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Abstract. In 1969, Jean-Marie Souriau has introduced a “Lie Groups Thermo-

dynamics” in Statistical Mechanics in the framework of Geometric Mechanics. 

This Souriau’s model considers the statistical mechanics of dynamic systems in 

their "space of evolution" associated to a homogeneous symplectic manifold by 

a Lagrange 2-form, and defines thanks to cohomology (non equivariance of the 

coadjoint action on the moment map with appearance of an additional  cocyle) a 

Gibbs density (of maximum entropy) that is covariant under the action of dy-

namic groups of physics (eg, Galileo's group in classical physics). Souriau 

model is more general if we consider another Souriau theorem, that we can as-

sociate to a Lie group, an homogeneous symplectic manifold with a KKS 2-

form on their coadjoint orbits. Souriau method could then be applied on Lie 

Groups to define a covariant maximum entropy density by Kirillov representa-

tion theory. We will illustrate this method for homogeneous Siegel domains and 

more especially for Poincaré unit disk by considering SU(1,1) group coadjoint 

orbit and by using its Souriau’s moment map. For this case, the coadjoint action 

on moment map is equivariant. 
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1 Lie Groups Thermodynamics and Covariant Gibbs Density 

   We identify the Riemanian metric introduced by Souriau based on cohomology, in 

the framework of “Lie groups thermodynamics” as an extension of classical Fisher 

metric introduced in information geometry. We have observed that Souriau metric 

preserves Fisher metric structure as the Hessian of the minus logarithm of a partition 

function, where the partition function is defined as a generalized Laplace transform on 

a sharp convex cone. Souriau’s definition of Fisher metric extends the classical one in 

case of Lie groups or homogeneous manifolds. Souriau has developed this “Lie 

groups thermodynamics” theory in the framework of homogeneous symplectic mani-

folds in geometric statistical mechanics for dynamical systems, but as observed by 

Souriau, these model equations are no longer linked to the symplectic manifold but 
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equations only depend on the Lie group and the associated cocycle. This analogy with 

Fisher metric opens potential applications in machine learning, where the Fisher met-

ric is used in the framework of information geometry, to define the “natural gradient” 

tool for improving ordinary stochastic gradient descent sensitivity to rescaling or 

changes of variable in parameter space. In machine learning revised by natural gradi-

ent of information geometry, the ordinary gradient is designed to integrate the Fisher 

matrix. Amari has theoretically proved the asymptotic optimality of the natural gradi-

ent compared to classical gradient. With the Souriau approach, the Fisher metric 

could be extended, by Souriau-Fisher metric, to design natural gradients for data on 

homogeneous manifolds. Information geometry has been derived from invariant geo-

metrical structure involved in statistical inference. The Fisher metric defines a Rie-

mannian metric as the Hessian of two dual potential functions, linked to dually cou-

pled affine connections in a manifold of probability distributions. With the Souriau 

model, this structure is extended preserving the Legendre transform between two dual 

potential function parametrized in Lie algebra of the group acting transentively on the 

homogeneous manifold. Classically, to optimize the parameter   of a probabilistic 

model, based on a sequence of observations 
ty , is an online gradient descent: 
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with learning rate 
t , and the loss function  ˆlog /t t tl p y y  . This simple gradient 

descent has a first drawback of using the same non-adaptive learning rate for all pa-

rameter components, and a second drawback of non invariance with respect to param-

eter re-encoding inducing different learning rates. Amari has introduced the natural 

gradient to preserve this invariance to be insensitive to the characteristic scale of each 

parameter direction. The gradient descent could be corrected by 1( )I    where I  is 

the Fisher information matrix with respect to parameter  , given by: 
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with natural gradient:  
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Amari has proved that the Riemannian metric in an exponential family is the Fisher 

information matrix defined by: 
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and the dual potential, the Shannon entropy, is given by the Legendre transform: 

