Simulation and optimisation in imaging inverse problems: Part 1.

Marcelo Pereyra http://www.stats.bris.ac.uk/~mp12320/

University of Bristol

7th of July 2016, Peyresq, France.

IMAGES ARE CHALLENGING PHYSICAL MEASUREMENTS, NOT PICTURES!

1 Bayesian inference in imaging inverse problems

- 2 Proximal Markov chain Monte Carlo
- 3 Experiments

1 Bayesian inference in imaging inverse problems

2 Proximal Markov chain Monte Carlo

3 Experiments

4 Conclusion

- We are interested in an unknown image $\mathbf{x} \in \mathbb{R}^d$.
- We observe data \mathbf{y} , related to \mathbf{x} by a statistical model $p(\mathbf{y}|\mathbf{x})$.
- The recovery of **x** from **y** is ill-posed or ill-conditioned.
- We address this difficulty by using a prior distribution $p(\mathbf{x})$.
- The posterior distribution of **x** given **y**

 $p(\mathbf{x}|\mathbf{y}) = p(\mathbf{y}|\mathbf{x})p(\mathbf{x})/p(\mathbf{y})$

models our knowledge about \mathbf{x} after observing \mathbf{y} .

Many imaging inverse problems involve models of the form

$$\pi(\mathbf{x}|\mathbf{y}) \propto \exp\left\{-g_1(\mathbf{x}) - g_2(\mathbf{x})\right\}$$
(1)

where $g_1(\mathbf{x})$ and $g_2(\mathbf{x})$ are lower semicontinuous convex functions from $\mathbb{R}^d \to (-\infty, +\infty]$. Typically g_1 is *L*-Lipschitz differentiable, e.g.,

$$g_1(\mathbf{x}) = \frac{1}{2\sigma^2} \|\mathbf{y} - A\mathbf{x}\|_2^2$$

for some observation $\mathbf{y} \in \mathbb{R}^{p}$ and linear operator $A \in \mathbb{R}^{p \times n}$, and

$$g_2(\mathbf{x}) = \alpha \|B\mathbf{x}\|_{\dagger} + \mathbf{1}_{\mathcal{S}}(\mathbf{x})$$

for some norm $\|\cdot\|_{\dagger}$, dictionary $B \in \mathbb{R}^{n \times n}$, and convex set S. Often, $g_2 \notin C^1$.

Maximum-a-posteriori (MAP) estimation

The predominant Bayesian approach in imaging is MAP estimation

$$\hat{\mathbf{x}}_{MAP} = \underset{\mathbf{x} \in \mathbb{R}^{d}}{\operatorname{argmin}} g_{1}(\mathbf{x}) + g_{2}(\mathbf{x}),$$

$$= \underset{\mathbf{x} \in \mathbb{R}^{d}}{\operatorname{argmin}} g_{1}(\mathbf{x}) + g_{2}(\mathbf{x}),$$

$$(2)$$

which can be computed very efficiently (e.g. within milliseconds), even for large n, by using optimisation algorithms based on the following mapping:

Definition 1.1 (Proximity mappings (Moreau, 1962))

For $\lambda > 0$, the λ -proximity mapping of g convex l.s.c. is defined as

$$\operatorname{prox}_{g}^{\lambda}(\mathbf{x}) \triangleq \operatorname{argmin}_{\mathbf{u} \in \mathbb{R}} g(\mathbf{u}) + \frac{1}{2\lambda} \|\mathbf{u} - \mathbf{x}\|^{2}.$$

See Combettes and Pesquet (2011) for list of proximity mappings.

Proximal gradient (forward-backward) algorithm

$$\mathbf{x}^{m+1} = \operatorname{prox}_{g_2}^{L^{-1}} \{ \mathbf{x}^m + L^{-1} \nabla g_1(\mathbf{x}^m) \},\$$

converges to $\hat{\mathbf{x}}_{MAP}$ at rate O(1/m), with poss. acceleration to $O(1/m^2)$.

Alternating direction method of multipliers (ADMM) algorithm

$$\begin{split} & \mathbf{x}^{m+1} = \text{prox}_{g_1}^{\lambda} \{ \mathbf{z}^m - \mathbf{u}^m \}, \\ & \mathbf{z}^{m+1} = \text{prox}_{g_2}^{\lambda} \{ \mathbf{x}^{m+1} + \mathbf{u}^m \}, \\ & \mathbf{u}^{m+1} = \mathbf{u}^m + \mathbf{x}^{m+1} - \mathbf{z}^{m+1}, \end{split}$$

also converges to $\hat{\mathbf{x}}_{MAP}$, and does not require g_1 to be smooth.

