Méthodes multilinéaires en traitement d'antenne

Sebastian MIRON, David BRIE

École d'été de Peyresq, 2017

Introduction

Antennes de très grande dimension Estimation de la Direction D'Arrivée (DDA)

Traitement d'antenne fondé sur ESPRIT

ESPRIT Multiple-Invariance ESPRIT

Traitement d'antenne fondé sur CANDECOMP/PARAFAC (CP)

Antennes avec invariance translationnelle multiple (cas général) Antennes multi-échelle Antennes avec diversité de polarisation

Traitement d'antenne fondé sur la HOSVD

Tensor-MUSIC Tensor-ESPRIT

Introduction

Antennes de très grande dimension Estimation de la Direction D'Arrivée (DDA)

Traitement d'antenne fondé sur ESPRIT ESPRIT Multiple-Invariance ESPRIT

Traitement d'antenne fondé sur CANDECOMP/PARAFAC (CP) Antennes avec invariance translationnelle multiple (cas général) Antennes multi-échelle Antennes avec diversité de polarisation

Traitement d'antenne fondé sur la HOSVD Tensor-MUSIC Tensor-ESPRIT

Introduction

Antennes de très grande dimension

Estimation de la Direction D'Arrivée (DDA)

Traitement d'antenne fondé sur ESPRIT ESPRIT Multiple-Invariance ESPRIT

Traitement d'antenne fondé sur CANDECOMP/PARAFAC (CP) Antennes avec invariance translationnelle multiple (cas général) Antennes multi-échelle Antennes avec diversité de polarisation

Traitement d'antenne fondé sur la HOSVD Tensor-MUSIC Tensor-ESPRIT

Antennes de très grande dimension

- Murchison Widefield Array Western Australia
- ▶ 3 km d'envergure, résolution angulaire 1 min d'arc
- flux de données brutes ≈ 1 Gbyte/s

Antennes de très grande dimension

- ► Le grand réseau d'antennes de l'Atacama (ALMA) les Andes chiliennes
- ▶ 16 km d'envergure, résolution angulaire 35 ms d'arc (2 fois mieux que Hubble)

Traitement d'antenne en grande dimension

Contraintes sur la conception de l'antenne et de l'algorithme d'estimation des Directions d'Arrivée (DDA) :

- Estimation non-ambigue des DDA → respect de l'échantillonnage spatial (Shannon)
- 2. Maillage peu dense ~ coûts matériel et de calcul réduits
- 3. Prise en compte de la structure complexe des données
- Algorithmes efficaces de traitement → co-conception de l'antenne et de l'algorithme de traitement

Méthodes multilinéaires

Traitement d'antenne en grande dimension

Contraintes sur la conception de l'antenne et de l'algorithme d'estimation des Directions d'Arrivée (DDA) :

- Estimation non-ambigue des DDA → respect de l'échantillonnage spatial (Shannon)
- 2. Maillage peu dense ~ coûts matériel et de calcul réduits
- 3. Prise en compte de la structure complexe des données
- Algorithmes efficaces de traitement → co-conception de l'antenne et de l'algorithme de traitement

☺ Méthodes multilinéaires ☺

Introduction

Antennes de très grande dimension Estimation de la Direction D'Arrivée (DDA)

Traitement d'antenne fondé sur ESPRIT ESPRIT Multiple-Invariance ESPRIT

Traitement d'antenne fondé sur CANDECOMP/PARAFAC (CP) Antennes avec invariance translationnelle multiple (cas général) Antennes multi-échelle Antennes avec diversité de polarisation

Traitement d'antenne fondé sur la HOSVD Tensor-MUSIC Tensor-ESPRIT

 $\begin{array}{l} \text{Vecteur unité de la DDA}:\\ \mathbf{k} = \begin{bmatrix} \sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta \end{bmatrix}^T \end{array}$

Vecteur unité de la DDA : $\mathbf{k} = \begin{bmatrix} \sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta \end{bmatrix}^T$

Hypothèses :

- sources bande-étroite
- ► front d'onde plan
- capteurs omnidirectionnels
- bruit gaussien de moyenne nulle, additif, blanc (spatialement et temporellement)
- sources spatialement cohérentes, décorrélées du bruit

Estimation de la DDA (problème direct)

P sources bande-étroite; L capteurs (P < L); K échantillons temporels

$$\mathbf{y}(t) = \sum_{p=1}^{P} \mathbf{a}(\mathbf{k}_p) s_p(t) + \mathbf{b}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{b}(t)$$

- ▶ $\mathbf{y}(t)$ ($L \times 1$) : vecteur de données acquises par l'antenne
- ▶ $\mathbf{A} = [\mathbf{a}(\mathbf{k}_1), \dots, \mathbf{a}(\mathbf{k}_P)]$ (*L* × *P*) : matrice de vecteurs directionnels
- $s_p(t)$: signal temporel de la source p
- $\mathbf{x}(t) = [s_1(t), \dots, s_P(t)] (P \times 1)$: vecteur de signaux source
- ▶ $\mathbf{b}(t)$ $(L \times 1)$: vecteur de bruit

Considérons K échantillons temporels t_1, t_2, \ldots, t_K

 $\mathbf{Y} = [\mathbf{y}(t_1), \dots, \mathbf{y}(t_K)] = \mathbf{A}[\mathbf{x}(t_1), \dots, \mathbf{x}(t_K)] + \mathbf{B} = \mathbf{A}\mathbf{S}^T + \mathbf{B}$

- \mathbf{Y} ($L \times K$) : matrice de données
- $\mathbf{S} = [\mathbf{s}_1, \dots, \mathbf{s}_P] \ (K \times P)$: matrice de sources
- $\mathbf{B} = [\mathbf{b}(t_1), \dots, \mathbf{b}(t_K)]$: matrice de bruit

Estimation de la DDA (problème direct)

P sources bande-étroite; L capteurs (P < L); K échantillons temporels

$$\mathbf{y}(t) = \sum_{p=1}^{P} \mathbf{a}(\mathbf{k}_p) s_p(t) + \mathbf{b}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{b}(t)$$

- ▶ $\mathbf{y}(t)$ ($L \times 1$) : vecteur de données acquises par l'antenne
- ▶ $\mathbf{A} = [\mathbf{a}(\mathbf{k}_1), \dots, \mathbf{a}(\mathbf{k}_P)]$ $(L \times P)$: matrice de vecteurs directionnels
- $s_p(t)$: signal temporel de la source p
- $\mathbf{x}(t) = [s_1(t), \dots, s_P(t)] (P \times 1)$: vecteur de signaux source
- ▶ $\mathbf{b}(t)$ $(L \times 1)$: vecteur de bruit

Considérons K échantillons temporels t_1, t_2, \ldots, t_K

$$\mathbf{Y} = [\mathbf{y}(t_1), \dots, \mathbf{y}(t_K)] = \mathbf{A}[\mathbf{x}(t_1), \dots, \mathbf{x}(t_K)] + \mathbf{B} = \mathbf{A}\mathbf{S}^T + \mathbf{B}$$

- \mathbf{Y} ($L \times K$) : matrice de données
- $\mathbf{S} = [\mathbf{s}_1, \dots, \mathbf{s}_P] \ (K \times P)$: matrice de sources
- $\mathbf{B} = [\mathbf{b}(t_1), \dots, \mathbf{b}(t_K)]$: matrice de bruit

Estimation de la DDA (problème inverse)

 $\stackrel{\sim}{\rightarrow} \text{Estimer les DDA} : \mathbf{k}_1, \dots, \mathbf{k}_P$ (ou de façon équivalente A) à partir des mesures Y

Problème mal posé (non-unicité) :

$$\mathbf{Y} = \mathbf{A}\mathbf{S}^T = (\mathbf{A}\mathbf{T}^{-1})(\mathbf{T}\mathbf{S}^T) = \tilde{\mathbf{A}}\tilde{\mathbf{S}}^T$$

Solutions :

- Recherche sur une grille :
 - exhaustive (e.g., formation de voies, MUSIC)
 - greedy (e.g. algorithmes d'estimation "sparse", ...)
 - ▶ ...
- ► Utilisation d'une diversité additionnelle :
 - invariance spatiale ~> décompositions matricielles (2D) conjointes (e.g. ESPRIT)
 - ▶ invariance spatiale multiple, polarisation, longueur d'onde, etc. → décompositions (N-D) des tableaux multidimensionnels (tenseurs)

Estimation de la DDA (problème inverse)

 \rightsquigarrow Estimer les DDA : $\mathbf{k}_1, \dots, \mathbf{k}_P$

(ou de façon équivalente A) à partir des mesures Y

Problème mal posé (non-unicité) :

$$\mathbf{Y} = \mathbf{A}\mathbf{S}^T = (\mathbf{A}\mathbf{T}^{-1})(\mathbf{T}\mathbf{S}^T) = \tilde{\mathbf{A}}\tilde{\mathbf{S}}^T$$

Solutions :

- ▶ Recherche sur une grille :
 - exhaustive (*e.g.*, formation de voies, MUSIC)
 - greedy (e.g. algorithmes d'estimation "sparse", ...)
 - ▶ ...
- Utilisation d'une diversité additionnelle :
 - ▶ invariance spatiale ~> décompositions matricielles (2D) conjointes (e.g. ESPRIT)
 - ▶ invariance spatiale multiple, polarisation, longueur d'onde, etc. → décompositions (N-D) des tableaux multidimensionnels (tenseurs)

