| \vartheta\right)}{q\left(\vartheta \middle| \vartheta_{i-1}\right)}\right\} = \min\left\{1, \frac{p_{\vartheta}\left(y_{1:T}\right) p\left(\vartheta\right)}{p_{\vartheta_{i-1}}\left(y_{1:T}\right) p\left(\vartheta_{i-1}\right)} \frac{q\left(\vartheta_{i-1} \middle| \vartheta\right)}{q\left(\vartheta \middle| \vartheta_{i-1}\right)}\right\},$$

set $\vartheta_{i} = \vartheta$, otherwise set $\vartheta_{i} = \vartheta_{i-1}$.

伺下 イヨト イヨト

• Metropolis–Hastings (MH) algorithm simulates an ergodic Markov chain $\{\vartheta_i\}_{i\geq 1}$ of limiting distribution $\pi(\theta)$.

<u>At iteration i</u>

• Sample
$$\vartheta \sim q(\cdot | \vartheta_{i-1}).$$

With probability

$$\min\left\{1, \frac{\pi\left(\vartheta\right)}{\pi\left(\vartheta_{i-1}\right)} \frac{q\left(\vartheta_{i-1} \middle| \vartheta\right)}{q\left(\vartheta \middle| \vartheta_{i-1}\right)}\right\} = \min\left\{1, \frac{p_{\vartheta}\left(y_{1:T}\right) p\left(\vartheta\right)}{p_{\vartheta_{i-1}}\left(y_{1:T}\right) p\left(\vartheta_{i-1}\right)} \frac{q\left(\vartheta_{i-1} \middle| \vartheta\right)}{q\left(\vartheta \middle| \vartheta_{i-1}\right)}\right\}$$

set $\vartheta_i = \vartheta$, otherwise set $\vartheta_i = \vartheta_{i-1}$.

• **Problem**: MH cannot be implemented if $p_{\vartheta}(y_{1:T})$ cannot be evaluated.

• "Idea": Replace $p_{\vartheta}(y_{1:T})$ by an estimate $\hat{p}_{\vartheta}(y_{1:T})$ in MH.

11 / 47

• "Idea": Replace $p_{\vartheta}(y_{1:T})$ by an estimate $\hat{p}_{\vartheta}(y_{1:T})$ in MH.

11 / 47

• "Idea": Replace $p_{\vartheta}(y_{1:T})$ by an estimate $\hat{p}_{\vartheta}(y_{1:T})$ in MH. <u>At iteration i</u>

• Sample $\vartheta \sim q\left(\cdot | \vartheta_{i-1}\right)$.

• "Idea": Replace $p_{\vartheta}(y_{1:T})$ by an estimate $\hat{p}_{\vartheta}(y_{1:T})$ in MH. <u>At iteration i</u>

- Sample $\vartheta \sim q\left(\cdot | \vartheta_{i-1}\right)$.
- Compute an estimate $\widehat{p}_{\vartheta}(y_{1:T})$ of $p_{\vartheta}(y_{1:T})$.

• "Idea": Replace $p_{\vartheta}(y_{1:T})$ by an estimate $\hat{p}_{\vartheta}(y_{1:T})$ in MH. <u>At iteration i</u>

- Sample $\vartheta \sim q\left(\cdot | \vartheta_{i-1}\right)$.
- Compute an estimate $\widehat{p}_{\vartheta}(y_{1:T})$ of $p_{\vartheta}(y_{1:T})$.
- With probability

$$\min \{1, \underbrace{\frac{p_{\vartheta}\left(y_{1:T}\right)}{p_{\vartheta_{i-1}}\left(y_{1:T}\right)} \frac{p\left(\vartheta\right)}{p\left(\vartheta_{i-1}\right)} \frac{q\left(\vartheta_{i-1}\right|\vartheta\right)}{q\left(\vartheta\right|\vartheta_{i-1}\right)}}_{exact \text{ MH ratio}}} \times \underbrace{\frac{\hat{p}_{\vartheta}\left(y_{1:T}\right) / p_{\vartheta}\left(y_{1:T}\right)}{\hat{p}_{\vartheta_{i-1}}\left(y_{1:T}\right)}}_{noise}} \} = \min \{1, \frac{\hat{p}_{\vartheta}\left(y_{1:T}\right) p\left(\vartheta\right)}{\hat{p}_{\vartheta_{i-1}}\left(y_{1:T}\right) p\left(\vartheta\right)} \frac{q\left(\vartheta_{i-1}\right|\vartheta\right)}{q\left(\vartheta\right|\vartheta_{i-1}\right)}}{q\left(\vartheta\right|\vartheta_{i-1}\right)}\}$$
set $\vartheta_{i} = \vartheta, \, \hat{p}_{\vartheta_{i}}\left(y_{1:T}\right) = \hat{p}_{\vartheta}\left(y_{1:T}\right) \text{ otherwise set } \vartheta_{i} = \vartheta_{i-1},$
 $\hat{p}_{\vartheta_{i}}\left(y_{1:T}\right) = \hat{p}_{\vartheta_{i-1}}\left(y_{1:T}\right).$

• **Proposition** (Lin, Liu & Sloan, 2000; Andrieu & Roberts, 2009): If $\hat{p}_{\theta}(y_{1:T})$ is a non-negative unbiased estimator of $p_{\theta}(y_{1:T})$ then the pseudo-marginal MH kernel admits $\pi(\theta)$ as invariant density.

イロト イポト イモト イモト

- **Proposition** (Lin, Liu & Sloan, 2000; Andrieu & Roberts, 2009): If $\hat{p}_{\theta}(y_{1:T})$ is a non-negative unbiased estimator of $p_{\theta}(y_{1:T})$ then the pseudo-marginal MH kernel admits $\pi(\theta)$ as invariant density.
- Let U be the r.v. such that $\widehat{p}_{\theta}(y_{1:T}) = \widehat{p}_{\theta}(y_{1:T}; U)$ and $\mathbb{E}\left[\widehat{p}_{\theta}(y_{1:T}; U)\right] = p_{\theta}(y_{1:T})$ when $U \sim m(\cdot)$.

イロト イ団ト イヨト イヨト 二日

- **Proposition** (Lin, Liu & Sloan, 2000; Andrieu & Roberts, 2009): If $\widehat{p}_{\theta}(y_{1:T})$ is a non-negative unbiased estimator of $p_{\theta}(y_{1:T})$ then the pseudo-marginal MH kernel admits $\pi(\theta)$ as invariant density.
- Let U be the r.v. such that $\widehat{p}_{\theta}(y_{1:T}) = \widehat{p}_{\theta}(y_{1:T}; U)$ and $\mathbb{E}\left[\widehat{p}_{\theta}(y_{1:T}; U)\right] = p_{\theta}(y_{1:T})$ when $U \sim m(\cdot)$.
- \bullet Consider the auxiliary target density on $\Theta\times \mathcal{U}$

$$\overline{\pi}(\theta, u) = \pi\left(\theta\right) \underbrace{\frac{\widehat{p}_{\theta}\left(y_{1:T}; u\right)}{p_{\theta}\left(y_{1:T}\right)}m\left(u\right)}_{\int (.) \mathrm{d}u = 1}$$

< 口 > < 同 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- **Proposition** (Lin, Liu & Sloan, 2000; Andrieu & Roberts, 2009): If $\hat{p}_{\theta}(y_{1:T})$ is a non-negative unbiased estimator of $p_{\theta}(y_{1:T})$ then the pseudo-marginal MH kernel admits $\pi(\theta)$ as invariant density.
- Let U be the r.v. such that $\hat{p}_{\theta}(y_{1:T}) = \hat{p}_{\theta}(y_{1:T}; U)$ and $\mathbb{E}\left[\hat{p}_{\theta}(y_{1:T}; U)\right] = p_{\theta}(y_{1:T})$ when $U \sim m(\cdot)$.
- Consider the auxiliary target density on $\Theta imes \mathcal{U}$

$$\overline{\pi}(\theta, u) = \pi\left(\theta\right) \underbrace{\frac{\widehat{p}_{\theta}\left(y_{1:T}; u\right)}{p_{\theta}\left(y_{1:T}\right)}m\left(u\right)}_{\int (.) \mathrm{d}u = 1}$$

• Pseudo-marginal MH is a standard MH with target $\overline{\pi}(\theta, u)$ and proposal $q(\vartheta|\theta) m(v)$ as

$$\frac{\overline{\pi}(\vartheta, v)}{\overline{\pi}(\theta, u)} \frac{q\left(\theta \mid \vartheta\right) m(u)}{q\left(\vartheta \mid \theta\right) m(v)} = \frac{\widehat{p}_{\vartheta}\left(y_{1:T}; v\right)}{\widehat{p}_{\theta}\left(y_{1:T}; u\right)} \frac{p\left(\vartheta\right)}{p\left(\theta\right)} \frac{q\left(\theta \mid \vartheta\right)}{q\left(\vartheta \mid \theta\right)}$$

イロト イ団ト イヨト イヨト 二日

Importance Sampling Estimator

• For latent variable models, one has

$$p_{\theta}(y_t) = \int \mu_{\theta}(x_t) g_{\theta}(y_t | x_t) dx_t.$$

イロト イヨト イヨト イヨト

• For latent variable models, one has

$$p_{\theta}(y_t) = \int \mu_{\theta}(x_t) g_{\theta}(y_t | x_t) dx_t.$$

• An non-negative unbiased estimator is given by

$$\widehat{p}_{\theta}(y_{1:T}) = \prod_{t=1}^{T} \widehat{p}_{\theta}(y_t) = \prod_{t=1}^{T} \left\{ \frac{1}{N} \sum_{k=1}^{N} g_{\theta}\left(y_t | X_t^k\right) \right\}, \ X_t^k \stackrel{\text{i.i.d.}}{\sim} \mu_{\theta},$$

i.e.

$$m(u) = \prod_{t=1}^{T} \prod_{k=1}^{N} \mu_{\theta}\left(x_{t}^{k}\right).$$

A B K A B K

• For latent variable models, one has

$$p_{\theta}(y_t) = \int \mu_{\theta}(x_t) g_{\theta}(y_t|x_t) dx_t.$$

• An non-negative unbiased estimator is given by

$$\widehat{p}_{\theta}(y_{1:T}) = \prod_{t=1}^{T} \widehat{p}_{\theta}(y_t) = \prod_{t=1}^{T} \left\{ \frac{1}{N} \sum_{k=1}^{N} g_{\theta}\left(y_t | X_t^k\right) \right\}, \ X_t^{k} \stackrel{\text{i.i.d.}}{\sim} \mu_{\theta},$$

i.e.

$$m(u) = \prod_{t=1}^{T} \prod_{k=1}^{N} \mu_{\theta}\left(x_{t}^{k}\right).$$

• Computational complexity is O(NT).