Illustrative example: image resolution enhancement

Recover $\mathbf{x} \in \mathbb{R}^d$ from low resolution and noisy measurements

 $\mathbf{y} = H\mathbf{x} + \mathbf{w},$

where H is a circulant blurring matrix. We use the Bayesian model

$$\pi(\mathbf{x}|\mathbf{y}) \propto \exp\left(-\|\mathbf{y} - H\mathbf{x}\|^2 / 2\sigma^2 - \beta \|\mathbf{x}\|_1\right).$$
(3)

Figure : Resolution enhancement of the Molecules image of size 256 × 256 pixels.

Illustrative example: tomographic image reconstruction

Recover x $\in \mathbb{R}^d$ from partially observed and noisy Fourier measurements

 $\mathbf{y} = \mathbf{\Phi} \mathcal{F} \mathbf{x} + \mathbf{w},$

where Φ is a mask and ${\cal F}$ is the 2D Fourier operator. We use the model

$$\pi(\mathbf{x}|\mathbf{y}) \propto \exp\left(-\|\mathbf{y} - \mathbf{\Phi}\mathcal{F}\mathbf{x}\|^2 / 2\sigma^2 - \beta \|\nabla_d \mathbf{x}\|_{1-2}\right), \tag{4}$$

where ∇_d is the 2d discrete gradient operator and $\|\cdot\|_{1-2}$ the $\ell_1 - \ell_2$ norm.

Figure : Tomographic reconstruction of the Shepp-Logan phantom image.

M. Pereyra (UoB)

Peyresq 2016

- Proximal optimisation algorithms deliver accurate approximations of $\hat{\mathbf{x}}_{MAP}$ efficiently. However, $\hat{\mathbf{x}}_{MAP}$ provides very little about $\pi(\mathbf{x}|\mathbf{y})$.
- More advanced statistical analyses require other inference tools (e.g. MCMC algorithms) that are often very computationally expensive.
- High-dimensional MCMC methods rely strongly on differential calculus and may perform badly if $\pi(\mathbf{x}|\mathbf{y})$ is not sufficiently regular.
- This talk describes "proximal" MCMC algorithms (Pereyra, 2015; Durmus et al., 2016), which exploit convex analysis for simulation.

Recent surveys on Bayesian computation...

PROCESSING

25th anniversary special issue on Bayesian computation

P. Green, K. Latuszynski, M. Pereyra, C. P. Robert, "Bayesian computation: a perspective on the current state, and sampling backwards and forwards", Statistics and Computing, vol. 25, no. 4, pp 835-862, Jul. 2015.

Special issue on "Stochastic simulation and optimisation in signal processing"

M. Pereyra, P. Schniter, E. Chouzenoux, J.-C. Pesquet, J.-Y. Tourneret, A. Hero, and S. McLaughlin, "A Survey of Stochastic Simulation and Optimization Methods in Signal Processing" IEEE Sel. Topics in Signal Processing, in press.

4 IEE

Bayesian inference in imaging inverse problems

Proximal Markov chain Monte Carlo

3 Experiments

4 Conclusion

Monte Carlo integration

Given a set of samples $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(M)}$ distributed according to $p(\mathbf{x}|\mathbf{y})$, we approximate posterior expectations and probabilities

$$\frac{1}{M} \sum \phi(\mathbf{x}^{(m)}) \to \mathrm{E}\{\phi(\mathbf{x})|\mathbf{y}\}, \text{ as } M \to \infty$$

Guarantees from CLTs [e.g., $\frac{1}{\sqrt{M}} \sum \phi(\mathbf{x}^{(m)}) \sim \mathcal{N}(\mathrm{E}\{\phi(\mathbf{x})|\mathbf{y}\}, \Sigma)].$

Markov chain Monte Carlo:

Construct a Markov kernel $\mathbf{x}^{(m+1)}|\mathbf{x}^{(m)} \sim \mathcal{K}(\cdot|\mathbf{x}^{(m)})$ such that the Markov chain $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(M)}$ has $p(\mathbf{x}|\mathbf{y})$ as stationary distribution.

MCMC simulation in high-dimensional spaces is very challenging.