Estimation de la DDA (problème inverse)

 $\rightsquigarrow \mathsf{Estimer} \mathsf{ les } \mathsf{DDA} : \mathbf{k}_1, \dots, \mathbf{k}_P$

(ou de façon équivalente \mathbf{A}) à partir des mesures \mathbf{Y}

Problème mal posé (non-unicité) :

$$\mathbf{Y} = \mathbf{A}\mathbf{S}^T = (\mathbf{A}\mathbf{T}^{-1})(\mathbf{T}\mathbf{S}^T) = \tilde{\mathbf{A}}\tilde{\mathbf{S}}^T$$

Solutions :

- ► Recherche sur une grille :
 - exhaustive (e.g., formation de voies, MUSIC)
 - ▶ greedy (e.g. algorithmes d'estimation "sparse", ...)
 - ▶ ...
- Utilisation d'une diversité additionnelle :
 - ▶ invariance spatiale → décompositions matricielles (2D) conjointes (e.g. ESPRIT)
 - ► invariance spatiale multiple, polarisation, longueur d'onde, etc. ~→ décompositions (N-D) des tableaux multidimensionnels (tenseurs)

Introduction Antennes de très grande dimension Estimation de la Direction D'Arrivée (DDA)

Traitement d'antenne fondé sur ESPRIT ESPRIT

Multiple-Invariance ESPRIT

Traitement d'antenne fondé sur CANDECOMP/PARAFAC (CP) Antennes avec invariance translationnelle multiple (cas général) Antennes multi-échelle Antennes avec diversité de polarisation

Traitement d'antenne fondé sur la HOSVD Tensor-MUSIC Tensor-ESPRIT

Invariance translationnelle unique

Déphasage d'une source incidente entre la sous-antenne 1 et la sous-antenne 2 :

$$\Delta \varphi = \frac{2\pi}{\lambda} \mathbf{k}^T \boldsymbol{\delta}$$

 ${f k}$: la DDA de la source ${f \delta}$: déplacement entre les sous-antennes

 λ : longueur d'onde

ESPRIT - Estimation of Signal Parameters via Rotational Invariance Techniques [Roy *et al.*, 86]

Vecteur de données sous-antenne 1 :

$$\mathbf{y}_1(t) = \sum_{p=1}^{P} \mathbf{a}(\mathbf{k}_p) s_p(t) + \mathbf{b}_1(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{b}_1(t) \ (L \times 1)$$

Vecteur de données sous-antenne 2 :

$$\mathbf{y}_{2}(t) = \sum_{p=1}^{P} \mathbf{a}(\mathbf{k}_{p}) \mathrm{e}^{j\frac{2\pi}{\lambda}\mathbf{k}_{p}^{T}\delta} s_{p}(t) + \mathbf{b}_{2}(t) = \mathbf{A}\mathbf{\Phi}\mathbf{x}(t) + \mathbf{b}_{2}(t) \ (L \times 1)$$

avec :

$$\Phi = \begin{bmatrix} e^{j\frac{2\pi}{\lambda}\mathbf{k}_{1}^{T}\delta} & & \\ 0 & \ddots & 0 \\ & & e^{j\frac{2\pi}{\lambda}\mathbf{k}_{P}^{T}\delta} \end{bmatrix}$$

Objectif : estimer $\Phi \rightsquigarrow \mathbf{k}_1, \ldots, \mathbf{k}_P$ (DDAs)

ESPRIT - Estimation of Signal Parameters via Rotational Invariance Techniques [Roy *et al.*, 86]

Vecteur de données sous-antenne 1 :

$$\mathbf{y}_1(t) = \sum_{p=1}^{P} \mathbf{a}(\mathbf{k}_p) s_p(t) + \mathbf{b}_1(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{b}_1(t) \ (L \times 1)$$

Vecteur de données sous-antenne 2 :

$$\mathbf{y}_{2}(t) = \sum_{p=1}^{P} \mathbf{a}(\mathbf{k}_{p}) e^{j\frac{2\pi}{\lambda}\mathbf{k}_{p}^{T}\delta} s_{p}(t) + \mathbf{b}_{2}(t) = \mathbf{A}\mathbf{\Phi}\mathbf{x}(t) + \mathbf{b}_{2}(t) \ (L \times 1)$$

avec :

$$\boldsymbol{\Phi} = \begin{bmatrix} e^{j\frac{2\pi}{\lambda}\mathbf{k}_{1}^{T}\boldsymbol{\delta}} & & \\ 0 & \ddots & 0 \\ & & e^{j\frac{2\pi}{\lambda}\mathbf{k}_{P}^{T}\boldsymbol{\delta}} \end{bmatrix}$$

Objectif : estimer $\Phi \rightsquigarrow \mathbf{k}_1, \ldots, \mathbf{k}_P$ (DDAs)

ESPRIT - Estimation of Signal Parameters via Rotational Invariance Techniques [Roy *et al.*, 86]

Vecteur de données sous-antenne 1 :

$$\mathbf{y}_1(t) = \sum_{p=1}^{P} \mathbf{a}(\mathbf{k}_p) s_p(t) + \mathbf{b}_1(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{b}_1(t) \ (L \times 1)$$

Vecteur de données sous-antenne 2 :

$$\mathbf{y}_{2}(t) = \sum_{p=1}^{P} \mathbf{a}(\mathbf{k}_{p}) e^{j\frac{2\pi}{\lambda}\mathbf{k}_{p}^{T}\delta} s_{p}(t) + \mathbf{b}_{2}(t) = \mathbf{A}\mathbf{\Phi}\mathbf{x}(t) + \mathbf{b}_{2}(t) \ (L \times 1)$$

avec :

$$\boldsymbol{\Phi} = \begin{bmatrix} e^{j\frac{2\pi}{\lambda}\mathbf{k}_{1}^{T}\boldsymbol{\delta}} & & \\ 0 & \ddots & 0 \\ & & e^{j\frac{2\pi}{\lambda}\mathbf{k}_{P}^{T}\boldsymbol{\delta}} \end{bmatrix}$$

Objectif : estimer $\Phi \rightsquigarrow \mathbf{k}_1, \dots, \mathbf{k}_P$ (DDAs)

► Construction du vecteur de données de l'antenne entière :

$$\mathbf{y}(t) = \begin{bmatrix} \mathbf{y}_1(t) \\ \mathbf{y}_2(t) \end{bmatrix} = \begin{bmatrix} \mathbf{A} \\ \mathbf{A}\boldsymbol{\Phi} \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} \mathbf{b}_1(t) \\ \mathbf{b}_2(t) \end{bmatrix}$$

▶ Calcul de la matrice de covariance des données :

$$\mathbf{R}_{\mathbf{y}\mathbf{y}} = E\{\mathbf{y}(t)\mathbf{y}^{H}(t)\} \approx \frac{1}{K} \sum_{k=1}^{K} \mathbf{y}(t_{k})\mathbf{y}^{H}(t_{k})$$

• Calcul des *P* premiers vecteurs propres de $\mathbf{R}_{yy} \rightsquigarrow \mathbf{E} = \begin{bmatrix} \mathbf{E}_1 \\ \mathbf{E}_2 \end{bmatrix} (2L \times P)$

$$span \begin{bmatrix} \mathbf{E}_1 \\ \mathbf{E}_2 \end{bmatrix} = span \begin{bmatrix} \mathbf{A} \\ \mathbf{A} \Phi \end{bmatrix} \Rightarrow \begin{bmatrix} \mathbf{E}_1 \\ \mathbf{E}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{A} \\ \mathbf{A} \Phi \end{bmatrix} \mathbf{T} = \begin{bmatrix} \mathbf{A} \mathbf{T} \\ \mathbf{A} \Phi \mathbf{T} \end{bmatrix}$$

 $\Rightarrow \mathbf{E}_1 = \mathbf{A}\mathbf{T}$ et $\mathbf{E}_2 = \mathbf{A}\mathbf{\Phi}\mathbf{T}$, avec \mathbf{T} une matrice régulière

► Construction du vecteur de données de l'antenne entière :

$$\mathbf{y}(t) = \begin{bmatrix} \mathbf{y}_1(t) \\ \mathbf{y}_2(t) \end{bmatrix} = \begin{bmatrix} \mathbf{A} \\ \mathbf{A}\boldsymbol{\Phi} \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} \mathbf{b}_1(t) \\ \mathbf{b}_2(t) \end{bmatrix}$$

Calcul de la matrice de covariance des données :

$$\mathbf{R}_{\mathbf{y}\mathbf{y}} = E\{\mathbf{y}(t)\mathbf{y}^{H}(t)\} \approx \frac{1}{K} \sum_{k=1}^{K} \mathbf{y}(t_{k})\mathbf{y}^{H}(t_{k})$$