< 3 > < 3 >

• For state-space models, previous approach provides an estimator whose relative variance scales typically exponentially with *T*.

- For state-space models, previous approach provides an estimator whose relative variance scales typically exponentially with *T*.
- An alternative is to use particle filter where

$$\widehat{p}_{\theta}(y_{1:T}) = \widehat{p}_{\theta}(y_{1}) \prod_{t=2}^{T} \widehat{p}_{\theta}(y_{t} | y_{1:t-1})$$

$$= \prod_{t=1}^{T} \left\{ \frac{1}{N} \sum_{k=1}^{N} g_{\theta}\left(y_{t} | X_{n}^{k}\right) \right\}$$

where

$$\begin{split} m\left(u\right) &= \prod_{k=1}^{N} \mu_{\theta}\left(x_{1}^{k}\right) \prod_{t=2}^{T} \{\prod_{k=1}^{N} w_{t}^{a_{t-1}^{k}} f\left(x_{t}^{k} \middle| x_{t-1}^{a_{t-1}^{k}}\right)\}\\ \text{with } a_{t-1}^{k} &\in \{1, ..., N\} \text{, } w_{t}^{j} \propto g_{\theta}\left(y_{t} \middle| X_{t}^{j}\right) \text{, } \sum_{j} w_{t}^{j} = 1. \end{split}$$

- For state-space models, previous approach provides an estimator whose relative variance scales typically exponentially with *T*.
- An alternative is to use particle filter where

$$\widehat{p}_{\theta}(y_{1:T}) = \widehat{p}_{\theta}(y_{1}) \prod_{t=2}^{T} \widehat{p}_{\theta}(y_{t} | y_{1:t-1})$$

$$= \prod_{t=1}^{T} \left\{ \frac{1}{N} \sum_{k=1}^{N} g_{\theta}\left(y_{t} | X_{n}^{k}\right) \right\}$$

where

$$m(u) = \prod_{k=1}^{N} \mu_{\theta}\left(x_{1}^{k}\right) \prod_{t=2}^{T} \{\prod_{k=1}^{N} w_{t}^{a_{t-1}^{k}} f\left(x_{t}^{k} \middle| x_{t-1}^{a_{t-1}^{k}}\right)\}$$

with $a_{t-1}^{k} \in \{1, ..., N\}$, $w_{t}^{j} \propto g_{\theta}\left(y_{t} \middle| X_{t}^{j}\right)$, $\sum_{j} w_{t}^{j} = 1$.

• Computational complexity is O(NT).

- For state-space models, previous approach provides an estimator whose relative variance scales typically exponentially with *T*.
- An alternative is to use particle filter where

$$\widehat{p}_{\theta}(y_{1:T}) = \widehat{p}_{\theta}(y_{1}) \prod_{t=2}^{T} \widehat{p}_{\theta}(y_{t} | y_{1:t-1})$$

$$= \prod_{t=1}^{T} \left\{ \frac{1}{N} \sum_{k=1}^{N} g_{\theta}\left(y_{t} | X_{n}^{k}\right) \right\}$$

where

$$m(u) = \prod_{k=1}^{N} \mu_{\theta}\left(x_{1}^{k}\right) \prod_{t=2}^{T} \{\prod_{k=1}^{N} w_{t}^{a_{t-1}^{k}} f\left(x_{t}^{k} \middle| x_{t-1}^{a_{t-1}^{k}}\right)\}$$

with $a_{t-1}^k \in \{1, ..., N\}$, $w_t^j \propto g_\theta\left(y_t | X_t^j\right)$, $\sum_j w_t^j = 1$.

- Computational complexity is O(NT).
- The estimator $\hat{p}_{\theta}(y_{1:T})$ of $p_{\theta}(y_{1:T})$ is unbiased and its relative variance is bounded uniformly over T if $N \propto T$ (Cerou, Del Moral & (07/07/2016)

▲ロト ▲課 ト ▲語 ト ▲語 ト 二語 … のへの

<u>At iteration i</u>

• Sample $\vartheta \sim q\left(\cdot | \vartheta_{i-1}\right)$.

æ

イロト イ理ト イヨト イヨト

<u>At iteration i</u>

- Sample $\vartheta \sim q\left(\cdot | \vartheta_{i-1}\right)$.
- Use particle filter to compute an estimate $\widehat{p}_{\vartheta}(y_{1:T})$ of $p_{\vartheta}(y_{1:T})$.

<u>At iteration i</u>

• Sample $\vartheta \sim q\left(\cdot | \vartheta_{i-1}\right)$.

• Use particle filter to compute an estimate $\widehat{p}_{\vartheta}(y_{1:T})$ of $p_{\vartheta}(y_{1:T})$.

With probability

$$\min\{1, \frac{\widehat{p}_{\vartheta}(y_{1:T}) p(\vartheta)}{\widehat{p}_{\vartheta_{i-1}}(y_{1:T}) p(\vartheta_{i-1})} \frac{q(\vartheta_{i-1}|\vartheta)}{q(\vartheta|\vartheta_{i-1})}\}$$

set $\vartheta_i = \vartheta$, $\widehat{p}_{\vartheta_i}(y_{1:T}) = \widehat{p}_{\vartheta}(y_{1:T})$ otherwise set $\vartheta_i = \vartheta_{i-1}$, $\widehat{p}_{\vartheta_i}(y_{1:T}) = \widehat{p}_{\vartheta_{i-1}}(y_{1:T})$.

• Two species
$$X_s^1$$
 (prey) and X_s^2 (predator)

$$\begin{array}{l} \Pr\left(X_{s+ds}^{1} \!=\! x_{s}^{1} \!+\! 1, X_{s+ds}^{2} \!=\! x_{s}^{2} \left| x_{s}^{1}, x_{s}^{2} \right) = \alpha \, x_{s}^{1} ds + o \left(ds \right), \\ \Pr\left(X_{s+ds}^{1} \!=\! x_{s}^{1} \!-\! 1, X_{s+ds}^{2} \!=\! x_{s}^{2} \!+\! 1 \left| x_{s}^{1}, x_{s}^{2} \right) = \beta \, x_{s}^{1} \, x_{s}^{2} ds + o \left(ds \right), \\ \Pr\left(X_{s+ds}^{1} \!=\! x_{t}^{1}, X_{s+ds}^{2} \!=\! x_{s}^{2} \!-\! 1 \right| x_{s}^{1}, x_{s}^{2} \right) = \gamma \, x_{s}^{2} ds + o \left(ds \right), \end{array}$$

observed at discrete times

$$Y_t = X_{\Delta t}^1 + W_t$$
 with $W_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$.

< 3 > < 3 >

• Two species
$$X_s^1$$
 (prey) and X_s^2 (predator)

$$\begin{array}{l} \Pr\left(X_{s+ds}^{1}\!=\!x_{s}^{1}\!+\!1,X_{s+ds}^{2}\!=\!x_{s}^{2}\,\middle|\,x_{s}^{1},x_{s}^{2}\right) = \alpha\,x_{s}^{1}ds + o\left(ds\right), \\ \Pr\left(X_{s+ds}^{1}\!=\!x_{s}^{1}\!-\!1,X_{s+ds}^{2}\!=\!x_{s}^{2}\!+\!1\,\middle|\,x_{s}^{1},x_{s}^{2}\right) = \beta\,x_{s}^{1}\,x_{s}^{2}ds + o\left(ds\right), \\ \Pr\left(X_{s+ds}^{1}\!=\!x_{t}^{1},X_{s+ds}^{2}\!=\!x_{s}^{2}\!-\!1\,\middle|\,x_{s}^{1},x_{s}^{2}\right) = \gamma\,x_{s}^{2}ds + o\left(ds\right), \end{array}$$

observed at discrete times

$$Y_t = X_{\Delta t}^1 + W_t$$
 with $W_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}\left(0, \sigma^2\right)$.