Suppose that π ∈ C¹. We could simulate from π by mimicking a Langevin diffusion process that converges to π as t → ∞

$$X: \quad dX(t) = \frac{1}{2} \nabla \log \pi \left(X(t) \right) dt + dW(t), \quad 0 \le t \le T, \quad X(0) = \mathbf{x}_0.$$

 Direct simulation from y is generally not possible. Instead, we use a forward Euler approximation of X ("unadjusted Langevin algorithm")

ULA:
$$\mathbf{x}^{(m+1)} = \mathbf{x}^{(m)} + \delta \nabla \log \pi(\mathbf{x}^{(m)}) + \sqrt{2\delta} \mathbf{z}^{(m)}, \quad \mathbf{z}^{(m)} \sim \mathcal{N}(0, \mathbb{I}_d)$$

 However, ULA may perform badly if π ∉ C¹, or if ∇ log π is not Lipchitz continuous (e.g., if π(x) ∝ exp(-γx^β) with β > 2). **MALA** combines ULA with a Metropolis-Hastings step that removes (asymptotically) the bias due to the discretisation:

Use ULA to generate candidate

$$\mathbf{x}^* = \mathbf{x}^{(m)} + \delta \nabla \log \pi(\mathbf{x}^{(m)}) + \sqrt{2\delta} \mathbf{z}^{(m)}, \quad \mathbf{z}^{(m)} \sim \mathcal{N}(0, \mathbb{I}_d)$$

2) With probability

$$\rho^{(m+1)} = 1 \wedge \frac{\pi(\mathbf{x}^*)}{\pi[\mathbf{x}^{(m)}]} \frac{p_{\mathcal{N}}[\mathbf{x}^{(m)}|\mathbf{x}^* + \delta \nabla \log \pi(\mathbf{x}^*), 2\delta \mathbb{I}_d]}{p_{\mathcal{N}}[\mathbf{x}^*|\mathbf{x}^{(m)} + \delta \nabla \log \pi(\mathbf{x}^{(m)}), 2\delta \mathbb{I}_d]}$$

Set $\mathbf{x}^{(m+1)} = \mathbf{x}^*$. Otherwise, set $\mathbf{x}^{(m+1)} = \mathbf{x}^{(m)}$.

Metropolis-adjusted Langevin algorithm

However, MALAs (and Hamiltonian MCs) often also perform badly if $\pi \notin C^1$, or if $\nabla \log \pi$ is not Lipchitz continuous !!!

Illustrative example - $\pi(x) \propto \exp\{-x^4\}$:

Comparison: MALA, Hamiltonian MC (Neal, 2012), *e*-truncated gradient MALA (MALTA) (Roberts and Tweedie, 1996), simplified manifold MALA (SMMALA) (Girolami and Calderhead, 2011) and proximal MALA (Pereyra, 2015).

M. Pereyra (UoB)	Peyresq 2016	16 / 39
------------------	--------------	---------

Idea: Regularise π to enable high-dimensional MCMC sampling.

Definition 2.1

Moreau approximations of $\boldsymbol{\pi}$

We define the $\lambda\text{-}\mathsf{Moreau}$ approximation of π as the following density

$$\pi_{\lambda}(\mathbf{x}) \triangleq \sup_{\mathbf{u} \in \mathbb{R}} \frac{1}{\kappa'} \pi(\mathbf{u}) \exp\left[-\frac{1}{2\lambda} ||\mathbf{u} - \mathbf{x}||^2\right]$$
(5)

with normalizing constant $\kappa' \in \mathbb{R}^+$ and regularisation parameter $\lambda > 0$.

Key properties:

- Oifferentiability:
 - $\pi_{\lambda} \in \mathcal{C}^1$ even if π not differentiable, with

 $\nabla \log \pi_{\lambda}(\mathbf{x}) = \{ \operatorname{prox}_{g}^{\lambda}(\mathbf{x}) - \mathbf{x} \} / \lambda.$

• $\nabla \log \pi_{\lambda}(\mathbf{x})$ is $1/\lambda$ -Lipchitz continuous.

2 Convergence to π :

• $\lim_{\lambda \to 0} \|\pi_{\lambda} - \pi\|_{TV} = 0.$ • If $g(\mathbf{x}) = -\log \pi(\mathbf{x})$ is *L*-Lipchitz, then $\|\pi_{\lambda} - \pi\|_{TV} \le \lambda L^2$.

Examples of Moreau approximations:

Figure : True densities (solid blue) and Moreau approximations (dashed red).