► Calcul des *P* premiers vecteurs propres de $\mathbf{R}_{yy} \rightsquigarrow \mathbf{E} = \begin{bmatrix} \mathbf{E}_1 \\ \mathbf{E}_2 \end{bmatrix}$ (2*L* × *P*)

$$span \begin{bmatrix} \mathbf{E}_1 \\ \mathbf{E}_2 \end{bmatrix} = span \begin{bmatrix} \mathbf{A} \\ \mathbf{A} \Phi \end{bmatrix} \Rightarrow \begin{bmatrix} \mathbf{E}_1 \\ \mathbf{E}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{A} \\ \mathbf{A} \Phi \end{bmatrix} \mathbf{T} = \begin{bmatrix} \mathbf{A} \\ \mathbf{A} \Phi \mathbf{T} \end{bmatrix}$$

 $\Rightarrow \mathbf{E}_1 = \mathbf{A}\mathbf{T}$ et $\mathbf{E}_2 = \mathbf{A}\mathbf{\Phi}\mathbf{T}$, avec \mathbf{T} une matrice régulière

► Construction du vecteur de données de l'antenne entière :

$$\mathbf{y}(t) = \begin{bmatrix} \mathbf{y}_1(t) \\ \mathbf{y}_2(t) \end{bmatrix} = \begin{bmatrix} \mathbf{A} \\ \mathbf{A}\boldsymbol{\Phi} \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} \mathbf{b}_1(t) \\ \mathbf{b}_2(t) \end{bmatrix}$$

Calcul de la matrice de covariance des données :

$$\mathbf{R}_{\mathbf{y}\mathbf{y}} = E\{\mathbf{y}(t)\mathbf{y}^{H}(t)\} \approx \frac{1}{K} \sum_{k=1}^{K} \mathbf{y}(t_{k})\mathbf{y}^{H}(t_{k})$$

► Calcul des *P* premiers vecteurs propres de $\mathbf{R}_{yy} \rightsquigarrow \mathbf{E} = \begin{bmatrix} \mathbf{E}_1 \\ \mathbf{E}_2 \end{bmatrix} (2L \times P)$

$$span \begin{bmatrix} \mathbf{E}_1 \\ \mathbf{E}_2 \end{bmatrix} = span \begin{bmatrix} \mathbf{A} \\ \mathbf{A} \Phi \end{bmatrix} \Rightarrow \begin{bmatrix} \mathbf{E}_1 \\ \mathbf{E}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{A} \\ \mathbf{A} \Phi \end{bmatrix} \mathbf{T} = \begin{bmatrix} \mathbf{A} \mathbf{T} \\ \mathbf{A} \Phi \mathbf{T} \end{bmatrix}$$

 $\Rightarrow \mathbf{E}_1 = \mathbf{A}\mathbf{T}$ et $\mathbf{E}_2 = \mathbf{A}\mathbf{\Phi}\mathbf{T}$, avec \mathbf{T} une matrice régulière

- ▶ Invariance translationnelle $\rightsquigarrow span{\mathbf{A}} = span{\mathbf{E}_1} = span{\mathbf{E}_2}$
- ▶ \exists Ψ régulière, tel que

$$\mathbf{E}_{1} \boldsymbol{\Psi} = \mathbf{E}_{2}$$

$$\boldsymbol{\updownarrow}$$

$$\mathbf{AT} \boldsymbol{\Psi} = \mathbf{A} \boldsymbol{\Phi} \mathbf{T}$$

$$\boldsymbol{\updownarrow}$$

$$\mathbf{T} \boldsymbol{\Psi} \mathbf{T}^{-1} = \boldsymbol{\Phi}$$

$$\boldsymbol{\updownarrow}$$

 Φ peut être obtenu par la EVD de Ψ

LS-ESPRIT (ESPRIT classique) : $\Psi = \mathbf{E}_1^{\dagger} \mathbf{E}_2$ Biaisé !

- ▶ Invariance translationnelle \rightsquigarrow $span{A} = span{E_1} = span{E_2}$
- ▶ \exists Ψ régulière, tel que

$$\mathbf{E}_{1} \boldsymbol{\Psi} = \mathbf{E}_{2}$$

$$\boldsymbol{\updownarrow}$$

$$\mathbf{AT} \boldsymbol{\Psi} = \mathbf{A} \boldsymbol{\Phi} \mathbf{T}$$

$$\boldsymbol{\updownarrow}$$

$$\mathbf{T} \boldsymbol{\Psi} \mathbf{T}^{-1} = \boldsymbol{\Phi}$$

$$\boldsymbol{\updownarrow}$$

 Φ peut être obtenu par la EVD de Ψ

LS-ESPRIT (ESPRIT classique) :
$$\Psi = \mathbf{E}_1^{\dagger} \mathbf{E}_2$$
 Biaisé !

Total Least Squares ESPRIT : TLS-ESPRIT [Roy '87]

Dans $\mathbf{E}_1 \mathbf{\Psi} = \mathbf{E}_2$, les deux matrices $\mathbf{E}_1, \mathbf{E}_2$ sont « bruitées »

Solution : \rightsquigarrow Calcul des vecteurs propres de $[\mathbf{E}_1|\mathbf{E}_2]^H[\mathbf{E}_1|\mathbf{E}_2]$ $(2P \times 2P)$

Pas besoin de calibration

- Pas de recherche coûteuse sur une grille
- Estimation de la matrice de covariance nécessaire
- 😳 Ne gère pas l'invariance multiple
- O Ne gère pas les sources cohérentes

Total Least Squares ESPRIT : TLS-ESPRIT [Roy '87]

Dans $\mathbf{E}_1 \mathbf{\Psi} = \mathbf{E}_2$, les deux matrices $\mathbf{E}_1, \mathbf{E}_2$ sont « bruitées »

 $\begin{aligned} \mathsf{TLS}\text{-}\mathsf{ESPRIT} : \min_{\Psi, \mathbf{R}_1, \mathbf{R}_2} \|\mathbf{R}_1 | \mathbf{R}_2 \|_F^2 & \text{s. c.} \quad \underbrace{(\mathbf{E}_1 + \mathbf{R}_1)}_{\mathbf{B}} \Psi = \mathbf{E}_2 + \mathbf{R}_2 \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$

Solution : \rightsquigarrow Calcul des vecteurs propres de $[\mathbf{E}_1 | \mathbf{E}_2]^H [\mathbf{E}_1 | \mathbf{E}_2] (2P \times 2P)$

Pas besoin de calibration

- Pas de recherche coûteuse sur une grille
- Estimation de la matrice de covariance nécessaire
- 😳 Ne gère pas l'invariance multiple
- ⁽²⁾ Ne gère pas les sources cohérentes

Invariance translationnelle multiple, "colinéaire"

Introduction Antennes de très grande dimension Estimation de la Direction D'Arrivée (DDA)

Traitement d'antenne fondé sur ESPRIT

Multiple-Invariance ESPRIT

Traitement d'antenne fondé sur CANDECOMP/PARAFAC (CP) Antennes avec invariance translationnelle multiple (cas général) Antennes multi-échelle Antennes avec diversité de polarisation

Traitement d'antenne fondé sur la HOSVD Tensor-MUSIC Tensor-ESPRIT

Multiple-Invariance ESPRIT : MI-ESPRIT [Roy et al. '88]

Fonction coût MI-ESPRIT à minimiser :

$$J(\boldsymbol{\Psi}, \mathbf{B}) = \left\| \begin{bmatrix} \mathbf{E}_1 \\ \mathbf{E}_2 \\ \mathbf{E}_3 \\ \vdots \\ \mathbf{E}_N \end{bmatrix} - \begin{bmatrix} \mathbf{B} \\ \mathbf{B}\boldsymbol{\Psi} \\ \mathbf{B}\boldsymbol{\Psi}^{\delta_3/\delta_2} \\ \vdots \\ \mathbf{B}\boldsymbol{\Psi}^{\delta_N/\delta_2} \end{bmatrix} \right\|_F^2$$

Notations : $\tilde{\mathbf{E}} \triangleq [\mathbf{E}_1 | \mathbf{E}_2 | \dots | \mathbf{E}_N] \quad \tilde{\boldsymbol{\Psi}} \triangleq \left[\mathbf{I} | \boldsymbol{\Psi} | \dots | \boldsymbol{\Psi}^{\delta_N / \delta_2} \right]$

Fonction coût MI-ESPRIT :

$$J(\boldsymbol{\Psi}, \mathbf{B}) = Tr\left\{ \left[\mathbf{\tilde{E}} - \mathbf{B}\mathbf{\tilde{\Psi}} \right]^{H} \left[\mathbf{\tilde{E}} - \mathbf{B}\mathbf{\tilde{\Psi}} \right] \right\}$$

MI-ESPRIT : l'algorithme

1. Initialisation :

 $\tilde{\Psi}^{(0)} \leftarrow \mathsf{TLS}\text{-}\mathsf{ESPRIT}(\mathbf{E}_1, \mathbf{E}_2); \quad \mathbf{B}^{(0)} \leftarrow \tilde{\mathbf{E}} \, \tilde{\Psi}^H \left[\tilde{\Psi} \tilde{\Psi}^H \right]^{-1}$ 2. Mise à jour de $\tilde{\Psi}$:

$$\tilde{\boldsymbol{\Psi}}^{(k+1)} \longleftarrow \tilde{\boldsymbol{\Psi}}^{(k)} + \alpha \frac{\partial J^{(k)}(\boldsymbol{\Psi}, \mathbf{B})}{\partial \boldsymbol{\Psi}}$$