( ) ( )
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   In geometric statistical mechanics, Souriau has developed a “Lie groups thermody-

namics” of dynamical systems where the (maximum entropy) Gibbs density is covari-

ant with respect to the action of the Lie group. In the Souriau model, previous struc-

tures of information geometry are preserved: 
2
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In the Souriau Lie groups thermodynamics model,   is a “geometric” (Planck) 

temperature, element of Lie algebra g  of the group, and Q  is a “geometric” heat, 

element of dual Lie algebra *
g  of the group. Souriau has proposed a Riemannian 

metric that we have identified as a generalization of the Fisher metric: 

         1 2 1 2  with  , , , , ,I g g Z Z Z Z        
                                      (8) 

     
1 11 2 1 2 2 2 1 2with  , , , ( )   where   ( ) ,Z ZZ Z Z Z Q ad Z ad Z Z Z                (9) 

Souriau has proved that all co-adjoint orbit of a Lie Group given by 

 * 1 * *, subset of ,F gAd F g Fg g G F    g g  carries a natural homogeneous 

symplectic structure by a closed G-invariant 2-form. If we define  1

*
*

g g
K Ad Ad     

 
*

*( ) XK X ad   with 
1

* *, , , , ,g g
Ad F Y F Ad Y g G Y F    g g where if 

X g , 1( )gAd X gXg g , the G-invariant 2-form is given by the following expres-

sion      * *, , , , , ,X Y FK F K F B X Y F X Y X Y   g . Souriau Foundamental 

Theorem is that « every symplectic manifold is a coadjoint orbit ». We can observe 

that for Souriau model (8), Fisher metric is an extension of this 2-form in non-

equivariant case          1 2 1 2 1 2, , , , , , , ,  g Z Z Z Z Q Z Z         
. 

The Souriau additional term   1 2, ,Z Z is generated by non-equivariance through 

Symplectic cocycle. The tensor   used to define this extended Fisher metric is de-

fined by the moment map ( )J x , application from M (homogeneous symplectic man-

ifold) to the dual Lie algebra *
g , given by: 

   ,
( , ) ,X YX Y
X Y J J J                     (10)                                                                                                 

with  ( ) :   such that ( ) ( ), , XJ x M J x J x X X  *
g g                                        (11) 

This tensor   is also defined in tangent space of the cocycle  g  *
g  (this 

cocycle appears due to the non-equivariance of the coadjoint operator *

gAd , action of 

the group on the dual lie algebra):     *( ) ( )g gQ Ad Ad Q g                          (12)                                                                             

   , :                      with  ( ) ( )

               X,Y ( ),

eX Y X T X e

X Y
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In Souriau’s Lie groups thermodynamics, the invariance by re-parameterization 

in information geometry has been replaced by invariance with respect to the action of 

the group. When an element of the group g  acts on the element  g  of the Lie 

algebra, given by adjoint operator 
gAd . Under the action of the group ( )gAd  , the 

entropy  S Q  and the Fisher metric  I   are invariant: 
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In the framework of Lie group action on a symplectic manifold, equivariance of 

moment could be studied to prove that there is a unique action a(.,.) of the Lie group 

G  on the dual *
g  of its Lie algebra for which the moment map J  is equivariant, that 

means for each Mx :     )()())(,()( * gxJAdxJgaxJ gg                  (15)                                                 

When coadjoint action is not equivariant, the symmetry is broken, and new “cohomo-

logical” relations should be verified in Lie algebra of the group. A natural equilibrium 

state will thus be characterized by an element of the Lie algebra of the Lie group, 

determining the equilibrium temperature  . The entropy )(Qs , parametrized by Q  

the geometric heat (mean of energy U , element of the dual Lie algebra) is defined by 

the Legendre transform of the Massieu potential    parametrized by   (    is 

the minus logarithm of the partition function   
). Souriau has then defined a 

Gibbs density that is covariant under the action of the group: 
, ( )
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We will illustrate computation of this covariant Souriau-Gibbs density for the Lie 

group SU(1,1) and the unit disk considered as an homogeneous symplectic manifold.  