Idea: Approximate X with a "regularised" auxiliary Langevin diffusion X_{λ} with ergodic measure

 $\pi_{\lambda}^{*}(\mathbf{x}) \propto \pi_{1}(\mathbf{x})\pi_{2,\lambda}(\mathbf{x})$

using a factorisation $\pi(\mathbf{x}) = \pi_1(\mathbf{x})\pi_2(\mathbf{x})$ such that

 $\pi_1(\mathbf{x}) \propto \exp\{-g_1(\mathbf{x})\}$

is "easy", i.e., with $g_1 \in \mathcal{C}^1$, convex, and $abla g_1$ L_1 -Lipschitz, and

 $\pi_2(\mathbf{x}) \propto \exp\{-g_2(\mathbf{x})\}$

with g_2 l.s.c, convex, and with tractable proximity mapping. We can make X_{λ} and π^*_{λ} arbitrarily close to X and π . We use an Euler approximation of X_{λ} to simulate from $\pi_{\lambda}^* \approx \pi$

$$\mathbf{x}^{(m+1)} = \mathbf{x}^{(m)} + \delta \nabla \log \pi_{\lambda} \{ \mathbf{x}^{(m)} \} + \sqrt{2\delta} \mathbf{z}^{(m)}, \quad \mathbf{z}^{(m)} \sim \mathcal{N}(\mathbf{0}, \mathbb{I}_d).$$

Replacing $\nabla \log \pi_{2,\lambda}(\mathbf{x}) = \{ \operatorname{prox}_{g_2}^{\lambda}(\mathbf{x}) - \mathbf{x} \} / \lambda$ leads to the (Moreau-Yoshida regularised) proximal ULA

 $MYULA: \quad \mathbf{x}^{(m+1)} = (1 - \frac{\delta}{\lambda})\mathbf{x}^{(m)} - \delta \nabla g_1\{\mathbf{x}^{(m)}\} + \frac{\delta}{\lambda} \operatorname{prox}_{g_2}^{\lambda}\{\mathbf{x}^{(m)}\} + \sqrt{2\delta} \mathbf{z}^{(m)}.$

Stability condition: step-size $\delta \leq \delta_{\lambda}^{max} = (L_1 + 1/\lambda)^{-1}$.

Rule of thumb: set $\lambda = L_1^{-1}$ and $\delta \in [L_1^{-1}/10, L_1^{-1}/2]$.

Starting from some arbitrary initial condition $\mathbf{x}_0 \in \mathbb{R}^d$, we perform $M \in \mathbb{N}$ iterations of MYULA targeting $\pi_{\lambda}^* \approx \pi$...

Some fundamental questions:

- **()** Does MYULA converge to a stationary distribution as $M \to \infty$?
- **2** Is this stationary distribution close to π in some sense?
- S Are there any accuracy guarantees for finite M?
- How do these guarantees scale with M and with the dimension d?

Asymptotic results

- **1** Does MYULA converge to a stationary distribution as $M \rightarrow \infty$?
- **2** Is this stationary distribution close to π in some sense?

Assumption 2.1

Let $\Gamma_0(\mathbb{R}^d)$ be the class of lower semi-continous convex functions from $\mathbb{R}^d \to (-\infty, +\infty]$. Assume that $\pi(\mathbf{x}) \propto \exp\{-g_1(\mathbf{x}) - g_2(\mathbf{x})\}$, with $g_1, g_2 \in \Gamma_0(\mathbb{R}^d)$, and ∇g_1 Lipschitz continuous with constant L_1 .

Theorem 2.1 (Durmus et al. (2016))

Suppose that Assumption 2.1 holds. Then, $\forall \mathbf{x}_0 \in \mathbb{R}^d$ and $\forall \delta < \delta_{\lambda}^{max}$, MYULA converges geometrically fast to an invariant measure $\tilde{\pi}_{\lambda}^{\delta}$ satisfying

$$\|\tilde{\pi}_{\lambda}^{\delta} - \pi_{\lambda}^{*}\|_{TV} = \mathcal{O}(\delta^{1/2}),$$

as $M \to \infty$.

S Are there any accuracy guarantees for finite M?