3. Mise à jour de B :

$$\mathbf{B}^{(k+1)} = \mathbf{\tilde{E}} \ \mathbf{\tilde{\Psi}}^{(k)H} \left[\mathbf{\tilde{\Psi}}^{(k)} \mathbf{\tilde{\Psi}}^{(k)H} \right]^{-1}$$

4. Répéter les pas 2 et 3 jusqu'à convergence

Convergence rapide (bonne initialisation par TLS-ESPRIT)
 Pas de solution explicite

😳 Ne gère pas le cas non-colinéaire

MI-ESPRIT : l'algorithme

1. Initialisation :

 $\tilde{\Psi}^{(0)} \leftarrow \mathsf{TLS}\text{-}\mathsf{ESPRIT}(\mathbf{E}_1, \mathbf{E}_2); \quad \mathbf{B}^{(0)} \leftarrow \tilde{\mathbf{E}} \ \tilde{\Psi}^H \left[\tilde{\Psi} \tilde{\Psi}^H \right]^{-1}$ 2. Mise à jour de $\tilde{\Psi}$:

$$\tilde{\boldsymbol{\Psi}}^{(k+1)} \longleftarrow \tilde{\boldsymbol{\Psi}}^{(k)} + \alpha \frac{\partial J^{(k)}(\boldsymbol{\Psi}, \mathbf{B})}{\partial \boldsymbol{\Psi}}$$

3. Mise à jour de B :

$$\mathbf{B}^{(k+1)} = \mathbf{\tilde{E}} \ \mathbf{\tilde{\Psi}}^{(k)H} \left[\mathbf{\tilde{\Psi}}^{(k)} \mathbf{\tilde{\Psi}}^{(k)H} \right]^{-1}$$

4. Répéter les pas 2 et 3 jusqu'à convergence

Convergence rapide (bonne initialisation par TLS-ESPRIT)
 Pas de solution explicite

😳 Ne gère pas le cas non-colinéaire
Plan

Introduction

Antennes de très grande dimension Estimation de la Direction D'Arrivée (DDA)

Traitement d'antenne fondé sur ESPRIT ESPRIT Multiple-Invariance ESPRIT

Traitement d'antenne fondé sur CANDECOMP/PARAFAC (CP)

Antennes avec invariance translationnelle multiple (cas général Antennes multi-échelle Antennes avec diversité de polarisation

Traitement d'antenne fondé sur la HOSVD Tensor-MUSIC Tensor-ESPRIT

Conclusions

Intérêt du modèle CP en traitement d'antenne

Modèle matriciel (bilinéaire) ~> non-unicité

Modèle CP (multilinéaire) ~> unicité sous des faibles contraintes (e.g., Kruskal)

Plan

Introduction

Antennes de très grande dimension Estimation de la Direction D'Arrivée (DDA)

Traitement d'antenne fondé sur ESPRIT ESPRIT Multiple-Invariance ESPRIT

Traitement d'antenne fondé sur CANDECOMP/PARAFAC (CP)

Antennes avec invariance translationnelle multiple (cas général)

Antennes multi-échelle Antennes avec diversité de polarisation

Traitement d'antenne fondé sur la HOSVD Tensor-MUSIC Tensor-ESPRIT

Conclusions

Invariance translationnelle multiple (cas général)

Invariance translationnelle multiple généralisée [Sidiropoulos *et al.* '00]

Vecteurs de données acquises sur les N sous-antennes :

$$\mathbf{y}_1(t) = \sum_{p=1}^{P} \mathbf{a}(\mathbf{k}_p) s_p(t) + \mathbf{b}_1(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{b}_1(t)$$
$$\mathbf{y}_2(t) = \sum_{p=1}^{P} \mathbf{a}(\mathbf{k}_p) e^{j\frac{2\pi}{\lambda} \mathbf{k}_p^T \boldsymbol{\delta}_2} s_p(t) + \mathbf{b}_2(t) = \mathbf{A} \boldsymbol{\Phi}_2 \mathbf{x}(t) + \mathbf{b}_2(t)$$

$$\mathbf{y}_N(t) = \sum_{p=1}^P \mathbf{a}(\mathbf{k}_p) \mathbf{e}^{j\frac{2\pi}{\lambda}\mathbf{k}_p^T \delta_N} s_p(t) + \mathbf{b}_2(t) = \mathbf{A} \mathbf{\Phi}_N \mathbf{x}(t) + \mathbf{b}_N(t)$$

÷

avec :

$$\boldsymbol{\Phi}_{n} = \begin{bmatrix} \mathbf{e}^{j\frac{2\pi}{\lambda}\mathbf{k}_{1}^{T}\boldsymbol{\delta}_{n}} & & \\ 0 & \ddots & 0 \\ & & \mathbf{e}^{j\frac{2\pi}{\lambda}\mathbf{k}_{P}^{T}\boldsymbol{\delta}_{n}} \end{bmatrix} \quad n = 2, \dots, N$$

Invariance translationnelle multiple généralisée

Considérons K échantillons temporels $t_1, t_2, \ldots, t_K : \mathbf{Y}(NL \times K)$

$$\mathbf{Y} = \begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \\ \vdots \\ \mathbf{Y}_N \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_1 \mathbf{\Phi}_2 \\ \vdots \\ \mathbf{A}_1 \mathbf{\Phi}_N \end{bmatrix} \mathbf{S}^T + \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \\ \vdots \\ \mathbf{B}_N \end{bmatrix} = (\mathbf{A} \odot \mathbf{D}) \mathbf{S}^T + \mathbf{B}.$$

Modèle Candecomp/Parafac (CP) d'ordre 3

avec :

• $\mathbf{S} = [\mathbf{s}_1, \dots, \mathbf{s}_P] \ (K \times P)$: matrice de sources

• $\mathbf{A} = [\mathbf{a}(\mathbf{k}_1), \dots, \mathbf{a}(\mathbf{k}_P)] \ (L \times P)$: matrice de vecteurs directionnels

►
$$\mathbf{D} = [\mathbf{d}(\mathbf{k}_1), \dots, \mathbf{d}(\mathbf{k}_P)] = \begin{bmatrix} diag\{\mathbf{I}\}^T \\ diag\{\Phi_2\}^T \\ \vdots \\ diag\{\Phi_N\}^T \end{bmatrix} (N \times P)$$

Invariance translationnelle multiple généralisée

Ecriture tensorielle (capteurs, temps, sous-antennes) :

$$\boldsymbol{\mathcal{Y}} = \sum_{p=1}^{P} \mathbf{a}_p \circ \mathbf{s}_p \circ \mathbf{d}_p + \boldsymbol{\mathcal{B}} = \llbracket \mathbf{A}, \mathbf{S}, \mathbf{D} \rrbracket + \boldsymbol{\mathcal{B}} \quad (L \times K \times N)$$

Identifiabilité du modèle (condition de Kruskal) :

 $k_{\mathbf{A}} + k_{\mathbf{S}} + k_{\mathbf{D}} \ge 2P + 2$

- 1. Sources non-cohérentes et $K \ge P \Rightarrow k_A + k_D \ge P + 2$
- 2. Sources non-cohérentes, $K \ge P$ et A, D matrices Vandermonde (antenne/sous-antennes de type ULA) :

$$\min(L, P) + \min(N - 1, P) \ge P + 2$$

3. Sources cohérentes $\Rightarrow k_{\rm S} = 1 \rightsquigarrow$ non-identifiabilité/ identifiabilité partielle

Invariance translationnelle multiple généralisée

Ecriture tensorielle (capteurs, temps, sous-antennes) :

$$\boldsymbol{\mathcal{Y}} = \sum_{p=1}^{P} \mathbf{a}_p \circ \mathbf{s}_p \circ \mathbf{d}_p + \boldsymbol{\mathcal{B}} = \llbracket \mathbf{A}, \mathbf{S}, \mathbf{D} \rrbracket + \boldsymbol{\mathcal{B}} \quad (L \times K \times N)$$

Identifiabilité du modèle (condition de Kruskal) :

$$k_{\mathbf{A}} + k_{\mathbf{S}} + k_{\mathbf{D}} \ge 2P + 2$$

- 1. Sources non-cohérentes et $K \ge P \Rightarrow k_{\mathbf{A}} + k_{\mathbf{D}} \ge P + 2$
- 2. Sources non-cohérentes, $K \ge P$ et \mathbf{A}, \mathbf{D} matrices Vandermonde (antenne/sous-antennes de type ULA) :

$$\min(L, P) + \min(N - 1, P) \ge P + 2$$

3. Sources cohérentes $\Rightarrow k_{\rm S} = 1 \rightsquigarrow$ non-identifiabilité/ identifiabilité partielle

Plan

Introduction

Antennes de très grande dimension Estimation de la Direction D'Arrivée (DDA)

Traitement d'antenne fondé sur ESPRIT ESPRIT Multiple-Invariance ESPRIT

Traitement d'antenne fondé sur CANDECOMP/PARAFAC (CP)

Antennes avec invariance translationnelle multiple (cas général) Antennes multi-échelle