We are interested in the kinetic rate constants θ = (α, β, γ) a priori distributed as (Boys et al., 2008; Kunsch, 2011)

$$\alpha \sim \mathcal{G}(1, 10), \quad \beta \sim \mathcal{G}(1, 0.25), \quad \gamma \sim \mathcal{G}(1, 7.5).$$

• Two species
$$X_s^1$$
 (prey) and X_s^2 (predator)

$$\begin{array}{l} \Pr\left(X_{s+ds}^{1}\!=\!x_{s}^{1}\!+\!1,X_{s+ds}^{2}\!=\!x_{s}^{2}\,\middle|\,x_{s}^{1},x_{s}^{2}\right) = \alpha\,x_{s}^{1}ds + o\left(ds\right), \\ \Pr\left(X_{s+ds}^{1}\!=\!x_{s}^{1}\!-\!1,X_{s+ds}^{2}\!=\!x_{s}^{2}\!+\!1\,\middle|\,x_{s}^{1},x_{s}^{2}\right) = \beta\,x_{s}^{1}\,x_{s}^{2}ds + o\left(ds\right), \\ \Pr\left(X_{s+ds}^{1}\!=\!x_{t}^{1},X_{s+ds}^{2}\!=\!x_{s}^{2}\!-\!1\,\middle|\,x_{s}^{1},x_{s}^{2}\right) = \gamma\,x_{s}^{2}ds + o\left(ds\right), \end{array}$$

observed at discrete times

$$Y_t = X_{\Delta t}^1 + W_t$$
 with $W_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}\left(0, \sigma^2\right)$.

We are interested in the kinetic rate constants θ = (α, β, γ) a priori distributed as (Boys et al., 2008; Kunsch, 2011)

$$\alpha \sim \mathcal{G}(1, 10), \quad \beta \sim \mathcal{G}(1, 0.25), \quad \gamma \sim \mathcal{G}(1, 7.5).$$

• Pseudo-marginal MH with RW proposal, likelihood is approximated using particle filter.

(07/07/2016)

Autocorrelation of α (left) and β (right) for the PM sampler for various N.

(07/07/2016)

<ロト </p>

• Huang & Tauchen, J. Financial Econometrics (2005):

$$\begin{aligned} dv_{1}(s) &= -k_{1} \{ v_{1}(s) - \mu_{1} \} ds + \sigma_{1} dW_{1}(s) , \\ dv_{2}(s) &= -k_{2} v_{2}(s) ds + \{ 1 + \beta_{12} v_{2}(s) \} dW_{2}(s) , \\ d\log P(s) &= \mu_{y} ds + \text{s-exp} \left[\{ v_{1}(s) + \beta_{2} v_{2}(s) \} / 2 \right] dB(s) , \end{aligned}$$

with $\phi_1 = \operatorname{corr}\{B\left(s\right), W_1\left(s\right)\}$ and $\phi_2 = \operatorname{corr}\{B\left(s\right), W_2\left(s\right)\}.$

イロト イポト イヨト イヨト

• Huang & Tauchen, J. Financial Econometrics (2005):

$$\begin{aligned} \mathrm{d} v_{1}\left(s\right) &= -k_{1}\left\{v_{1}\left(s\right) - \mu_{1}\right\}\mathrm{d} s + \sigma_{1}\mathrm{d} W_{1}\left(s\right), \\ \mathrm{d} v_{2}\left(s\right) &= -k_{2}v_{2}\left(s\right)\mathrm{d} s + \left\{1 + \beta_{12}v_{2}\left(s\right)\right\}\mathrm{d} W_{2}\left(s\right), \\ \mathrm{d} \log P\left(s\right) &= \mu_{y}\mathrm{d} s + \mathrm{s\text{-exp}}\left[\left\{v_{1}\left(s\right) + \beta_{2}v_{2}\left(s\right)\right\}/2\right]\mathrm{d} B\left(s\right), \end{aligned}$$

with $\phi_1 = \operatorname{corr}\{B\left(s\right), W_1\left(s\right)\}$ and $\phi_2 = \operatorname{corr}\{B\left(s\right), W_2\left(s\right)\}.$

• Euler discretization of the volatilities $v_1(s)$ and $v_2(s)$ provides closed form expression for $Y_t = \log P(\Delta t) - \log P(\Delta(t-1))$.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

• Huang & Tauchen, J. Financial Econometrics (2005):

$$\begin{array}{lll} \mathrm{d} v_{1}\left(s\right) &=& -k_{1}\left\{v_{1}\left(s\right)-\mu_{1}\right\}\mathrm{d} s+\sigma_{1}\mathrm{d} W_{1}\left(s\right),\\ \mathrm{d} v_{2}\left(s\right) &=& -k_{2}v_{2}\left(s\right)\mathrm{d} s+\left\{1+\beta_{12}v_{2}\left(s\right)\right\}\mathrm{d} W_{2}\left(s\right),\\ \mathrm{d} \log P\left(s\right) &=& \mu_{y}\mathrm{d} s+\mathrm{s-exp}\left[\left\{v_{1}\left(s\right)+\beta_{2}v_{2}\left(s\right)\right\}/2\right]\mathrm{d} B\left(s\right), \end{array}$$

with
$$\phi_1 = \operatorname{corr} \{ B(s), W_1(s) \}$$
 and $\phi_2 = \operatorname{corr} \{ B(s), W_2(s) \}.$

- Euler discretization of the volatilities $v_1(s)$ and $v_2(s)$ provides closed form expression for $Y_t = \log P(\Delta t) \log P(\Delta(t-1))$.
- Daily returns $y = (y_1, ..., y_T)$ of the S&P 500 index.

• Huang & Tauchen, J. Financial Econometrics (2005):

$$\begin{array}{lll} \mathrm{d} v_{1}\left(s\right) &=& -k_{1}\left\{v_{1}\left(s\right)-\mu_{1}\right\}\mathrm{d} s+\sigma_{1}\mathrm{d} W_{1}\left(s\right),\\ \mathrm{d} v_{2}\left(s\right) &=& -k_{2}v_{2}\left(s\right)\mathrm{d} s+\left\{1+\beta_{12}v_{2}\left(s\right)\right\}\mathrm{d} W_{2}\left(s\right),\\ \mathrm{d} \log P\left(s\right) &=& \mu_{y}\mathrm{d} s+\mathrm{s-exp}\left[\left\{v_{1}\left(s\right)+\beta_{2}v_{2}\left(s\right)\right\}/2\right]\mathrm{d} B\left(s\right), \end{array}$$

with
$$\phi_1 = \operatorname{corr} \{ B(s) , W_1(s) \}$$
 and $\phi_2 = \operatorname{corr} \{ B(s) , W_2(s) \}.$

- Euler discretization of the volatilities $v_1(s)$ and $v_2(s)$ provides closed form expression for $Y_t = \log P(\Delta t) \log P(\Delta(t-1))$.
- Daily returns $y = (y_1, ..., y_T)$ of the S&P 500 index.
- Bayesian Inference on $\theta = (k_1, \mu_1, \sigma_1, k_2, \beta_{12}, \beta_2, \mu_y, \phi_1, \phi_2)$.

• Huang & Tauchen, J. Financial Econometrics (2005):

$$\begin{array}{lll} \mathrm{d} v_{1}\left(s\right) &=& -k_{1}\left\{v_{1}\left(s\right)-\mu_{1}\right\}\mathrm{d} s+\sigma_{1}\mathrm{d} W_{1}\left(s\right),\\ \mathrm{d} v_{2}\left(s\right) &=& -k_{2}v_{2}\left(s\right)\mathrm{d} s+\left\{1+\beta_{12}v_{2}\left(s\right)\right\}\mathrm{d} W_{2}\left(s\right),\\ \mathrm{d} \log P\left(s\right) &=& \mu_{y}\mathrm{d} s+\mathrm{s-exp}\left[\left\{v_{1}\left(s\right)+\beta_{2}v_{2}\left(s\right)\right\}/2\right]\mathrm{d} B\left(s\right), \end{array}$$

with $\phi_1 = \operatorname{corr} \{ B(s), W_1(s) \}$ and $\phi_2 = \operatorname{corr} \{ B(s), W_2(s) \}$.

- Euler discretization of the volatilities $v_1(s)$ and $v_2(s)$ provides closed form expression for $Y_t = \log P(\Delta t) \log P(\Delta(t-1))$.
- Daily returns $y = (y_1, ..., y_T)$ of the S&P 500 index.
- Bayesian Inference on $\theta = (k_1, \mu_1, \sigma_1, k_2, \beta_{12}, \beta_2, \mu_y, \phi_1, \phi_2)$.
- Performance of the pseudo-marginal for RW proposal w.r.t σ , standard deviation of log $\hat{p}_{\theta}(y)$ at posterior mean $\overline{\theta}$.

Integrated Autocorrelation Time of Pseudo-Marginal MH

Figure: Average over the 9 parameter components of the log-integrated autocorrelation time of pseudo-marginal chain as a function of σ for T = 300.

(07/07/2016)

How precise should the log-likelihood estimator be?

• Aim: Minimize the computational time

$$CT_h^Q = IF_h^Q / \sigma^2$$

as $\sigma^2 \propto 1/N$ and computational efforts proportional to N, where

 IF_h^Q = Integrated Autocorrelation Time of PM average

▶ 《문▶ 《문▶

How precise should the log-likelihood estimator be?