Theorem 2.2 (Durmus et al. (2016))

Suppose that Assumption 1 holds. Then, there exist $\delta_{\epsilon} \in (0, \delta_{\lambda}^{max}]$ and $M_{\epsilon} \in \mathbb{N}$ such that $\forall \delta < \delta_{\epsilon}$ and $\forall M \ge M_{\epsilon}$

$$\|\delta_{\mathbf{x}_0} Q_{\delta}^M - \pi_{\delta/2}^*\|_{TV} < \epsilon,$$

where Q_{δ}^{M} is the kernel associated with M MYULA iterations with step δ . If in addition g_2 is Lipchitz continuous with constant L_2 , then

$$\|\delta_{\mathbf{x}_0} Q_{\delta}^M - \pi\|_{TV} < \epsilon + \frac{\delta}{2} L_2^2.$$

Scaling with dimension

- How do these bounds scale with M and with the dimension d?
 - Dependence of δ_{ϵ} and M_{ϵ} on dimension d and ϵ (Durmus et al., 2016):

	n	ε		n	ε
δ	$\mathcal{O}(d^{-5})$	$\mathcal{O}(arepsilon^2/\log(arepsilon^{-1}))$	δ	$\mathcal{O}(d^{-1})$	$\mathcal{O}(arepsilon^2/\log(arepsilon^{-1}))$
М	$\mathcal{O}(d^9)$	$\mathcal{O}(arepsilon^{-2}\log^2(arepsilon^{-1}))$	Μ	$\mathcal{O}(d)$	$\mathcal{O}(arepsilon^{-2}\log^2(arepsilon^{-1}))$

general bounds for Assumption 2.1

bounds if the drift is strongly convex outside some ball

• The bound
$$\|\pi_{\lambda}^* - \pi\|_{TV} \leq \frac{\delta}{2}L_2^2$$
 is typically $\mathcal{O}(d)$.

Conclusion: MYULA delivers **reliable and computationally efficient approximations**, with good control of accuracy vs. computing-time.

Bayesian inference in imaging inverse problems

2 Proximal Markov chain Monte Carlo

4 Conclusion

Recover a sparse high-resolution image x $\in \mathbb{R}^n$ from a blurred and noisy observation

$$\mathbf{y} = H\mathbf{x} + \mathbf{w},$$

where H is a linear blur operator and $\mathbf{w} \sim \mathcal{N}(0, \sigma^2 \mathbb{I}_d)$.

We use the Bayesian model

$$p(\mathbf{x}|\mathbf{y}) \propto \exp\left(-\|\mathbf{y} - H\mathbf{x}\|^2/2\sigma^2 - \beta\|\mathbf{x}\|_1\right).$$
(6)

with $\beta = 0.01$.

Microscopy experiment

MAP estimation - live cell microscopy dataset (Zhu et al., 2012):

Computing $\hat{\mathbf{x}}_{MAP}$ by convex optimisation Afonso et al. (2011) required 2.3 seconds.

Consider the 3-molecule structure in the highlighted region, how confident are we about this structure (its presence, position, etc.)? Where does the posterior probability mass of \mathbf{x} lie?

• A set C_{α} is a posterior credible region of confidence level $(1 - \alpha)$ % if

$$P[\mathbf{x} \in C_{\alpha} | \mathbf{y}] = 1 - \alpha.$$

• The *highest posterior density* (HPD) region is decision-theoretically optimal (Robert, 2001)

 $C_{\alpha}^{*} = \{\mathbf{x} : g_1(\mathbf{x}) + g_2(\mathbf{x}) \le \gamma_{\alpha}\}$

with $\gamma_{\alpha} \in \mathbb{R}$ chosen such that $\int_{C_{\alpha}^{\star}} p(\mathbf{x}|\mathbf{y}) d\mathbf{x} = 1 - \alpha$ holds.

"Knockout" test: double negation approach - assume that the structure is NOT present in the image and seek to REJECT the hypothesis.

Test procedure:

- Generate a surrogate test image x_† by modifying x̂_{MAP} to remove the structure of interest.
- ② If $\mathbf{x}_{\dagger} \notin \tilde{C}_{\alpha}$ the model rejects \mathbf{x}_{\dagger} with probability (1α) , suggesting that the structure is present in the true image with high probability.
- **③** Otherwise, if $\mathbf{x}_{\dagger} \in \tilde{C}_{\alpha}$ the posterior uncertainty about the structure is too high to draw conclusions → increase measurements / reduce noise.