Antennes avec diversité de polarisation

Traitement d'antenne fondé sur la HOSVD Tensor-MUSIC Tensor-ESPRIT

Conclusions

Diversité d'échelle spatiale : antennes multi-échelle [Miron et al. '15]

Idée : Créer une diversité d'échelle

Modélisation des données multi-échelle

N Niveaux d'échelle, $\Delta \leq \lambda/2$ (au niveau 1)

Déphasage pour le capteur (l_1, l_2, \ldots, l_N) :

$$a_{l_1,l_2,\ldots,l_N}(\mathbf{k}) = \exp\left\{j\frac{2\pi}{\lambda} \sum_{n=1}^N \mathbf{k}^T \mathbf{d}_{l_n}^n\right\} = \prod_{n=1}^N \exp\left\{j\frac{2\pi}{\lambda} \mathbf{k}^T \mathbf{d}_{l_n}^n\right\}.$$

Vecteur directionnel de l'antenne :

$$\mathbf{a}(\mathbf{k}) = \mathbf{a}_1(\mathbf{k}) \otimes \cdots \otimes \mathbf{a}_N(\mathbf{k}),$$

avec

$$\mathbf{a}_{n}(\mathbf{k}) = \begin{bmatrix} \mathsf{e}^{j(2\pi/\lambda)\mathbf{k}^{T}\mathbf{d}_{1}^{n}} \\ \vdots \\ \mathsf{e}^{j(2\pi/\lambda)\mathbf{k}^{T}\mathbf{d}_{L_{n}}^{n}} \end{bmatrix}$$

" \otimes " le produit de Kronecker

Illustration vecteur directionnel $\mathbf{a}(\mathbf{k}) = \mathbf{a}_1(\mathbf{k}) \otimes \mathbf{a}_2(\mathbf{k})$

Modélisation des données multi-échelle (sources multiples)

P sources

$$\mathbf{A}_{1} = [\mathbf{a}_{1}(\mathbf{k}_{1}), \dots, \mathbf{a}_{1}(\mathbf{k}_{P})] (L_{1} \times P)$$

$$\vdots$$

$$\mathbf{A}_{N} = [\mathbf{a}_{N}(\mathbf{k}_{1}), \dots, \mathbf{a}_{N}(\mathbf{k}_{P})] (L_{N} \times P)$$

$$\mathbf{S} = [\mathbf{s}_{1}, \mathbf{s}_{2}, \dots, \mathbf{s}_{P}] (K \times P)$$

$$\mathbf{Y} = (\mathbf{A}_{1} \odot \cdots \odot \mathbf{A}_{N})\mathbf{S}^{T} + \mathbf{B}$$

Modèle CP d'ordre N+1

Echantillon unique (« single snapshot ») \Rightarrow modèle CP d'ordre N

Modèle Candecomp/Parafac (CP) des données

Illustration (deux niveaux d'échelle) :

$$\overset{\bigstar}{\underset{L_1}{\overset{L_2}{\overset{}}}} = \begin{vmatrix} \overset{\bigstar}{\overset{\bigstar}{\overset{}}} \\ \mathbf{a}_2(\mathbf{k}_1) \\ \mathbf{a}_1(\mathbf{k}_1) + \dots + \end{vmatrix} \begin{vmatrix} \mathbf{a}_2(\mathbf{k}_P) \\ \mathbf{a}_1(\mathbf{k}_P) \end{vmatrix}$$

Identifiabilité [Sidiropoulos and Bro '00] :

• P sources avec des DDAs distinctes, K > P

$$\sum_{n=1}^{N} \min(L_n, P) \ge P + N.$$

▶ Un seul échantillon temporel

$$\sum_{n=1}^{N} \min(L_n, P) \ge 2P + N - 1.$$

Modèle Candecomp/Parafac (CP) des données

Illustration (deux niveaux d'échelle) :

$$\overset{\bigstar}{\underset{L_1}{\overset{L_2}{\overset{}}}} = \begin{vmatrix} \overset{\bigstar}{\overset{\bigstar}{\overset{}}} \\ \mathbf{a}_2(\mathbf{k}_1) \\ \mathbf{a}_1(\mathbf{k}_1) + \dots + \end{vmatrix} \begin{vmatrix} \mathbf{a}_2(\mathbf{k}_P) \\ \mathbf{a}_1(\mathbf{k}_P) \end{vmatrix}$$

Identifiabilité [Sidiropoulos and Bro '00] :

• P sources avec des DDAs distinctes, K > P

$$\sum_{n=1}^{N} \min(L_n, P) \ge P + N.$$

Un seul échantillon temporel

$$\sum_{n=1}^{N} \min(L_n, P) \ge 2P + N - 1.$$

Estimation des paramètres

Estimation des vecteurs directionnels par décomposition CP des données :

 $\mathbf{\hat{a}}_{n}^{p}$: vecteur directionnel estimé ($n^{\mathsf{ième}}$ niveau, $p^{\mathsf{ième}}$ source)

 \blacktriangleright Estimation de la DDA pour la $p^{\mathsf{ième}}$ source \leadsto minimisation du critère :

$$\mathcal{I}_N(\mathbf{k}_p) = \sum_{n=1}^N \mathcal{J}_n(\mathbf{k}_p).$$

avec

$$\mathcal{J}_n(\mathbf{k}_p) = \|\mathbf{\hat{a}}_n^p - \mathbf{a}_n(\mathbf{k}_p)\|^2, \ n = 1, \dots, N$$

Minimisation du critère $\mathcal{I}_N(\mathbf{k}_p)$

 $\mathcal{I}_N(\mathbf{k}_p)$: critère non-convexe et fortement non-linéaire

→ Stratégie de minimisation graduelle :

Dans le parcours des sous-antennes, **l'ordre** est important.

Algorithme d'estimation

Etape 1 : Estimation des matrices A_1, \ldots, A_N, S :

$$\left\{ \hat{\mathbf{A}}_{1}, \dots, \hat{\mathbf{A}}_{N} \right\} = \underset{\mathbf{A}_{1}, \dots, \mathbf{A}_{N}, \mathbf{S}}{\operatorname{argmin}} \left\| \boldsymbol{\mathcal{Y}} - \left[\mathbf{A}_{1}, \dots, \mathbf{A}_{N}, \mathbf{S} \right] \right\|_{F}^{2}$$

$$(e.g., ALS)$$

Etape 2 :

▶ Pour
$$p = 1, ..., P$$
 et
pour $n = 1, ..., N$ calculer
 $\mathbf{k}_{p,n}^* = \operatorname*{argmin}_{\mathbf{k}_p} \mathcal{I}_n(\mathbf{k}_p).$

► Sortie : Les DDAs estimées pour les P sources : $\hat{\mathbf{k}}_p = \mathbf{k}_{p,N}^*$ avec $p = 1, \dots, P$.

Simulations numériques

- Deux niveaux d'échelle $L_1 = 5, L_2 = 4$
- \blacktriangleright Trois niveaux d'échelle $L_1=5, L_2=2, L_3=2 \rightsquigarrow$ une seule donnée temporelle
- P = 2 sources avec des DDA distinctes
- ► Comparaison avec ESPRIT [Wong and Zoltowski '98]

Simulations numériques

CP et l'invariance translationnelle

- Géométrie adaptée pour pour la conception des antennes de très grande dimension
- ► Maillage peu dense de capteurs ~→ coûts materiel et de calcul réduits
- Géométrie flexible et exploitable efficacement dans les algorithmes d'estimation
- Algorithmes « déterministes » (ne nécessitant pas l'estimation de la covariance des données)
- Possibilité d'estimer des sources cohérentes
- ► Coût de calcul faible (pas de recherche exhaustive sur une grille)

Plan

Introduction

Antennes de très grande dimension Estimation de la Direction D'Arrivée (DDA)

Traitement d'antenne fondé sur ESPRIT ESPRIT Multiple-Invariance ESPRIT

Traitement d'antenne fondé sur CANDECOMP/PARAFAC (CP)

Antennes avec invariance translationnelle multiple (cas général) Antennes multi-échelle

Antennes avec diversité de polarisation

Traitement d'antenne fondé sur la HOSVD Tensor-MUSIC Tensor-ESPRIT

Conclusions

Polarisation

Champ d'ondes :

- ▶ scalaire ~→ ondes scalaires (*e.g.*, ondes acoustiques)
- ▶ vectoriel ~→ ondes polarisées (e.g., ondes électromagnétiques, ondes sismiques)

Polarisation elliptique

Capteurs vectoriels

Electromagnétisme

télécommunications, RADAR

Capteur vectoriel électromagnétique (Flam & Russel Inc.)