• Aim: Minimize the computational time

$$CT_h^Q = IF_h^Q / \sigma^2$$

as $\sigma^2 \propto 1/N$ and computational efforts proportional to N, where

 IF_h^Q = Integrated Autocorrelation Time of PM average

• Call the IACT the *inefficiency*

$$I\!F_{h}^{Q}=1+2\sum_{ au=1}^{\infty}\mathrm{corr}_{\overline{\pi},Q}\left\{ h\left(heta_{0}
ight)$$
 , $h\left(heta_{ au}
ight)
ight\}$

where Q is the pseudo-marginal kernel given for (heta,z)
eq (artheta,w) by

$$Q\left\{(\theta, z), (d\vartheta, dw)\right\} = q(\vartheta|\theta)g_{\vartheta}(w)\min\left\{1, \frac{\pi(\vartheta)}{\pi(\theta)}\exp(w-z)\right\}d\vartheta dw,$$

where

$$\begin{aligned} z &= \log\{\widehat{p}_{\theta}(y_{1:T})/p_{\theta}(y_{1:T})\}, \\ w &= \log\{\widehat{p}_{\theta}(y_{1:T})/p_{\theta}(y_{1:T})\}\}, \\ \end{aligned}$$

Computational time for the SV model

Figure: Computational time as a function of σ
• Standard asymptotic study of MCMC relies on $d \rightarrow \infty$ and independence assumption on the target, interested here in fixed d, large T.

- Standard asymptotic study of MCMC relies on d → ∞ and independence assumption on the target, interested here in fixed d, large T.
- Assumption 1 Asymptotic Normality: We have

$$\int \left| p\left(\theta \right| Y_{1:T} \right) - \phi(\theta; \widehat{\theta}^{T}, \Sigma/T) \right| d\theta \xrightarrow{P} 0,$$

where $\widehat{\theta}^T \xrightarrow{P} \overline{\theta}$ and Σ is a p.d. matrix.

- Standard asymptotic study of MCMC relies on d → ∞ and independence assumption on the target, interested here in fixed d, large T.
- Assumption 1 Asymptotic Normality: We have

$$\int \left| p\left(\theta \right| Y_{1:T} \right) - \phi(\theta; \widehat{\theta}^{T}, \Sigma/T) \right| d\theta \xrightarrow{P} 0,$$

where $\widehat{\theta}^T \xrightarrow{P} \overline{\theta}$ and Σ is a p.d. matrix.

• Assumption 2 - CLT: For any θ in a neighbourhood of $\overline{\theta}$,

$$\log \frac{\widehat{p}_{\theta}(Y_{1:T})}{p_{\theta}(Y_{1:T})} \bigg| \mathcal{Y}^{T} \Rightarrow \mathcal{N} \left(-\sigma^{2} \left(\theta \right) / 2, \sigma^{2} \left(\theta \right) \right)$$

in probability and $\sigma^{2}(\cdot)$ continuous at $\overline{\theta}$.

- Standard asymptotic study of MCMC relies on d → ∞ and independence assumption on the target, interested here in fixed d, large T.
- Assumption 1 Asymptotic Normality: We have

$$\int \left| p\left(\theta \right| Y_{1:T} \right) - \phi(\theta; \widehat{\theta}^{T}, \Sigma/T) \right| d\theta \xrightarrow{P} 0,$$

where $\widehat{\theta}^T \xrightarrow{P} \overline{\theta}$ and Σ is a p.d. matrix.

• Assumption 2 - CLT: For any θ in a neighbourhood of $\overline{\theta}$,

$$\log \frac{\widehat{p}_{\theta}(Y_{1:T})}{p_{\theta}(Y_{1:T})} \bigg| \mathcal{Y}^{T} \Rightarrow \mathcal{N} \left(-\sigma^{2} \left(\theta \right) / 2, \sigma^{2} \left(\theta \right) \right)$$

in probability and $\sigma^{2}\left(\cdot\right)$ continuous at $\overline{ heta}$.

• Assumption 3 - Proposal: $\vartheta = \theta + \varepsilon / \sqrt{T}$ where $\varepsilon \sim v(\cdot)$ with $v(\varepsilon) = v(-\varepsilon)$.

 Assumption 1 holds if for example Bernstein-von Mises holds (in correctly specified/misspecified scenarios).

∃ ► < ∃ ►</p>

- Assumption 1 holds if for example Bernstein-von Mises holds (in correctly specified/misspecified scenarios).
- Assumption 2 has been shown to hold under regularity assumptions if N ∝ T (Berard et al, 2014, Deligiannidis et al, 2015).

- Assumption 1 holds if for example Bernstein-von Mises holds (in correctly specified/misspecified scenarios).
- Assumption 2 has been shown to hold under regularity assumptions if N ∝ T (Berard et al, 2014, Deligiannidis et al, 2015).
- Assumption 3 can be easily enforced.

• Let $\{\vartheta_i^T, Z_i^T := \log \widehat{p}_{\vartheta_i^T}(Y_{1:T}) / p_{\vartheta_i^T}(Y_{1:T})\}_{i \ge 0}$ the stationary PM Markov chain of invariant density $p(\theta|Y_{1:T}) \exp(z) g_{\theta}^T(z)$.

伺下 イヨト イヨト

Weak convergence

- Let $\{\vartheta_i^T, Z_i^T := \log \hat{p}_{\vartheta_i^T}(Y_{1:T}) / p_{\vartheta_i^T}(Y_{1:T})\}_{i \ge 0}$ the stationary PM Markov chain of invariant density $p(\theta|Y_{1:T}) \exp(z) g_{\theta}^T(z)$.
- **Proposition** (Schmon et al, 2016): The F.D.D. of the rescaled sequence $\{\widetilde{\vartheta}_i^T = \sqrt{T}(\vartheta_i^T - \widehat{\theta}_T), Z_i^T\}_{i \ge 0}$ converge weakly as $T \to \infty$ to those of a stationary Markov chain of invariant density $\phi\left(\widetilde{\theta}; 0, \Sigma\right) \phi\left(z; -\sigma^2\left(\overline{\theta}\right)/2, \sigma^2\left(\overline{\theta}\right)\right)$ and kernel given by $\widetilde{Q}\{(\widetilde{\theta}, z), (d\widetilde{\vartheta}, dw)\} = v(\widetilde{\vartheta} - \widetilde{\theta})\phi\left(w; -\sigma^2\left(\overline{\theta}\right)/2, \sigma^2\left(\overline{\theta}\right)\right)$ $\times \min\left\{1, \frac{\phi(\widetilde{\vartheta}; 0, \Sigma)}{\phi(\widetilde{\theta}; 0, \Sigma)}\exp\left(w - z\right)\right\} d\widetilde{\vartheta}dw$

$$\times \min \left\{ \begin{array}{l} 1, \frac{\gamma(z, y, z)}{\phi(\widetilde{\theta}; 0, \Sigma)} \right. \\ \\ \text{for } (\widetilde{\theta}, z) \neq (\widetilde{\vartheta}, w). \end{array} \right.$$

Weak convergence

• These results suggests that a simplified analysis of the PM chain can be performed by looking at

$$\widehat{Q}\{(\theta, z), (d\vartheta, dw)\} = q(\vartheta|\theta)\phi(w; -\sigma^2/2, \sigma^2)$$
$$\times \min\left\{1, \frac{\pi(\vartheta)}{\pi(\theta)}\exp(w-z)\right\} d\vartheta dw,$$

where
$$\sigma^2 = \sigma^2\left(\overline{ heta}
ight)$$
 .

Weak convergence

 These results suggests that a simplified analysis of the PM chain can be performed by looking at

$$\widehat{Q}\{(\theta, z), (d\vartheta, dw)\} = q(\vartheta|\theta)\phi(w; -\sigma^2/2, \sigma^2) \\ \times \min\left\{1, \frac{\pi(\vartheta)}{\pi(\theta)}\exp(w-z)\right\} d\vartheta dw,$$

where $\sigma^2 = \sigma^2\left(\overline{ heta}
ight)$.

• It would be more satisfactory to show that

$$|F_h^Q - |F_h^{\widehat{Q}}| \to 0$$

as $T \to \infty$. The analysis relies on (Andrieu & Vihola, 2015) and is much more involved.

イロト イポト イヨト イヨト

Empirical vs Assumed Distributions for SV model

Figure: Empirical distributions (dashed) vs assumed Gaussians (solid) of Z at $\overline{\theta}$ (left) and marginalized over samples from $\pi(\theta)$ (center) and $\int \pi(d\vartheta) q(\theta|\vartheta)$ (right) for T = 40, T = 300 and T = 2700.

$$CT_{h}^{\widehat{Q}}\left(\sigma\right) = IF_{h}^{\widehat{Q}}\left(\sigma\right)/\sigma^{2}.$$

æ

イロト イヨト イヨト イヨト

$$CT_{h}^{\widehat{Q}}\left(\sigma\right)=IF_{h}^{\widehat{Q}}\left(\sigma\right)/\sigma^{2}.$$

• Special cases:

æ

イロト イヨト イヨト イヨト

$$CT_{h}^{\widehat{Q}}\left(\sigma\right) = IF_{h}^{\widehat{Q}}\left(\sigma\right)/\sigma^{2}.$$

- Special cases:
- When $q(\vartheta|\theta) = p(\vartheta|y)$, $\sigma_{opt} = 0.92$ (Pitt et al., 2012).

3

通 ト イヨト イヨト

$$CT_{h}^{\widehat{Q}}\left(\sigma\right) = IF_{h}^{\widehat{Q}}\left(\sigma\right)/\sigma^{2}.$$

Special cases:

When q(θ|θ) = p(θ|y), σ_{opt} = 0.92 (Pitt et al., 2012).
 When π(θ) = Π^d_{i=1} f(θ_i) and q(θ|θ) is an isotropic Gaussian random walk then, as d → ∞, diffusion limit suggests σ_{opt} = 1.81 (Sherlock et al., 2015).

Sketch of the Analysis

• For general proposals and targets, direct minimization of $CT_{h}^{\hat{Q}}(\sigma) = IF_{h}^{\hat{Q}}(\sigma) / \sigma^{2}$ impossible so minimize an upper bound over it.