Estimation of C^*_{α} :

• We use MYULA to generate $n = 10^5$ samples $\{X_k^M\}_{k=1}^n$ and compute the HPD threshold γ_{α} by solving the quantile estimation problem

$$\frac{1}{n}\sum_{k=1}^{n}\mathbf{1}_{(-\infty,\gamma_{\alpha}]}\left[g_{1}(X_{k}^{M})+g_{2}(X_{k}^{M})\right]=1-\alpha.$$

- We implement MYULA with:
 - $g_1(\mathbf{x}) = \|\mathbf{y} H\mathbf{x}\|^2 / 2\sigma^2$
 - $g_2(\mathbf{x}) = \beta \|\mathbf{x}\|_1$.
 - $\operatorname{prox}_{g_2}^{\lambda}(\mathbf{x})$ is the soft-thresholding operator with parameter $\beta\lambda$.
 - Algorithm parameters $\lambda = L_f^{-1} = 1.2$ and $\delta = \delta_{\lambda}^{max} = 0.6$.
- Computing time 4 minutes.

Microscopy experiment - Knockout test

Knockout test:

3 Score
$$g_1(\mathbf{x}_{\dagger}) + g_2(\mathbf{x}_{\dagger}) = 1.19 \times 10^5$$
.

- 2 The 99% threshold $\gamma_{0.01} = 9.69 \times 10^4$.
- So Therefore $\mathbf{x}_{\dagger} \notin \tilde{C}_{\alpha}$, rejecting the knockout hypothesis and providing evidence in favour of the structure considered.

Microscopy experiment - uncertainty quantification

Position uncertainty quantification Find maximum molecule displacement within \tilde{C}_{α} :

Mocule position uncertainty ($\pm 5 \times \pm 8$ pixels)

Note: Uncertainty analysis $(\pm 78nm \times \pm 125nm)$ in close agreement with the experimental results (average precision 80nm) of Zhu et al. (2012).

Microscopy experiment - Approximation error analysis

To assess the approximation error we benchmark estimations against proximal MALA (Px-MALA), which targets $p(\mathbf{x}|\mathbf{y})$ exactly (Pereyra, 2015). We use $n = 10^7$ iterations of Px-MALA (computing time 24 hours).

Figure : Microscopy experiment: (a) HDP region thresholds η_{α} for MYULA and Px-MALA, (b) relative approximation error of MYULA.

Bayesian inference in imaging inverse problems

Proximal Markov chain Monte Carlo

- The challenges facing modern image processing require a paradigm shift, and a new wave of analysis and computation methodologies.
- Great potential for synergy between Bayesian and variational approaches at algorithmic, methodological, and theoretical levels.
- MYULA delivers reliable and computationally efficient approximate inferences, with good control of accuracy vs. computing-time.

Thank you!

Fancy a Postdoc?

Bibliography I

- Afonso, M., Bioucas-Dias, J., and Figueiredo, M. (2011). An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. *IEEE. Trans. on Image Process.*, 20(3):681–695.
- Combettes, P. L. and Pesquet, J.-C. (2011). Proximal splitting methods in signal processing. In Bauschke, H. H., Burachik, R. S., Combettes, P. L., Elser, V., Luke, D. R., and Wolkowicz, H., editors, *Fixed-Point Algorithms for Inverse Problems in Science and Engineering*, pages 185–212. Springer New York.
- Durmus, A., Moulines, E., and Pereyra, M. (2016). Efficient Bayesian computation by proximal Markov chain Monte Carlo: when Langevin meets Moreau. *SIAM J. Imaging Sci.* in preparation.
- Girolami, M. and Calderhead, B. (2011). Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. Roy. Stat. Soc. Ser. B, 73(2):123–214.
- Moreau, J.-J. (1962). Fonctions convexes duales et points proximaux dans un espace Hilbertien. C. R. Acad. Sci. Paris Sér. A Math., 255:2897–2899.
- Neal, R. (2012). MCMC using Hamiltonian dynamics. ArXiv e-prints.
- Pereyra, M. (2015). Proximal Markov chain Monte Carlo algorithms. Statistics and Computing. open access paper, http://dx.doi.org/10.1007/s11222-015-9567-4.

- Robert, C. P. (2001). The Bayesian Choice (second edition). Springer Verlag, New-York.
- Roberts, G. O. and Tweedie, R. L. (1996). Exponential convergence of Langevin distributions and their discrete approximations. *Bernulli*, 2(4):341–363.
- Zhu, L., Zhang, W., Elnatan, D., and Huang, B. (2012). Faster STORM using compressed sensing. *Nat. Meth.*, 9(7):721–723.