2 Souriau Moment map 

Vi   is the (p-1)-form on M  obtained by inserting ( )V x as the first argument of  : 

Interior product    2 2, ( ), , ,V p pi v v V x v v                                                (17) 

   is the (p + 1)-form on X  where   is a p-form and   is a 1-form on M : 

Exterior product      0 0

0

ˆ, , 1 ( ) , , , ,
p

i

p i i p

i

v v v v v v   


    (where the hat 

indicates a term to be omitted). 

VL   is a p-form on M , and 0VL    if the flow of V consists of symmetries of  : 



5 

Lie derivative    *

1 1

0

, , , ,tV

V p p

t

d
L v v e v v

dt
 



                                            (18) 

d  is the (p+1)-form on M  defined by taking the ordinary derivative of   and then 

antisymmetrizing: 

Exterior derivative    0 0

0

ˆ, , 1 ( )( , , , , )
p

i

p i i p

i

d v v v v v v
x







 


                   (19) 

     0,   ;  1,   ;  2,i i j j i i jk j ki k iji ij ijk
p d p d p d                   

The properties of the exterior and Lie Derivative are the following: 

   V V VL di i d  (E. Cartan), 
 , V U U VU V
i i L L i     (H.Cartan)                   (20) 

 , V U U VU V
L L L L L     (S. Lie)                                                                           (21) 

Let  ,M   be a connected symplectic manifold. A vector field   on M  is called 

symplectic if its flow preserves the 2-form : 0 L . If we use Elie Cartan's formula, 

we can deduce that 0      L di i d  but as 0 d  then 0 di . We observe 

that the 1-form 
i  is closed. When this 1-form is exact, there is a smooth function 

x H  on M  with: 
  i dH . This vector field   is called Hamiltonian and could 

be defined as symplectic gradient SympH .  

Let a Lie group G  that acts on M  and that also preserve  . A moment map exists if 

these infinitesimal generators are actually hamiltonian, so that a map *:J M g  

exists with   
XZ Zi dH   where  ( ),ZH J x Z                                                    (22) 

We define also the Poisson bracket of two functions H , 'H  by : 

     , ' , ' ',      Symp SympH H H H  with 
  i dH  and 

' '  i dH      (23)                                              

3 Coadjoint orbits and Moment Map for SU(1,1) 

3.1 Poincaré Unit Disk and SU(1,1) Lie Group  

The group of complex unimodular pseudo-unitary matrices (1,1)SU , is the set of 

elements u  such that: uMu M    with  
1 0

0 1
M

 
  

 

                                      (22)                                               

We can show that the most general matrix u  belongs to the Lie group given by: 

 2 2

* *
(1,1) / 1,  ,

a b
G SU a b a b

b a

  
      

  

                                                (23) 

Its Cartan decomposition is given by: 

   
1/21 2*

** * *

01
  with  , 1

01

a aa b z
a z b a a z

a ab a z

    
       

    

           (24) 
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*

** * * *

* *

'
' ' 01 1 '

'   with  
0 ' '1 ' 1 '

a bz a
a aa b z z

a az b
a ab a z z z

b z a

  
      

        
      



            (25)                   

 1,1SU  is associated to group of holomorphic automorphisms of the Poincaré unit 

disk  / 1D z x iy z      in the complex plane, by considering its action on 

the disk as     * *( ) /g z az b b z a   . The following measure on Unit disk: 
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is invariant under the action of (1,1)SU  captured by the fractional holomorphic trans-

formation: 

   

* *

2 2
2 2

' '

1 ' 1

dz dz dz dz

z z
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The complex unit disk admits a Kähler structure determined by potential function: 

   * *', log 1 'z z z z                                            (28) 

The invariant 2-form is:  

 

2 * *
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2* 2

,1 1

1

z z dz dz
dz dz

i z z i z
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which is closed 0d . This group (1,1)SU is isomorphic to the group (2, )SL  as 

a real Lie group, and the Lie algebra  1,1g su  is given by: 