個 と く ヨ と く ヨ と …

Sketch of the Analysis

- For general proposals and targets, direct minimization of $CT_{h}^{\hat{Q}}(\sigma) = IF_{h}^{\hat{Q}}(\sigma) / \sigma^{2}$ impossible so minimize an upper bound over it.
- Theoretical study relies on $\overline{\pi}$ -invariant kernel Q^* given for $(\theta, z) \neq (\vartheta, w)$ by

$$q(\vartheta|\theta)\phi(w; -\sigma^2/2, \sigma^2)\min\left\{1, \frac{\pi(\vartheta)}{\pi(\theta)}\right\}\min\left\{1, \exp(w-z)\right\}d\vartheta dw,$$

instead of

$$q(\vartheta|\theta)\phi\left(w;-\sigma^2/2,\sigma^2\right)\min\left\{1,\frac{\pi\left(\vartheta\right)}{\pi\left(\theta\right)}\exp\left(w-z\right)\right\}d\vartheta dw.$$

副下 《唐下 《唐下

Sketch of the Analysis

- For general proposals and targets, direct minimization of $CT_{h}^{\hat{Q}}(\sigma) = IF_{h}^{\hat{Q}}(\sigma) / \sigma^{2}$ impossible so minimize an upper bound over it.
- Theoretical study relies on $\overline{\pi}$ -invariant kernel Q^* given for $(\theta, z) \neq (\vartheta, w)$ by

$$q(\vartheta|\theta)\phi\left(w;-\sigma^{2}/2,\sigma^{2}\right)\min\left\{1,\frac{\pi\left(\vartheta\right)}{\pi\left(\theta\right)}\right\}\min\left\{1,\exp\left(w-z\right)\right\}d\vartheta dw,$$

instead of

$$q(\vartheta|\theta)\phi(w;-\sigma^2/2,\sigma^2)\min\left\{1,\frac{\pi(\vartheta)}{\pi(\theta)}\exp(w-z)\right\}d\vartheta dw.$$

• Peskun's theorem (1973) guarantees that $IF_{h}^{\widehat{Q}}\left(\sigma\right) \leq IF_{h}^{Q^{*}}\left(\sigma\right)$ so that $CT_{h}^{\widehat{Q}}\left(\sigma\right) \leq CT_{h}^{Q^{*}}\left(\sigma\right)$.

Main Theoretical Result

• Proposition: If $IF_{h}^{Q^{*}}(\sigma) < \infty$ then $IF_{h}^{\widehat{Q}}(\sigma) \leq IF_{h}^{Q^{*}}(\sigma)$ and $IF_{h}^{Q^{*}}(\sigma) = 2\frac{\left\{1 + IF_{h}^{\mathsf{EX}}\right\}}{1 + IF_{h/\varrho_{\mathsf{EX}}}^{\widetilde{Q}^{\mathsf{EX}}}} \left\{\pi_{\mathsf{Z}}^{\sigma}(z)\left(1/\varrho_{\mathsf{Z}}^{\sigma}\right) - 1/\pi_{\mathsf{Z}}^{\sigma}(z)\left(\varrho_{\mathsf{Z}}^{\sigma}\right)\right\}$ $\times \sum_{n=0}^{\infty} \phi_{n}(h/\varrho_{\mathsf{EX}}, \widetilde{Q}^{\mathsf{EX}})\phi_{n}(1/\varrho_{\mathsf{Z}}, \widetilde{Q}_{\sigma}^{\mathsf{Z}})$ $+ \frac{1 + IF_{h}^{\mathsf{EX}}}{\pi_{\mathsf{Z}}^{\sigma}(\varrho_{\mathsf{Z}}^{\sigma})} - 1,$

where $\phi_n(\varphi, P)$ denotes the autocorrelation at lag *n* under a Markov kernel *P*.

|▲■▶|▲≣▶||▲≣▶||| 差||| 釣んの

Main Theoretical Result

• Proposition: If $IF_{h}^{Q^{*}}(\sigma) < \infty$ then $IF_{h}^{\widehat{Q}}(\sigma) \leq IF_{h}^{Q^{*}}(\sigma)$ and

$$\begin{split} IF_{h}^{Q^{*}}\left(\sigma\right) &= 2\frac{\left\{1+IF_{h}^{\mathsf{EX}}\right\}}{1+IF_{h/\varrho_{\mathsf{EX}}}^{\widetilde{Q}^{\mathsf{EX}}}}\left\{\pi_{\mathsf{Z}}^{\sigma}\left(z\right)\left(1/\varrho_{\mathsf{Z}}^{\sigma}\right)-1/\pi_{\mathsf{Z}}^{\sigma}\left(z\right)\left(\varrho_{\mathsf{Z}}^{\sigma}\right)\right\} \\ &\times \sum_{n=0}^{\infty}\phi_{n}(h/\varrho_{\mathsf{EX}},\widetilde{Q}^{\mathsf{EX}})\phi_{n}(1/\varrho_{\mathsf{Z}},\widetilde{Q}_{\sigma}^{\mathsf{Z}}) \\ &+ \frac{1+IF_{h}^{\mathsf{EX}}}{\pi_{\mathsf{Z}}^{\sigma}(\varrho_{\mathsf{Z}}^{\sigma})}-1, \end{split}$$

where $\phi_n(\varphi, P)$ denotes the autocorrelation at lag *n* under a Markov kernel *P*.

• $\widetilde{Q}^{\text{EX}}$ and $\widetilde{Q}^{\text{Z}}_{\sigma}$ correspond to the jump kernels associated to Q^{EX} and Q^{Z}_{σ} , $\varrho_{\text{EX}}(\theta)$ and $\varrho^{\sigma}_{\text{Z}}(z)$ are acceptance proba of Q^{EX} and Q^{Z}_{σ} .

Main Theoretical Result

• Proposition: If $IF_{h}^{Q^{*}}(\sigma) < \infty$ then $IF_{h}^{\widehat{Q}}(\sigma) \leq IF_{h}^{Q^{*}}(\sigma)$ and

$$\begin{split} \mathit{IF}_{h}^{\mathcal{Q}^{*}}\left(\sigma\right) &= 2\frac{\left\{1+\mathit{IF}_{h}^{\mathsf{EX}}\right\}}{1+\mathit{IF}_{h/\varrho_{\mathsf{EX}}}^{\widetilde{Q}^{\mathsf{EX}}}}\left\{\pi_{\mathsf{Z}}^{\sigma}\left(z\right)\left(1/\varrho_{\mathsf{Z}}^{\sigma}\right)-1/\pi_{\mathsf{Z}}^{\sigma}\left(z\right)\left(\varrho_{\mathsf{Z}}^{\sigma}\right)\right\}\\ &\times \sum_{n=0}^{\infty}\phi_{n}(h/\varrho_{\mathsf{EX}},\widetilde{Q}^{\mathsf{EX}})\phi_{n}(1/\varrho_{\mathsf{Z}},\widetilde{Q}_{\sigma}^{\mathsf{Z}})\\ &+\frac{1+\mathit{IF}_{h}^{\mathsf{EX}}}{\pi_{\mathsf{Z}}^{\sigma}(\varrho_{\mathsf{Z}}^{\sigma})}-1, \end{split}$$

where $\phi_n(\varphi, P)$ denotes the autocorrelation at lag *n* under a Markov kernel *P*.

- $\widetilde{Q}^{\text{EX}}$ and $\widetilde{Q}^{\text{Z}}_{\sigma}$ correspond to the jump kernels associated to Q^{EX} and Q^{Z}_{σ} , $\varrho_{\text{EX}}(\theta)$ and $\varrho^{\sigma}_{\text{Z}}(z)$ are acceptance proba of Q^{EX} and Q^{Z}_{σ} .
- This identity allows us to "decouple" the influence of the parameter and noise components on $IF_{h}^{Q^{*}}(\sigma)$.

Simpler Bounds on the Relative Inefficiency

 $\sim - \cdot \cdot$

• If
$$IF_{h/\varrho_{\text{EX}}}^{Q^{\text{EX}}} \ge 1$$
, e.g. Q^{EX} is a positive kernel, then

$$\frac{IF_{h}^{\widehat{Q}}(\sigma)}{IF_{h}^{\text{EX}}} \le \frac{IF_{h}^{Q^{*}}(\sigma)}{IF_{h}^{\text{EX}}} \le \frac{1}{2}(1+1/IF_{h}^{\text{EX}})\pi_{Z}^{\sigma}(1/\varrho_{Z}^{\sigma}) - \frac{1}{IF_{h}^{\text{EX}}}$$

and the bound is tight as $IF_h^{\mathsf{EX}} \to 1$ or $\sigma \to 0$.