Schéma d'un capteur électromagnétique (EM) vectoriel

Données acquises par un capteur EM

Vecteur directionnel (6×1) pour un capteur vectoriel :

$$\mathbf{d}(\phi,\psi,\alpha,\beta) = \begin{bmatrix} e_x \\ e_y \\ e_z \\ h_x \\ h_y \\ h_z \end{bmatrix} = \begin{bmatrix} -\sin\phi & -\cos\phi\sin\psi \\ \cos\phi & -\sin\phi\sin\psi \\ 0 & \cos\psi \\ -\cos\phi\sin\psi & \sin\phi \\ -\sin\phi\sin\psi & -\cos\phi \\ \cos\psi & 0 \end{bmatrix} \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix} \begin{bmatrix} \cos\beta \\ j\sin\beta \end{bmatrix}$$

Vecteur directionnel pour une antenne de L capteurs vectoriels :

 $\mathbf{a}(\phi,\psi)\otimes \mathbf{d}(\phi,\psi,lpha,eta)$

avec :

$$\mathbf{a}(\phi,\psi) = \left[e^{j2\pi \mathbf{k}^T(\phi,\psi)\mathbf{d}_1/\lambda}, \dots, e^{j2\pi \mathbf{k}^T(\phi,\psi)\mathbf{d}_L/\lambda} \right]^T$$

Données acquises par un capteur EM

Vecteur directionnel (6×1) pour un capteur vectoriel :

$$\mathbf{d}(\phi,\psi,\alpha,\beta) = \begin{bmatrix} e_x \\ e_y \\ e_z \\ h_x \\ h_y \\ h_z \end{bmatrix} = \begin{bmatrix} -\sin\phi & -\cos\phi\sin\psi \\ \cos\phi & -\sin\phi\sin\psi \\ 0 & \cos\psi \\ -\cos\phi\sin\psi & \sin\phi \\ -\sin\phi\sin\psi & -\cos\phi \\ \cos\psi & 0 \end{bmatrix} \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix} \begin{bmatrix} \cos\beta \\ j\sin\beta \end{bmatrix}$$

Vecteur directionnel pour une antenne de L capteurs vectoriels :

 $\mathbf{a}(\phi,\psi)\otimes \mathbf{d}(\phi,\psi,\alpha,\beta)$

avec :

$$\mathbf{a}(\phi,\psi) = \left[\mathsf{e}^{j2\pi\mathbf{k}^T(\phi,\psi)\mathbf{d}_1/\lambda},\ldots,\mathsf{e}^{j2\pi\mathbf{k}^T(\phi,\psi)\mathbf{d}_L/\lambda}\right]^T$$

Données acquises par une antenne de capteurs EM

Modèle CP des données (P sources, L capteurs vectoriels, $K \ll \text{snapshots } \gg$) :

$$\boldsymbol{\mathcal{Y}} = \sum_{p=1}^{P} \mathbf{a}_{p}(\phi_{p}, \psi_{p}) \circ \mathbf{d}_{p}(\phi_{p}, \psi_{p}, \alpha_{p}, \beta_{p}) \circ \mathbf{s}_{p} + \boldsymbol{\mathcal{B}} = \llbracket \mathbf{A}, \mathbf{D}, \mathbf{S} \rrbracket + \boldsymbol{\mathcal{B}} \quad (L \times 6 \times K)$$

avec :

$$\mathbf{A} = [\mathbf{a}(\phi_1, \psi_1), \dots, \mathbf{a}(\phi_P, \psi_P)] \ (L \times P)$$
$$\mathbf{D} = [\mathbf{d}(\phi_1, \psi_1, \alpha_1, \beta_1), \dots, \mathbf{d}(\phi_P, \psi_P, \alpha_P, \beta_P)] \ (6 \times P)$$
$$\mathbf{S} = [\mathbf{s}_1, \dots, \mathbf{s}_P] \ (K \times P)$$

Estimation des DDAs :

Borne supérieure sur le nombre P de sources identifiables (DDAs distinctes) :

- 1. Sources non-cohérentes (S rang colonnes plein) avec L < P
 - Condition nécessaire d'identifiabilité [Ho et al. '98]
 P < 3L
 - ► Condition suffisante d'identifiabilité [Guo et al. '11]
 P < k_A + rang(D) 2 = L + rang(D) 2
 - ► Condition numérique suffisante [Jiang and Sidiropoulos '04] (calcul du rang d'une matrice U (36L² × P(P − 1)/2) des mineurs d'ordre 2 de A et D)

Comparaison entre les deux conditions suffisantes d'identifiabilité $rang(\mathbf{A}) = k_{\mathbf{A}} = L$; $k_{\mathbf{D}} = \max\{3, \min\{P, 6\}\}$ ($k_{\mathbf{D}} \ge 3$ [Ho et al. '98])

- 2. Sources cohérentes ($k_{\mathbf{S}} = 1, rang(\mathbf{S}) \leq P 1$), L > P
 - Polarization Smoothing Algorithm (PSA) [Rahamim et al. '04] :

$$\mathbf{Y} = \mathbf{A}(\mathbf{D} \odot \mathbf{S})^T = \mathbf{A} \breve{\mathbf{S}}^T$$
 tel que $\breve{\mathbf{S}} \triangleq \mathbf{D} \odot \mathbf{S}$ soit de rang plein

Antenne linéaire uniforme (ULA)

Identifiabilité du modèle :

 $\breve{\mathbf{Y}} = (\breve{\mathbf{A}} \odot \mathbf{H})\breve{\mathbf{S}}^T \text{ avec } \breve{\mathbf{S}} \triangleq \mathbf{D} \odot \mathbf{S}$

- ▶ (1) $P \le k_{\mathbf{D}} + rang(\mathbf{S}) 1 \Rightarrow \breve{\mathbf{S}}$: rang plein [Guo *et al.* '11]
- ▶ (2) Si Š : rang plein et $rang(\check{\mathbf{A}}) + k_{\mathbf{H}} \ge P + 2 \Rightarrow \check{\mathbf{Y}}$ identifiable [Guo *et al.* '11]
- ▶ (3) $\check{\mathbf{A}}, \mathbf{H}$: matrices de Vandermonde $\Rightarrow rang(\check{\mathbf{A}}) = N = L P + 1, k_{\mathbf{H}} = P$

$$\blacktriangleright (3) \rightarrow (2) \Longrightarrow P \le L - 1 (4)$$

- $(1) + (4) \Longrightarrow P \le \min\{L, k_{\mathbf{D}} + rang(\mathbf{S})\} 1$
- ► Si rang(S) = 1 (i.e., toutes les sources sont cohérentes) ⇒ P ≤ min(k_D, L − 1) condition similaire à P ≤ min(6, L − 1) [Rahamim et al. '04]

Identifiabilité du modèle :

$$reve{\mathbf{Y}} = (reve{\mathbf{A}} \odot \mathbf{H}) reve{\mathbf{S}}^T$$
 avec $reve{\mathbf{S}} riangleq \mathbf{D} \odot \mathbf{S}$

- ▶ (2) Si Š : rang plein et $rang(\check{\mathbf{A}}) + k_{\mathbf{H}} \ge P + 2 \Rightarrow \check{\mathbf{Y}}$ identifiable [Guo *et al.* '11]
- ▶ (3) $\mathbf{\check{A}}, \mathbf{H}$: matrices de Vandermonde $\Rightarrow rang(\mathbf{\check{A}}) = N = L P + 1$, $k_{\mathbf{H}} = P$

$$\blacktriangleright (3) \rightarrow (2) \Longrightarrow P \le L - 1 (4)$$

- ► (1) + (4) \Longrightarrow $P \le \min\{L, k_{\mathbf{D}} + rang(\mathbf{S})\} - 1$
- ▶ Si $rang(\mathbf{S}) = 1$ (*i.e.*, toutes les sources sont cohérentes) \implies $P \leq \min(k_{\mathbf{D}}, L - 1)$ condition similaire à $P \leq \min(6, L - 1)$ [Rahamim *et al.* '04]

Identifiabilité du modèle :

$$\breve{\mathbf{Y}} = (\breve{\mathbf{A}} \odot \mathbf{H}) \breve{\mathbf{S}}^T$$
 avec $\breve{\mathbf{S}} \triangleq \mathbf{D} \odot \mathbf{S}$

- ▶ (2) Si $\check{\mathbf{S}}$: rang plein et $rang(\check{\mathbf{A}}) + k_{\mathbf{H}} \ge P + 2 \Rightarrow \check{\mathbf{Y}}$ identifiable [Guo *et al.* '11]
- ► (3) $\check{\mathbf{A}}, \mathbf{H}$: matrices de Vandermonde $\Rightarrow rang(\check{\mathbf{A}}) = N = L P + 1$, $k_{\mathbf{H}} = P$

$$\blacktriangleright (3) \rightarrow (2) \Longrightarrow P \le L - 1 (4)$$

- ► (1) + (4) \Longrightarrow $P \le \min\{L, k_{\mathbf{D}} + rang(\mathbf{S})\} - 1$
- ▶ Si $rang(\mathbf{S}) = 1$ (*i.e.*, toutes les sources sont cohérentes) \implies $P \leq \min(k_{\mathbf{D}}, L-1)$ condition similaire à $P \leq \min(6, L-1)$ [Rahamim *et al.* '04]

Identifiabilité du modèle :

$$\breve{\mathbf{Y}} = (\breve{\mathbf{A}} \odot \mathbf{H}) \breve{\mathbf{S}}^T$$
 avec $\breve{\mathbf{S}} \triangleq \mathbf{D} \odot \mathbf{S}$

- ▶ (2) Si $\check{\mathbf{S}}$: rang plein et $rang(\check{\mathbf{A}}) + k_{\mathbf{H}} \ge P + 2 \Rightarrow \check{\mathbf{Y}}$ identifiable [Guo *et al.* '11]
- ▶ (3) Ă, H : matrices de Vandermonde ⇒ rang(Ă) = N = L P + 1, k_H = P