*
/ ,

ir
g r

ir






   
    

  

                                                                                (30) 

with the bases  1 2 3, ,u u u g : 
1 2 3

0 0 1 01 1 1
 ,  , 

0 1 0 02 2 2

i i
u u u

i i

      
       

     

 

with the commutation relation:      3 2 1 3 1 2 2 1 3, , , , ,u u u u u u u u u                        (31) 

Dual base on dual Lie algebra is named  * * * *

1 2 3, ,u u u g . The dual vector space 

* *(1,1)g su  can be identified with the subspace of (2, )sl  of the form:  

*
0 1 0 1 0

/ , ,
1 0 0 0 1

z x iy i
g x y z x y z

x iy z i

         
            

            

          (32) 

Coadjoint action of g G  on dual Lie algebra * g  is written .g  . 

3.2 Coadjoint Orbit of SU(1,1) and Souriau Moment Map  

We will use results of C. Cishahayo and S. de Bièvre [7] and B. Cahen [8,9] for com-

putation of moment map of (1,1)SU . Let *r  , orbit  *

3ru  of *

3ru  for the coad-

joint action of g G  could be identified with the upper half sheet 
3 0x   of 

 * * * 2 2 2 2

1 1 2 2 3 3 1 2 3/x u x u x u x x x r        , the two-sheet hyperboloid. The stabilizer 
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of *

3ru  for the coadjoint action of G  is torus 
0

,
0

i

i

e
K

e








   
   
   

. K induces 

rotations of the unit disk, and leaves 0 invariant. The stabilizer for the origin 0 of unit 

disk is maximal compact subgroup K of SU(1,1). We can observe [8] that 

 *

3 /ru G K . On the other hand  *

3 /ru G K  is diffeomorphic to the unit disk 

 / 1D z z   , then by composition, the moment map is given by: 

 

     

*

3

2* *
* * *

1 2 32 2 2

:

1
      ( )

1 1 1

J D ru

zz z z z
z J z r u u u

z i z z



 
    

    
 

                                   (33) 

J  is linked to the natural action of G  on D  (by fractional linear transforms) but also  

the coadjoint action of G  on  *

3 /ru G K . 1J   could be interpreted as the stereo-

graphic projection from the two-sphere 2S  onto  . In case 
2

n
r   where 

, 2n n   then the coadjoint orbit is given by  n n   with * *

3
2

n

n
u  g , 

with stabilizer of  
n  for coadjoint action the torus 

0
,

0

i

i

e
K

e








   
   
   

 with 

Lie algebra 
3u .  n n   is associated with a holomorphic discrete series repre-

sentation 
n  of G  by the KKS (Kirillov-Kostant-Souriau) method of orbits.  

     

2* *
* * *

1 2 32 2 2

:

1
      ( )

2 1 1 1

nJ D

zn z z z z
z J z u u u

z i z z
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Group G  act on D  by homography 
* * * *

. .
a b az b

g z z
b a b z a

  
  

 

. This action corre-

sponds with coadjoint action of G  on 
n .  The Kirillov-Kostant-Souriau 2-form  of 

n  is given by: 

        , , ,  , ,  and n nX Y X Y X Y       g                                      (35) 

and is associated in the frame by J  with: 

 
*

2
2

1
n

in
dz dz

z

  



                       (36)                  

with the corresponding Poisson Bracket:    
2

2

* *
, 1

f g f g
f g i z

z z z z

    
   

    
    (37) 
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It has been also observed that there are 3 basic observables generating the (1,1)SU  

symmetry on classical level: 

2 * *

1 22 23 2

, 1 ,1
( ) ( )( )

1 11

D D D

z z z zz
z k z z k zz k z

i z zz

   
  

   
      

                        (38) 

With the Poisson commutation rule:      3 1 2 3 2 1 1 2 3, , , , ,k k k k k k k k k            (39) 

 1 2 3, ,k k k vector points to the upper sheet of the two-sheeted hyperboloid in 
3