~ EY

æ

イロト イ理ト イヨト イヨト

Simpler Bounds on the Relative Inefficiency

• If
$$IF_{h/\varrho_{\text{EX}}}^{\widetilde{Q}^{\text{EX}}} \geq 1$$
, e.g. $\widetilde{Q}^{\text{EX}}$ is a positive kernel, then

$$\frac{IF_{h}^{\widehat{Q}}(\sigma)}{IF_{h}^{\text{EX}}} \leq \frac{IF_{h}^{Q^{*}}(\sigma)}{IF_{h}^{\text{EX}}} \leq \frac{1}{2}(1+1/IF_{h}^{\text{EX}})\pi_{Z}^{\sigma}(1/\varrho_{Z}^{\sigma}) - \frac{1}{IF_{h}^{\text{EX}}}$$
and the bound is tight as $IF_{h}^{\text{EX}} \rightarrow 1$ or $\sigma \rightarrow 0$.
• As $IF_{J,h/\varrho_{\text{EX}}}^{\text{EX}} \rightarrow \infty$,

$$\frac{IF_{h}^{\mathsf{Q}}\left(\sigma\right)}{IF_{h}^{\mathsf{EX}}} \to \frac{1}{\pi_{\mathsf{Z}}^{\sigma}(\varrho_{\mathsf{Z}}^{\sigma})}.$$

≃EV

E

イロト イヨト イヨト イヨト

Simpler Bounds on the Relative Inefficiency

• If
$$IF_{h/\varrho_{\text{EX}}}^{Q^{\text{EX}}} \ge 1$$
, e.g. $\widetilde{Q}^{\text{EX}}$ is a positive kernel, then

$$\frac{IF_{h}^{\widehat{Q}}(\sigma)}{IF_{h}^{\text{EX}}} \le \frac{IF_{h}^{Q^{*}}(\sigma)}{IF_{h}^{\text{EX}}} \le \frac{1}{2}(1+1/IF_{h}^{\text{EX}})\pi_{Z}^{\sigma}(1/\varrho_{Z}^{\sigma}) - \frac{1}{IF_{h}^{\text{EX}}}$$
and the bound is tight as $IF_{h}^{\text{EX}} \to 1$ or $\sigma \to 0$.
• As $IF_{J,h/\varrho_{\text{EX}}}^{\text{EX}} \to \infty$,

$$\frac{IF_{h}^{Q^{*}}(\sigma)}{IF_{h}^{\text{EX}}} \to \frac{1}{\pi_{Z}^{\sigma}(\varrho_{Z}^{\sigma})}.$$

• Results used to minimize w.r.t σ upper bounds on $CT_{h}^{\hat{Q}}(\sigma) = IF_{h}^{\hat{Q}}(\sigma) / \sigma^{2}.$

 $\sim - v$

副 と く ヨ と く ヨ とし

Bounds on Relative Computational Time

Left: upper bound on $CT_h^{Q^*}(\sigma) / IF_h^{\mathsf{EX}}$ as a function of σ for $IF_h^{\mathsf{EX}} = 1$ (square), 4 (crosses), 20 (circles), 80 (triangles). Right: upper bounds on $CT_h^{Q^*}(\sigma) / IF_h^{\mathsf{EX}}$ as a function of σ for $IF_{J,h//\varrho_{\mathsf{EX}}}^{\mathsf{EX}} = 1$ for $IF_{J,h//\varrho_{\mathsf{EX}}}^{\mathsf{EX}} = 1, 4, 20, 80$ and lower bound (solid line).

• For good proposals, select $\sigma\approx 1.0$ whereas for poor proposals, select $\sigma\approx 1.7.$

- For good proposals, select $\sigma\approx 1.0$ whereas for poor proposals, select $\sigma\approx 1.7.$
- When you have no clue about the proposal efficiency,

- ∢ ∃ ▶

- For good proposals, select $\sigma\approx 1.0$ whereas for poor proposals, select $\sigma\approx 1.7.$
- When you have no clue about the proposal efficiency,
- If $\sigma_{\rm opt} = 1.0$ and you pick $\sigma = 1.7$, computing time increases by $\approx 150\%$.

글 > - + 글 >

- For good proposals, select $\sigma\approx 1.0$ whereas for poor proposals, select $\sigma\approx 1.7.$
- When you have no clue about the proposal efficiency,
- If $\sigma_{\rm opt} = 1.0$ and you pick $\sigma = 1.7$, computing time increases by $\approx 150\%$.
- If $\sigma_{\rm opt} = 1.7$ and you pick $\sigma = 1.0$, computing time increases by \approx 50%.

• • = • • = •

- For good proposals, select $\sigma\approx 1.0$ whereas for poor proposals, select $\sigma\approx 1.7.$
- When you have no clue about the proposal efficiency,
- If $\sigma_{\rm opt} = 1.0$ and you pick $\sigma = 1.7$, computing time increases by $\approx 150\%$.
- If $\sigma_{\rm opt} = 1.7$ and you pick $\sigma = 1.0$, computing time increases by $\approx 50\%$.
- If $\sigma_{\rm opt} = 1.0$ or $\sigma_{\rm opt} = 1.7$ and you pick $\sigma = 1.2 1.3$, computing time increases by $\approx 15\%$.

• Consider

$$\begin{split} X_t &= \quad \mu(1-\phi) + \phi X_t + V_t, \quad V_t \overset{\text{i.i.d.}}{\sim} \mathcal{N}\left(0, \sigma_{\eta}^2\right), \\ Y_t &= \quad X_t + W_t, \quad W_t \overset{\text{i.i.d.}}{\sim} \mathcal{N}\left(0, \sigma_{\varepsilon}^2\right), \\ \end{split}$$
 where $\theta &= \left(\phi, \mu, \sigma_{\eta}^2\right). \end{split}$

æ

イロト イヨト イヨト イヨト

Consider

$$X_t = \mu(1-\phi) + \phi X_t + V_t, \quad V_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}\left(0, \sigma_{\eta}^2\right),$$

$$Y_t = X_t + W_t$$
, $W_t \stackrel{ ext{i.i.d.}}{\sim} \mathcal{N}\left(0, \sigma_arepsilon^2
ight)$,

where
$$\theta = \left(\phi, \mu, \sigma_{\eta}^{2}\right)$$
.

• Likelihood can be computed exactly using Kalman.

- A B A A B A

Consider

$$X_t = \mu(1-\phi) + \phi X_t + V_t, \quad V_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}\left(0, \sigma_\eta^2\right),$$

$$Y_t = X_t + W_t$$
, $W_t \stackrel{\mathrm{i.i.d.}}{\sim} \mathcal{N}\left(0, \sigma_{\varepsilon}^2
ight)$,

where $\theta = \left(\phi, \mu, \sigma_{\eta}^{2}\right)$.

- Likelihood can be computed exactly using Kalman.
- Autoregressive Metropolis proposal of coefficient ρ for ϑ based on multivariate t-distribution.

イロト イ理ト イヨト イヨト

Consider

$$X_t = \mu(1-\phi) + \phi X_t + V_t, \quad V_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}\left(0, \sigma_\eta^2\right),$$

$$Y_t = X_t + W_t$$
, $W_t \stackrel{\mathrm{i.i.d.}}{\sim} \mathcal{N}\left(0, \sigma_{\varepsilon}^2
ight)$,

where
$$heta=\left(\phi$$
 , μ , $\sigma_{\eta}^{2}
ight)$.

- Likelihood can be computed exactly using Kalman.
- Autoregressive Metropolis proposal of coefficient ρ for ϑ based on multivariate t-distribution.
- N is selected so as to obtain $\sigma(\overline{\theta}) \approx \text{constant}$ where $\overline{\theta}$ posterior mean.

伺下 イヨト イヨト

Relative Inefficiency and Computing Time

Figure: From left to right: RCT_h^Q vs N, RCT_h^Q vs $\sigma(\overline{\theta})$, RIF_h^Q against N and RIF_h^Q against $\sigma(\overline{\theta})$ for various values of ρ and different parameters.
• Simplified quantitative analysis of the pseudo-marginal MH algorithm, useful in large data regime.

- Simplified quantitative analysis of the pseudo-marginal MH algorithm, useful in large data regime.
- Optimal σ depends on efficiency of the ideal MH algorithm but $\sigma\approx 1.2$ is a sweet spot.

∃ ► < ∃ ►</p>

- Simplified quantitative analysis of the pseudo-marginal MH algorithm, useful in large data regime.
- Optimal σ depends on efficiency of the ideal MH algorithm but $\sigma\approx 1.2$ is a sweet spot.
- Pseudo-marginal MH scales in O (T²) as we require N ∝ T, while simulated likelihood scales in O (T^{3/2}), i.e. N ∝ √T.

- Simplified quantitative analysis of the pseudo-marginal MH algorithm, useful in large data regime.
- Optimal σ depends on efficiency of the ideal MH algorithm but $\sigma\approx 1.2$ is a sweet spot.
- Pseudo-marginal MH scales in O (T²) as we require N ∝ T, while simulated likelihood scales in O (T^{3/2}), i.e. N ∝ √T.
- However, pseudo-marginal MH much more generally applicable than simulated likelihood.

The Correlated Pseudo-Marginal Algorithm

Reparameterize the likelihood estimator p
θ (y{1:T}) as a function of normal variates U ~ N (0, I)

$$\widehat{p}_{\theta}\left(y_{1:T}\right) = \widehat{p}_{\theta}\left(y_{1:T}; U\right)$$

The Correlated Pseudo-Marginal Algorithm

Reparameterize the likelihood estimator p
θ (y{1:T}) as a function of normal variates U ~ N (0, I)

$$\widehat{p}_{\theta}\left(y_{1:T}\right) = \widehat{p}_{\theta}\left(y_{1:T}; U\right)$$

• Correlate estimators of $p_{\theta}\left(y_{1:T}\right)$ and $p_{\vartheta}\left(y_{1:T}\right)$ by setting

$$\widehat{p}_{\vartheta}\left(y_{1:T}
ight)=\widehat{p}_{\vartheta}\left(y_{1:T};V
ight)$$

where

$$V =
ho U + \sqrt{1 -
ho^2} \varepsilon, \ \varepsilon \sim \mathcal{N}(0, I)$$

for $ho\in(-1,1)$.