• (3)
$$\rightarrow$$
 (2) \Longrightarrow $P \leq L - 1$ (4)

- ► (1) + (4) \implies $P \le \min\{L, k_{\mathbf{D}} + rang(\mathbf{S})\} - 1$
- ▶ Si $rang(\mathbf{S}) = 1$ (*i.e.*, toutes les sources sont cohérentes) \implies $P \leq \min(k_{\mathbf{D}}, L - 1)$ condition similaire à $P \leq \min(6, L - 1)$ [Rahamim *et al.* '04]

Identifiabilité du modèle :

$$\breve{\mathbf{Y}} = (\breve{\mathbf{A}} \odot \mathbf{H}) \breve{\mathbf{S}}^T$$
 avec $\breve{\mathbf{S}} \triangleq \mathbf{D} \odot \mathbf{S}$

- ▶ (2) Si $\check{\mathbf{S}}$: rang plein et $rang(\check{\mathbf{A}}) + k_{\mathbf{H}} \ge P + 2 \Rightarrow \check{\mathbf{Y}}$ identifiable [Guo *et al.* '11]
- ► (3) $\check{\mathbf{A}}, \mathbf{H}$: matrices de Vandermonde $\Rightarrow rang(\check{\mathbf{A}}) = N = L P + 1$, $k_{\mathbf{H}} = P$

• (3)
$$\rightarrow$$
 (2) \Longrightarrow $P \leq L - 1$ (4)

- ► (1) + (4) \implies $P \le \min\{L, k_{\mathbf{D}} + rang(\mathbf{S})\} - 1$
- ► Si $rang(\mathbf{S}) = 1$ (*i.e.*, toutes les sources sont cohérentes) \implies $P \leq \min(k_{\mathbf{D}}, L-1)$ condition similaire à $P \leq \min(6, L-1)$ [Rahamim *et al.* '04]
Plan

Introduction

Antennes de très grande dimension Estimation de la Direction D'Arrivée (DDA)

Traitement d'antenne fondé sur ESPRIT ESPRIT Multiple-Invariance ESPRIT

Traitement d'antenne fondé sur CANDECOMP/PARAFAC (CP) Antennes avec invariance translationnelle multiple (cas général) Antennes multi-échelle

Antennes avec diversité de polarisation

Traitement d'antenne fondé sur la HOSVD

Tensor-MUSIC Tensor-ESPRIT

Plan

Introduction

Antennes de très grande dimension Estimation de la Direction D'Arrivée (DDA)

Traitement d'antenne fondé sur ESPRIT ESPRIT Multiple-Invariance ESPRIT

Traitement d'antenne fondé sur CANDECOMP/PARAFAC (CP) Antennes avec invariance translationnelle multiple (cas général) Antennes multi-échelle Antennes avec diversité de polarisation

Traitement d'antenne fondé sur la HOSVD Tensor-MUSIC

Tensor-ESPRIT

Tensor-MUSIC (T-MUSIC) [Boizard et al. '13]

Données sur une antenne de capteurs EM (P sources, L capteurs vectoriels) :

$$\mathbf{Y}(t) = \sum_{p=1}^{P} s_p(t) \, \mathbf{a}_p(\phi_p, \psi_p) \, \mathbf{d}_p^T(\phi_p, \psi_p, \alpha_p, \beta_p) + \mathbf{B}(t) \qquad (L \times 6)$$

Tenseur de covariance des données :

$$\mathcal{R}_{\mathbf{YY}} = E\left\{\mathbf{Y}(t) \circ \mathbf{Y}^{*}(t)\right\} \ (L \times 6 \times L \times 6)$$

Tenseur de covariance des sources :

$$\mathcal{R}_{SS} = E \{ \mathbf{S}(t) \circ \mathbf{S}^*(t) \} \ (P \times P \times P \times P)$$

avec :
$$\mathbf{S}(t) = \begin{bmatrix} s_1(t) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & s_P(t) \end{bmatrix}$$
 $(P \times P)$

Tensor-MUSIC (T-MUSIC) [Boizard et al. '13]

Données sur une antenne de capteurs EM (P sources, L capteurs vectoriels) :

$$\mathbf{Y}(t) = \sum_{p=1}^{P} s_p(t) \, \mathbf{a}_p(\phi_p, \psi_p) \, \mathbf{d}_p^T(\phi_p, \psi_p, \alpha_p, \beta_p) + \mathbf{B}(t) \qquad (L \times 6)$$

Tenseur de covariance des données :

$$\mathcal{R}_{\mathbf{YY}} = E\left\{\mathbf{Y}(t) \circ \mathbf{Y}^{*}(t)\right\} \ (L \times 6 \times L \times 6)$$

Tenseur de covariance des sources :

$$\mathcal{R}_{SS} = E \{ \mathbf{S}(t) \circ \mathbf{S}^*(t) \} \ (P \times P \times P \times P)$$

avec :
$$\mathbf{S}(t) = \begin{bmatrix} s_1(t) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & s_P(t) \end{bmatrix}$$
 $(P \times P)$

Tensor-MUSIC

Modèle quadrilinéaire :

$$\mathcal{R}_{YY} = \mathcal{R}_{SS} \times_1 \mathbf{A} \times_2 \mathbf{D} \times_3 \mathbf{A}^* \times_4 \mathbf{D}^* + \mathcal{N}$$

avec :

$$\mathbf{A} = [\mathbf{a}(\phi_1, \psi_1), \dots, \mathbf{a}(\phi_P, \psi_P)] \ (L \times P)$$
$$\mathbf{D} = [\mathbf{d}(\phi_1, \psi_1, \alpha_1, \beta_1), \dots, \mathbf{d}(\phi_P, \psi_P, \alpha_P, \beta_P)] \ (6 \times P)$$

Algorithme T-MUSIC :

1. Estimation du tenseur de covariance :

$$\hat{\boldsymbol{\mathcal{R}}}_{\mathbf{Y}\mathbf{Y}} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{Y}(k) \circ \mathbf{Y}^{*}(k), \quad (K \ll \text{ snapshots } \gg)$$

2. Décomposition HOSVD de $\hat{\mathcal{R}}_{\mathbf{YY}}$:

$$\boldsymbol{\hat{\mathcal{R}}}_{\mathbf{YY}} = \boldsymbol{\mathcal{K}} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \times_3 \mathbf{U}^{(1)*} \times_4 \mathbf{U}^{(2)*}$$

Tensor-MUSIC

3. Estimation des sous-espaces signal / bruit dans les quatre modes :

$$\begin{split} \mathbf{U}^{(1)} &= \left[\mathbf{U}_s^{(1)} | \mathbf{U}_b^{(1)}\right] \text{ avec } \mathbf{U}_s^{(1)} \left(L \times P\right) \text{ et } \mathbf{U}_b^{(1)} \left(L \times (L-P)\right) \\ \mathbf{U}^{(2)} &= \left[\mathbf{U}_s^{(2)} | \mathbf{U}_b^{(2)}\right] \text{ avec } \mathbf{U}_s^{(2)} \left(6 \times P\right) \text{ et } \mathbf{U}_b^{(2)} \left(6 \times (6-P)\right) \end{split}$$

4. Estimations des DDAs :

$$\{\phi, \psi, \alpha, \beta\} = \arg \max \frac{1}{\|\mathbf{M}(\phi, \psi, \alpha, \beta) \times_1 \mathbf{U}_b^{(1)} \mathbf{U}_b^{(1)H} \times_2 \mathbf{U}_b^{(2)} \mathbf{U}_b^{(2)H}\|_F^2}$$

avec :

 $\mathbf{M}(\phi,\psi,\alpha,\beta) = \mathbf{a}(\phi,\psi) \ \mathbf{d}^{T}(\phi,\psi,\alpha,\beta)$

Simulation numérique [Boizard et al. '13]

P=2 sources, DDAs et polarisations distinctes

Plan

Introduction

Antennes de très grande dimension Estimation de la Direction D'Arrivée (DDA)

Traitement d'antenne fondé sur ESPRIT ESPRIT Multiple-Invariance ESPRIT

Traitement d'antenne fondé sur CANDECOMP/PARAFAC (CP) Antennes avec invariance translationnelle multiple (cas général) Antennes multi-échelle

Traitement d'antenne fondé sur la HOSVD

Tensor-MUSIC Tensor-ESPRIT

Tensor-ESPRIT [Haardt et al. '08]

Modèle données pour une antenne multi-échelle (rappel) :

$$\mathbf{Y} = (\mathbf{A}_1 \odot \cdots \odot \mathbf{A}_N) \mathbf{S}^T + \mathbf{B}$$

avec :

$$\mathbf{A}_{1} = \begin{bmatrix} \mathbf{a}_{1}(\mathbf{k}_{1}), \dots, \mathbf{a}_{1}(\mathbf{k}_{P}) \end{bmatrix} (L_{1} \times P)$$

$$\vdots$$

$$\mathbf{A}_{N} = \begin{bmatrix} \mathbf{a}_{N}(\mathbf{k}_{1}), \dots, \mathbf{a}_{N}(\mathbf{k}_{P}) \end{bmatrix} (L_{N} \times P)$$

$$\mathbf{S} = \begin{bmatrix} \mathbf{s}_{1}, \ \mathbf{s}_{2}, \dots, \mathbf{s}_{P} \end{bmatrix} (K \times P)$$