 

given by 
2 2 2

3 1 2 1k k k   , whose the stereographic projection onto the open unit 

disk is: 
 1 2 3

arg32 1

3 3

, ,

1

1 1

i z

k k k D

kk ik
z e

k k

  

 

 
 

                                                                         (40) 

Under the action of 2 2

* *
(1,1) / 1,  ,

a b
g G SU a b a b

b a

  
       

  

: 

2

3 2 1 3

2 2 *
3 3 2 1

2 11

1 1 2

z zk k k ik k

k k k k ik z z z





    
     
        

 is transform in: 

   

   
 

1 1
' '

3 31 13

' ' 1 1
33 3

. .

. .

tk g z k g z k kk k
g g

k kk k k g z k g z

 

  

 
 

    
     
      

                                    (41) 

This transform can be viewed as the co-adjoint action of (1,1)SU  on the coadjoint 

orbit identified with 2 2 2

3 1 2 1k k k   . 

4 Covariant Gibbs Density by Souriau Thermodynamics 

   Representation theory studies abstract algebraic structures by representing their 

elements as linear transformations of vector spaces, and algebraic objects (Lie groups, 

Lie algebras) by describing its elements by matrices and the algebraic operations in 

terms of matrix addition and matrix multiplication, reducing problems of abstract 

algebra to problems in linear algebra. Representation theory generalizes Fourier anal-

ysis via harmonic analysis. The modern development of Fourier analysis during XXth 

century has explored the generalization of Fourier and Fourier-Plancherel formula for 

non-commutative harmonic analysis, applied to locally compact non-Abelian groups. 

This has been solved by geometric approaches based on “orbits methods” (Fourier-

Plancherel formula for G is given by coadjoint representation of G in dual vector 

space of its Lie algebra) with many contributors (Dixmier, Kirillov, Bernat, Arnold, 

Berezin, Kostant, Souriau, Duflo, Guichardet, Torasso, Vergne, Paradan, etc.).  

   For classical commutative harmonic analysis, we consider the following groups : 
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 1 2 1 2

/  for Fourier series,     for Fourier Transform

G group character (linked to ) : :   with / 1

ˆ / . ( ) ( ) ( )  and Fourier transform is given by:

n n n n

ikx

G G

e G U U z z

G g g g
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ˆ

:

ˆ     ( ) ( )
G

G

g g g d



    



 
   and   

 

ˆˆ :

ˆ     ( ) ( )
G

G

g g dg



    



 
              (44) 

For non-commutative harmonic analysis, Group unitary irreductible representation is 

 U :G U   with H Hilbert space and character by 
U ( ) Ugg tr  . Fourier trans-

form for non-commutative group is U ( )Ug

G

g dg    with character 
U ( ) Ug tr   . 

If we describe group element with exponential map 
exp( )U ( )U XX dX  

g

, we have: 

1

.

1 *

trU dim . .

. : , Four. Transf.

G f j

j

   









 
  

 

g g

with 

*

.

1 1

. .

: Liouville meas. on . ,

. : Integral of . wrt  

G f

G f G f

G f f

j j



   
 
 

   

  
  

 

g
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where     
2

1/2

0

1
det   with  ( )

2 2(2 1)! 2

n

X

n

x x x
j X s ad s x sh

n





     
       

     
     (46) 

Kirillov Character formula is:    
1 ,

exp( )exp( ) trU ( )
i f X

U XX j X e d f 






     (47) 

,

exp( )( ) ( )trU
i f X

Xe d f j X



 with  

1/2
/2 /2

det  
/ 2

X Xad ad

X

e e
j X

ad

  
    

  

               (48) 

   We will use Kirillov representation theory and his character formula [10-19] to 

compute Souriau covariant Gibbs density in the unit Poincaré disk.  For any Lie group 

G , a coadjoint orbit *g   has a canonical symplectic form   given by KKS 2-

form. As seen, if G  is finite dimensional, the corresponding volume element defines 

a G -invariant measure supported on  , which can be interpreted as a tempered dis-

tribution. The  Fourier transform (where d is the half of the dimension of the orbit O) : 