The Correlated Pseudo-Marginal Algorithm

Reparameterize the likelihood estimator p
θ (y{1:T}) as a function of normal variates U ~ N (0, I)

$$\widehat{p}_{\theta}\left(y_{1:T}\right) = \widehat{p}_{\theta}\left(y_{1:T}; U\right)$$

• Correlate estimators of $p_{\theta}\left(y_{1:T}\right)$ and $p_{\vartheta}\left(y_{1:T}\right)$ by setting

$$\widehat{p}_{artheta}\left(y_{1:T}
ight)=\widehat{p}_{artheta}\left(y_{1:T};V
ight)$$

where

$$V =
ho U + \sqrt{1 -
ho^2} \varepsilon, \ \varepsilon \sim \mathcal{N}(0, I)$$

for $ho\in(-1,1)$.

• In practice, ρ will be select close to 1.

Correlated Pseudo-Marginal Metropolis-Hastings algorithm

<ロト < 聞 > < 直 > < 直 > 一直 - つく() - <

<u>At iteration i</u>

• Sample $\vartheta \sim q\left(\cdot \mid \vartheta_{i-1}\right)$ and $V = \rho U_{i-1} + \sqrt{1 - \rho^2} \varepsilon$, $\varepsilon \sim \mathcal{N}\left(0, I\right)$.

イロト イポト イヨト イヨト

<u>At iteration i</u>

- Sample $\vartheta \sim q\left(\cdot \mid \vartheta_{i-1}\right)$ and $V = \rho U_{i-1} + \sqrt{1 \rho^2} \varepsilon$, $\varepsilon \sim \mathcal{N}\left(0, I\right)$.
- Compute the estimate $\widehat{p}_{\vartheta}(y_{1:T}; V)$ of $p_{\vartheta}(y_{1:T})$.

<u>At iteration i</u>

- Sample $\vartheta \sim q\left(\cdot \mid \vartheta_{i-1}\right)$ and $V = \rho U_{i-1} + \sqrt{1 \rho^2} \varepsilon$, $\varepsilon \sim \mathcal{N}\left(0, I\right)$.
- Compute the estimate $\widehat{p}_{\vartheta}(y_{1:T}; V)$ of $p_{\vartheta}(y_{1:T})$.
- With probability

$$\min\{1, \frac{\widehat{p}_{\vartheta}(y_{1:T}; V)}{\widehat{p}_{\vartheta_{i-1}}(y_{1:T}; U_{i-1})} \frac{p(\vartheta)}{p(\vartheta_{i-1})} \frac{q(\vartheta_{i-1}|\vartheta)}{q(\vartheta|\vartheta_{i-1})}\}$$

set $\vartheta_i = \vartheta$, $U_i = V$, otherwise set $\vartheta_i = \vartheta_{i-1}$, $U_i = U_{i-1}$.

Proposition. Let $N = N(T) \rightarrow \infty$ as $T \rightarrow \infty$ with N = o(T). When $U \sim \overline{\pi}(\cdot|\theta)$ and $V = \rho_T U + \sqrt{1 - \rho_T^2} \varepsilon$ with $\rho_T = \exp\left(-\psi \frac{N}{T}\right)$ then as $T \rightarrow \infty$

$$\log\left\{\frac{\widehat{p}_{\theta+\xi/\sqrt{T}}(y_{1:T};V)}{\widehat{p}_{\theta}(y_{1:T};U)}/\frac{p_{\theta+\xi/\sqrt{T}}(y_{1:T})}{p_{\theta}(y_{1:T})}\right\} \middle| \mathcal{Y}^{T}, \mathcal{U}^{T} \Rightarrow \mathcal{N}(-\frac{\kappa^{2}(\theta)}{2}, \kappa^{2}(\theta)).$$

 This CLT is conditional on the observation sequence and the current auxiliary variables.

・ロト ・聞 と ・ 臣 と ・ 臣 と … 臣

Proposition. Let $N = N(T) \rightarrow \infty$ as $T \rightarrow \infty$ with N = o(T). When $U \sim \overline{\pi}(\cdot|\theta)$ and $V = \rho_T U + \sqrt{1 - \rho_T^2} \varepsilon$ with $\rho_T = \exp\left(-\psi \frac{N}{T}\right)$ then as $T \rightarrow \infty$

$$\log\left\{\frac{\widehat{p}_{\theta+\xi/\sqrt{T}}(y_{1:T};V)}{\widehat{p}_{\theta}(y_{1:T};U)}/\frac{p_{\theta+\xi/\sqrt{T}}(y_{1:T})}{p_{\theta}(y_{1:T})}\right\} \middle| \mathcal{Y}^{T}, \mathcal{U}^{T} \Rightarrow \mathcal{N}(-\frac{\kappa^{2}(\theta)}{2}, \kappa^{2}(\theta)).$$

- This CLT is conditional on the observation sequence and the current auxiliary variables.
- Asymptotically the distribution of the log-ratio decouples from the current location of the Markov chain.

イロト イ団ト イヨト イヨト 三日

Proposition. Let $N = N(T) \rightarrow \infty$ as $T \rightarrow \infty$ with N = o(T). When $U \sim \overline{\pi}(\cdot|\theta)$ and $V = \rho_T U + \sqrt{1 - \rho_T^2} \varepsilon$ with $\rho_T = \exp\left(-\psi \frac{N}{T}\right)$ then as $T \rightarrow \infty$

$$\log\left\{\frac{\widehat{p}_{\theta+\xi/\sqrt{T}}(y_{1:T};V)}{\widehat{p}_{\theta}(y_{1:T};U)}/\frac{p_{\theta+\xi/\sqrt{T}}(y_{1:T})}{p_{\theta}(y_{1:T})}\right\} \middle| \mathcal{Y}^{T}, \mathcal{U}^{T} \Rightarrow \mathcal{N}(-\frac{\kappa^{2}(\theta)}{2}, \kappa^{2}(\theta)).$$

- This CLT is conditional on the observation sequence and the current auxiliary variables.
- Asymptotically the distribution of the log-ratio decouples from the current location of the Markov chain.
- The asymptotic variance is O(1) even for $N \sim \log(T)$.

・ロト ・聞 と ・ 臣 と ・ 臣 と … 臣

• Assumption 1 - Asymptotic Normality: We have

$$\int \left| p\left(\theta \right| Y_{1:T} \right) - \phi(\theta; \widehat{\theta}^{T}, \Sigma/T) \right| d\theta \xrightarrow{P} 0,$$

where
$$\widehat{\theta}^T \xrightarrow{P} \overline{\theta}$$
 and Σ is a p.d. matrix.

• Assumption 1 - Asymptotic Normality: We have

$$\int \left| p\left(\theta \right| Y_{1:T} \right) - \phi(\theta; \widehat{\theta}^{T}, \Sigma/T) \right| d\theta \xrightarrow{P} 0,$$

where $\widehat{\theta}^T \xrightarrow{P} \overline{\theta}$ and Σ is a p.d. matrix.

• Assumption 2 - Proposal: $\vartheta = \theta + \xi / \sqrt{T}$ where $\varepsilon \sim v(\cdot)$ with $v(\xi) = v(-\xi)$.

A = A = A

• Assumption 1 - Asymptotic Normality: We have

$$\int \left| p\left(\theta \right| Y_{1:T} \right) - \phi(\theta; \widehat{\theta}^{T}, \Sigma/T) \right| d\theta \xrightarrow{P} 0,$$

where $\widehat{\theta}^T \xrightarrow{P} \overline{\theta}$ and Σ is a p.d. matrix.

- Assumption 2 Proposal: $\vartheta = \theta + \xi / \sqrt{T}$ where $\varepsilon \sim v(\cdot)$ with $v(\xi) = v(-\xi)$.
- Assumption 3 For any θ in a neighbourhood of $\overline{\theta}$, the conditional CLT holds and $\kappa^2(\cdot)$ is continuous at $\overline{\theta}$.

Weak convergence

• Let $\{\vartheta_i^T\}_{i\geq 0}$ the stationary non-Markovian sequence of the correlated PM of invariant density $p(\theta | Y_{1:T})$.

41 / 47

Weak convergence

- Let $\{\vartheta_i^T\}_{i\geq 0}$ the stationary non-Markovian sequence of the correlated PM of invariant density $p(\theta|Y_{1:T})$.
- Proposition (Deligiannidis et al., 2016): The F.D.D. of the rescaled sequence {θ̃_i^T = √T(θ_i^T θ̂_T)}_{i≥0} converge weakly as T → ∞ to those of a stationary Markov chain of invariant density φ(θ̃; 0, Σ) and kernel given for θ̃ ≠ θ̃ by

$$\widetilde{Q}(\widetilde{\theta}, d\widetilde{\vartheta}) = v(\widetilde{\vartheta} - \widetilde{\theta}) \mathbb{E}_{R} \left[\min \left\{ 1, \frac{\phi(\widetilde{\vartheta}; 0, \Sigma)}{\phi(\widetilde{\theta}; 0, \Sigma)} R \right\} \right] d\widetilde{\vartheta}$$

where $R \sim \mathcal{N}(-\kappa^{2}\left(\overline{\theta}\right)/2, \kappa^{2}\left(\overline{\theta}\right)).$

- 米田 ト 米田 ト 米田 ト 一日

Weak convergence

- Let $\{\vartheta_i^T\}_{i\geq 0}$ the stationary non-Markovian sequence of the correlated PM of invariant density $p(\theta | Y_{1:T})$.
- Proposition (Deligiannidis et al., 2016): The F.D.D. of the rescaled sequence {θ̃_i^T = √T(θ_i^T θ̂_T)}_{i≥0} converge weakly as T → ∞ to those of a stationary Markov chain of invariant density φ(θ̃; 0, Σ) and kernel given for θ̃ ≠ θ̃ by

$$\widetilde{Q}(\widetilde{\theta}, d\widetilde{\vartheta}) = v(\widetilde{\vartheta} - \widetilde{\theta}) \mathbb{E}_R \left[\min \left\{ 1, \frac{\phi(\widetilde{\vartheta}; 0, \Sigma)}{\phi(\widetilde{\theta}; 0, \Sigma)} R \right\} \right] d\widetilde{\vartheta}$$

where $R \sim \mathcal{N}(-\kappa^2\left(\overline{\theta}\right)/2, \kappa^2\left(\overline{\theta}\right))$.