Ecriture tensorielle #1:

$$\boldsymbol{\mathcal{Y}} = \sum_{p=1}^{P} \mathbf{a}_1(\mathbf{k}_p) \circ \ldots \circ \mathbf{a}_N(\mathbf{k}_p) \circ \mathbf{s}_p + \boldsymbol{\mathcal{B}} \quad (L_1 \times \ldots \times L_N \times K)$$

Définissons :

$$\mathcal{A}_{p} = \mathbf{a}_{1}(\mathbf{k}_{p}) \circ \ldots \circ \mathbf{a}_{N}(\mathbf{k}_{p}) \quad (L_{1} \times \ldots \times L_{N}), \quad p = 1, \ldots, P$$
$$\mathcal{A} = \begin{bmatrix} \mathcal{A}_{1} \sqcup_{N+1} \mathcal{A}_{2} \sqcup_{N+1} \ldots \sqcup_{N+1} \mathcal{A}_{P} \end{bmatrix} \quad (L_{1} \times \ldots \times L_{N} \times P)$$

Ecriture tensorielle #2 :

$$\mathcal{Y} = \mathcal{A} imes_{N+1} \mathbf{S} + \mathcal{B}$$

Invariances dans les N modes de $\boldsymbol{\mathcal{A}}$:

$$\begin{array}{lll} \boldsymbol{\mathcal{A}} \times_1 \mathbf{J}_1^{(1)} \times_{N+1} \boldsymbol{\Phi}^{(1)} = & \boldsymbol{\mathcal{A}} \times_1 \mathbf{J}_2^{(1)} \\ \boldsymbol{\mathcal{A}} \times_2 \mathbf{J}_1^{(2)} \times_{N+1} \boldsymbol{\Phi}^{(2)} = & \boldsymbol{\mathcal{A}} \times_2 \mathbf{J}_2^{(2)} \\ & \vdots \\ \boldsymbol{\mathcal{A}} \times_N \mathbf{J}_1^{(N)} \times_{N+1} \boldsymbol{\Phi}^{(N)} = & \boldsymbol{\mathcal{A}} \times_N \mathbf{J}_2^{(N)} \end{array}$$

$$\boldsymbol{\Phi}^{(n)} = \begin{bmatrix} \mathbf{e}^{j\frac{2\pi}{\lambda}\mathbf{k}_{1}^{T}\boldsymbol{\delta}_{n}} & & \\ 0 & \ddots & 0 \\ & & \mathbf{e}^{j\frac{2\pi}{\lambda}\mathbf{k}_{P}^{T}\boldsymbol{\delta}_{n}} \end{bmatrix}, \quad n = 1, \dots, N$$

Matrices de sélection :

$$\mathbf{J}_1^{(n)} = \begin{bmatrix} \mathbf{I}_{L_n-1} \mid \mathbf{0}_{(L_n-1\times 1)} \end{bmatrix} \qquad \mathbf{J}_2^{(n)} = \begin{bmatrix} \mathbf{0}_{(L_n-1\times 1)} \mid \mathbf{I}_{L_n-1} \end{bmatrix}$$

Estimation du **sous-espace signal tensoriel** par troncature de rang P de la HOSVD de \mathcal{Y} :

$$\mathcal{Y}_{s} = \mathcal{K}_{s} \times_{1} \mathbf{U}_{s}^{(1)} \times_{2} \ldots \times_{N} \mathbf{U}_{s}^{(N)} \times_{N+1} \mathbf{U}_{s}^{(N+1)}$$
$$\mathcal{K}_{s}(\underbrace{P \times \ldots \times P}_{N+1 \text{ fois}}); \qquad \mathbf{U}_{s}^{(n)}(L_{n} \times P), n = 1, \ldots, N$$

$$\boldsymbol{\Phi}^{(n)} = \begin{bmatrix} \mathbf{e}^{j\frac{2\pi}{\lambda}\mathbf{k}_{1}^{T}\boldsymbol{\delta}_{n}} & & \\ 0 & \ddots & 0 \\ & & \mathbf{e}^{j\frac{2\pi}{\lambda}\mathbf{k}_{P}^{T}\boldsymbol{\delta}_{n}} \end{bmatrix}, \quad n = 1, \dots, N$$

Matrices de sélection :

$$\mathbf{J}_{1}^{(n)} = \begin{bmatrix} \mathbf{I}_{L_{n}-1} \mid \mathbf{0}_{(L_{n}-1\times 1)} \end{bmatrix} \qquad \mathbf{J}_{2}^{(n)} = \begin{bmatrix} \mathbf{0}_{(L_{n}-1\times 1)} \mid \mathbf{I}_{L_{n}-1} \end{bmatrix}$$

Estimation du sous-espace signal tensoriel par troncature de rang P de la HOSVD de ${\boldsymbol{\mathcal{Y}}}$:

$$\boldsymbol{\mathcal{Y}}_{s} = \boldsymbol{\mathcal{K}}_{s} \times_{1} \mathbf{U}_{s}^{(1)} \times_{2} \ldots \times_{N} \mathbf{U}_{s}^{(N)} \times_{N+1} \mathbf{U}_{s}^{(N+1)}$$
$$\boldsymbol{\mathcal{K}}_{s}(\underbrace{P \times \ldots \times P}_{N+1 \text{ fois}}); \qquad \mathbf{U}_{s}^{(n)}(L_{n} \times P), n = 1, \ldots, N$$

Base multilinéaire du sous-espace signal estimé :

$$\boldsymbol{\mathcal{U}}_s = \boldsymbol{\mathcal{K}}_s \times_1 \mathbf{U}_s^{(1)} \times_2 \ldots \times_N \mathbf{U}_s^{(N)} \ (L_1 \times \ldots \times L_N \times P)$$

 $\mathcal{A} = \mathcal{U}_s \times_{N+1} \mathbf{T}$ (*)

En remplaçant (*) dans les relations d'invariance :

$$\begin{aligned} & \boldsymbol{\mathcal{U}}_s \times_1 \mathbf{J}_1^{(1)} \times_{N+1} \mathbf{\Psi}^{(1)} = \quad \boldsymbol{\mathcal{U}}_s \times_1 \mathbf{J}_2^{(1)} \\ & \boldsymbol{\mathcal{U}}_s \times_2 \mathbf{J}_1^{(2)} \times_{N+1} \mathbf{\Psi}^{(2)} = \quad \boldsymbol{\mathcal{U}}_s \times_2 \mathbf{J}_2^{(2)} \end{aligned}$$

÷

$$oldsymbol{\mathcal{U}}_s imes_N \, \mathbf{J}_1^{(N)} imes_{N+1} \, oldsymbol{\Psi}^{(N)} = \quad oldsymbol{\mathcal{U}}_s imes_N \, \mathbf{J}_2^{(N)}$$

avec :

$$\boldsymbol{\Psi}^{(n)} = \mathbf{T}^{-1} \boldsymbol{\Phi}^{(n)} \mathbf{T}$$

Estimation de $\Psi^{(n)}$:

$$\boldsymbol{\Psi}^{(n)} = \operatorname*{argmin}_{\boldsymbol{\Psi}^{(n)}} \left\| \boldsymbol{\mathcal{U}}_s \times_n \mathbf{J}_1^{(n)} \times_{N+1} \boldsymbol{\Psi}^{(n)} - \boldsymbol{\mathcal{U}}_s \times_n \mathbf{J}_2^{(n)} \right\|_{H}$$

Solution (moindres carrées) :

$$\boldsymbol{\Psi}^{\left(n\right)^{T}} = \left(\mathbf{\tilde{J}}_{1}^{\left(n\right)} \left[\boldsymbol{\mathcal{U}}_{s} \right]_{\left(N+1\right)}^{T} \right)^{\dagger} \mathbf{\tilde{J}}_{2}^{\left(n\right)} \left[\boldsymbol{\mathcal{U}}_{s} \right]_{\left(N+1\right)}^{T}$$

avec :

$$\tilde{\mathbf{J}}_{i}^{(n)} = \mathbf{I}_{\Gamma_{1}^{(n)}} \otimes \mathbf{J}_{i}^{(n)} \otimes \mathbf{I}_{\Gamma_{2}^{(n)}} \ (i = 1, 2); \quad \Gamma_{1}^{(n)} = \Pi_{q=1}^{n-1} L_{q}; \ \Gamma_{2}^{(n)} = \Pi_{q=n+1}^{N} L_{q}$$

ⓒ Meilleure estimation du sous-espace signal que SVD s'il ∃ tel que $L_n > P$ ⓒ Nécessite des structures invariantes dans les modes

Simulations numériques [Miron et al. '15]

- Quatre niveaux d'échelle $L_1 = L_2 = L_3 = L_4 = 3$
- Deux sources avec des DDA distinctes

Simulations numériques

- ▶ Prise en compte de la structure complexe des données
- Identifiabilité du modèle
- ► Co-design antenne / algorithme de traitement
- ► Extension de MUSIC, ESPRIT au cas tensoriel
- ► Estimation des sous-espaces signal/ bruit améliorée