*

, *1
( )   with   and  

!
d

i x

O
x e d x

d


 





   
g

g g                                                    (49)                                             

is Ad G -invariant. When *g  is an integral coadjoint orbit, Kirillov formula, given 

previously, expresses Fourier transform ( )x  by Kirillov character 
: 

 
  

 
1/2

sinh / 2
( ) ( )   where  ( ) det

/ 2

x
ad x

x j x e j x
ad x



 
    

 
 

                                   (50) 

  is, as defined previously, the “Kirillov character” of a unitary representation 

associated to the orbit. We will consider the universal covering of (1,1)PSU , the Lie 

algebra is: 
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*

* *(1,1) / ,
iE p

E p
p iE

   
     

   

g su                                                               (51) 

As observed in [8], the Ad-invariant form 
22 2m E p   allows to identify the fol-

lowing operator Ad  and *Ad , m  could be considered analogously as rest mass, E  

as energy, and 
1 2p p ip   as the momentum vector. The coadjoint orbits are the 

rest mass shells. Let  / 1D w w    Poincaré unit disk, for any 0m  , there is a 

corresponding action of the universal covering of (1,1)PSU  on /2m  (with   the 

holomorphic cotangent bundle of unit disk), with the invariant symplectic form

 
 

*
2*

2
2

log 2

1

dw dw
curv i dw i

w

 


    



                                                           (52) 

The moment map is an equivariant isomorphism (
m

  coadjoint orbit for 2 0m   and 

0E  ):     
 

 2/2

2
: , , 2 ,1

1

m

m

m
J w D curv p E iw w

w
    



              (53) 

In case 1m  , the Kirillov character formula is given by: 
*

1

1

.
,

.1
.

exp ( )
. m

m

x iE p
i

x p iE

m

x
j x e

x
  





  
         





   
       

                                            (54) 

where 1/2
/ 2 / 2 sinh( )

( ) det sinh /
/ 2 / 2

x x x
j x ad ad

x x x

     
      

       

       (55) 

which reduces to :

 

2

2

1
( 1)

1 *

22 2

1
( )

1 1

w
m xmx

w

x

D

e
j x e dw dw

e w





 

 


           (56) 

Finally, the Souriau-Gibbs density is given by: 

 

 

2

2 2

*2* 2

2 22 2

* *

1
2

1 1
,

11
22

1 11 1

( ) ( )

w w
im m

ix w w

wix www
m xm im

w ww w

Gibbs x i x i

i x i x

m m

e e
p w

j x e j x e
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5 Extension from Poincaré to Siegel Homogeneous Domains 

V. Bargmann has proposed  the covering of the general symplectic group  2 ,Sp N : 
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  2 2 2 2 2

0
2 , / , ,

0

NT T

N N N N N

N

IA B
Sp N g gJ g J J J J

IC D

    
        

     

        (58) 

, , , ,T T T T T T T T T T

NAB BA AC CA BD DB CD DC AD BC I                          (59) 

Bargmann has observed that although  2 ,Sp N  is not isomorphic to any pseudo-

unitary group, its inclusion in  ,U N N  will display the connectivity properties 

through its unitary  U N  maximal compact subgroup, generalizing the role of                                  

 1 (2)U SO  in  2,Sp : 
N NW W I  ,2 2  matrixN N  

where 
1 1

/4 /4

1

/4 /4

1

2
W W  

 

 

 

  
   

 

 with  /4 1
1

2

ie i                                  (60) 

 
       
       

1

* *

1

2
N N

A D i B C A D i B C
u g W gW

A D i B C A D i B C

 

 


        

     
        

         (61) 

with *, T

N NI I            and *0, 0T T T               (62) 

The symplecticity property of  g  becomes: 

1

2 2 2 2

0
,

0

N

N N N N N N

N

I
uM u M M iW J W

I
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