• These results suggests that a simplified analysis of the CPM chain can be performed by looking at

$$\widehat{Q}(heta, \mathrm{d}artheta) = q\left(artheta| heta
ight) \mathbb{E}_{R}\left[\min\left\{1, rac{\pi\left(artheta
ight)}{\pi\left(heta
ight)}R
ight\}
ight]\mathrm{d}artheta$$

where $R \sim \mathcal{N}(-\kappa^2/2, \kappa^2)$.

• An analysis based on this limiting kernel shows that one should select $\kappa^2 \approx 4.5$ to optimize the performance of the algorithm at fixed computational complexity.

- E > - E >

- An analysis based on this limiting kernel shows that one should select $\kappa^2 \approx 4.5$ to optimize the performance of the algorithm at fixed computational complexity.
- Too good to be true? Can I really pick N arbitrarily?

- An analysis based on this limiting kernel shows that one should select $\kappa^2 \approx 4.5$ to optimize the performance of the algorithm at fixed computational complexity.
- Too good to be true? Can I really pick N arbitrarily?
- Weak convergence does NOT show that $\left|IF_{h}^{Q}-IF_{h}^{\widehat{Q}}\right| \rightarrow 0.$

- An analysis based on this limiting kernel shows that one should select $\kappa^2 \approx 4.5$ to optimize the performance of the algorithm at fixed computational complexity.
- Too good to be true? Can I really pick N arbitrarily?
- Weak convergence does NOT show that $\left|IF_{h}^{Q}-IF_{h}^{\widehat{Q}}\right| \rightarrow 0.$

• Informally, we have for
$$h\left(heta
ight)= heta$$

$$\mathbb{C}\mathrm{ov}\left(\theta_{0},\theta_{\tau}\right)\approx\underbrace{\mathbb{E}\left(\mathbb{C}\left(\theta_{0},\theta_{\tau}|U_{0},U_{\tau}\right)\right)}_{\mathsf{fast}}+\underbrace{\mathbb{C}\left(\mathbb{E}\left(\theta_{0}|U_{0}\right),\mathbb{E}\left(\theta_{\tau}|U_{\tau}\right)\right)}_{\mathsf{slow}}$$

where $\mathbb{E}(\theta_0|U_0) \approx \widehat{\theta}^T + \Sigma / T \nabla_{\theta} \log \widehat{p}_{\theta}(y_{1:T}; U) / p_{\theta}(y_{1:T})|_{\widehat{\theta}^T}$ and $IF_h^Q \to \infty$ if $N/\sqrt{T} \to 0$.

- An analysis based on this limiting kernel shows that one should select $\kappa^2 \approx 4.5$ to optimize the performance of the algorithm at fixed computational complexity.
- Too good to be true? Can I really pick N arbitrarily?
- Weak convergence does NOT show that $\left|IF_{h}^{Q}-IF_{h}^{\widehat{Q}}\right| \rightarrow 0.$
- Informally, we have for $h\left(heta
 ight) = heta$

$$\mathbb{C}\mathrm{ov}\left(\theta_{0},\theta_{\tau}\right)\approx\underbrace{\mathbb{E}\left(\mathbb{C}\left(\theta_{0},\theta_{\tau}\mid U_{0},U_{\tau}\right)\right)}_{\mathrm{fast}}+\underbrace{\mathbb{C}\left(\mathbb{E}\left(\theta_{0}\mid U_{0}\right),\mathbb{E}\left(\theta_{\tau}\mid U_{\tau}\right)\right)}_{\mathrm{slow}}$$

where $\mathbb{E}(\theta_0 | U_0) \approx \widehat{\theta}^T + \Sigma / T \nabla_{\theta} \log \widehat{p}_{\theta}(y_{1:T}; U) / p_{\theta}(y_{1:T})|_{\widehat{\theta}^T}$ and $IF_h^Q \to \infty$ if $N/\sqrt{T} \to 0$.

• To ensure IF_h^Q , we need at least $N \propto \sqrt{T}$ and we conjecture it is sufficient.

$$X_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, 1), \quad Y_t | X_t \sim \mathcal{N}(X_t, \sigma^2).$$

.

$$X_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, 1), \quad Y_t | X_t \sim \mathcal{N}(X_t, \sigma^2).$$

• The likelihood can be computed exactly, allowing to implement the "exact" MH algorithm.

< 3 > < 3 >

$$X_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, 1), \quad Y_t | X_t \sim \mathcal{N}(X_t, \sigma^2).$$

- The likelihood can be computed exactly, allowing to implement the "exact" MH algorithm.
- The likelihood estimator is based on importance sampling.

$$X_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, 1), \quad Y_t | X_t \sim \mathcal{N}(X_t, \sigma^2).$$

- The likelihood can be computed exactly, allowing to implement the "exact" MH algorithm.
- The likelihood estimator is based on importance sampling.
- Integrated Autocorrelation Time is referred to as the Inefficiency IF.

Example: Gaussian Latent Variable Model

MH (<i>T</i> = 8192)		$IF(\theta)$	
		15.6	
PM ($ ho=$ 0.0)			
N		$RIF(\theta)$	$RCT(\theta)$
5000		2.2	11210
CPM ($ ho=$ 0.9963)			
Ν	κ	$RIF(\theta)$	$RCT(\theta)$
9	3.1	14.0	126.2
12	2.7	8.3	99.7
20	2.2	4.7	93.3
25	2.0	2.8	69.3
35	1.7	1.7	61.1
56	1.3	1.6	87.0
80	1.1	1.1	89.0
120	0.9	0.9	113.5

Here $RIF = IF/IF_{MH}$ and $RCT = N \times RIF$.

(07/07/2016)

• In i.i.d. case, very substantial improvement over the PM algorithm can be achieved by introducing a correlation scheme.

∃ ► < ∃ ►</p>

- In i.i.d. case, very substantial improvement over the PM algorithm can be achieved by introducing a correlation scheme.
- Analysis suggests that complexity is $O(T\sqrt{T})$ vs $O(T^2)$.

• • = • • = •

- In i.i.d. case, very substantial improvement over the PM algorithm can be achieved by introducing a correlation scheme.
- Analysis suggests that complexity is $O\left(T\sqrt{T}\right)$ vs $O\left(T^2\right)$.
- In state-space models, implementation relies on non-standard particle filter scheme (Hilbert sorting): our analysis does not hold experimentally for state dimension > 1 and theoretically and but still substantial gains.

- In i.i.d. case, very substantial improvement over the PM algorithm can be achieved by introducing a correlation scheme.
- Analysis suggests that complexity is $O\left(T\sqrt{T}\right)$ vs $O\left(T^2\right)$.
- In state-space models, implementation relies on non-standard particle filter scheme (Hilbert sorting): our analysis does not hold experimentally for state dimension > 1 and theoretically and but still substantial gains.
- Novel pseudo-marginal scheme using Conditional Sequential Monte Carlo (Andrieu, A.D., Yildirim, 2016) appears to suggest O(T) is feasible.

イロト イ理ト イヨト イヨト

	Novel c-SMC PM		Standard PM		
	σ_v^2	σ_w^2	σ_v^2	σ_w^2	
T = 1000	17.7	23.5	71.2	59.2	
T = 2000	17.5	23.7	759.0	757.9	
T = 5000	17.6	23.7	5808.6	5663.5	
T = 10000	17.6	23.6	7368.1	7176.9	

Estimated IACT on a nonlinear state-space model for N = 200 for novel c-SMC PM algorithm and N = 2000 for standard PM algorithm

Some References

- C. Andrieu, A.D. & R. Holenstein, "Particle Markov chain Monte Carlo Methods", *JRSS* B, 2010.
- C. Andrieu & G.O. Roberts, "The Pseudo-Marginal Algorithm for Bayesian Computation", *Ann. Stat.*, 2009.
- J. Berard, P. Del Moral & A.D., "A Lognormal CLT for Particle Approximations of Normalizing Constants", *Electronic J. Proba.*, 2014.
- A.D., M.K. Pitt, G. Deligiannidis and R. Kohn, "Efficient Implementation of Markov Chain Monte Carlo when Using an Unbiased Likelihood Estimator", *Biometrika*, 2015.
- L. Lin, K. Lin & J. Sloan, "A Noisy Monte Carlo Algorithm", Phys. Rev. D, 2000.
- M.K. Pitt, R. Silva, P. Giordani & R. Kohn, "On Some Properties of MCMC Simulation Methods Based of the Particle Filter", J. Econometrics, 2012.

47 / 47

 C. Sherlock, A. Thiery, G.O. Roberts & J.S. Rosenthal, "On the Efficiency of the RW Pseudo-Marginal MH": Ann.[®] Stat., 2015. [≥] (07/07/2016)