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SUMMARY

In this paper, the Rao-Wilson bound [1], together with the dual of Lloyds Theorem are generalised to z-designs
with repeated points in Q-polynomial association schemes. The proof uses a generalisation of a result of Connor
[5] for classical 2-designs. Moreover, a new proof is given of a sharper version of McWilliams inequality, and

the case of equality is treated. With e={t/2], the generalised Rao-Wilson bound becomes b=®(y) Y. u;, where
j=0

b denotes the total number of points and u,, . . ., %, are the multiplicities of the scheme, if some point y is

U) for classical z-designs

repeated @( y) times. Specializing to Johnson- and Hamming-schemes, we find bge,.(
e

e

on v points having b blocks, if some block i is repeated e; times (see [4]), and b=e; Y (’?\)(q— 1)/ for orthogonal
J

i=0

arrays of maximum strength t and length n, over a g-letter alphabet, having b rows, if some row i is repeated e;
times.
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RESUME

Dans cet article, la borne de Rao-Wilson [1], ainsi que le dual du théoréme de Lloyd, sont généralisés aux t-designs

a points répétés dans les schémas d association Q-polynomiaux. La démonstration utilise une généralisation d’un

résultat de Connor [5] pour les 2-designs classiques. De plus, on donne une nowvelle démonstration de l'inégalité de

McWilliams dans une version légérement plus forte, et oii traite le cas de Pégalité. Avec e=[t/2), la borne généralisée
e .

de Rao-Wilson devient b=®(y) Y. u;, ou b est le nombre total de points, et ug, uy, . . .,u, sont les multiplicités du

j=0

schéma, si un point y est répété ®(y) fois. Se restreignant aux schémas de Johnson et de Hamming, -on trouve

v
b%%( ), pour des t-designs classiques a b blocs, sur v points, si-un blocti-est répété e; fois ([4]), et
e .

e n ) . . ’
bze Y. ( ) )(q— 1Y, pour des tableaux orthogonaux de force maximale t, a b lignes, de longueur n, sur un alphabet
j=o\J Sudilad

d q letires, si une ligne i est répétée e, fois.

MOTS CLES

Schéma d’association, t-designs aux blocs répétés, tableaux orthogonaux aux lignes répétées, borne de Rao-Wilson.
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Introduction

The theory of P- and Q-polynomial association sche-
mes is of interest both to coding theory and design
theory. Indeed, both the Hamming scheme (which
provides a setting for coding theory) and the Johnson
scheme (which provides a setting for design theory)
are P- and Q-polynomial. Delsarte {1] was the first
to make a systematic use of these facts to prove in a
unified way a number of hitherto unconnected results
from design and coding theory.

He showed in particular that his concept of a ¢-design
in Q-polynomial schemes generalises the classical ¢-
designs (in Johnson schemes) and the orthogonal
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arrays of maximum strength ¢ (in Hamming schemes),
and proved the Rao-Wilson bound |Y|Zu,
+u,+...+u, for a t-design Y (where e=[t/2]
and ug, ), . . ., 4, are the multiplicitics of the scheme)
together with a « dual » of Lloyd’s Theorem in case
of equality.

v
The Rao-Wilson bound reduces to b= (Wilson-
e

Petrenjuk) for classical t-designs with b blocks on v

points, and to b2 Y (?)(q—l)" (Rao) for orthogo-
i=0

nal arrays with b rows, of wordlength n over a g-
letter alphabet. In [1] Delsarte also introduced ¢-
designs with repeated points in Q-polynomial sche-
mes, and this generalises classical t-designs with
repeated blocks and orthogonal arrays with repeated
rows.

There has been some interest in classical t-designs
with repeated blocks. In particular, Mann [2] generali-
sed Fisher’s inequality for 2-designs to b=e; v if some
block is repeated ¢; times (see also [3]) and this was
generalised further by Wilson and Ray-Chaudhury to

bz "i( U) for t-designs.
e

This paper is constructed as follows: after section 1,
which introduces association schemes and some nota-
tion, section 2 contaius a more or less straightforward
generalisation of [1], section 3. 5. In section 3 we give
a new proof of a sharper form of McWilliams ine-
quality (see [1], section 5.1) and discuss the case of
equality. Then, in section 4, we generalise the Rao-
Wilson bound to b=®(y)(ug+u; +. . . +u,), where
b denotes the “total number of points” in the t-design
and ®(y) denotes the number of occurrencies of the
point y. Moreover, a result of Connor for 2-designs
(see [3], [5]) is generalised and this is used to obtain
a “dual” of Lloyds Theorem in case of equality.
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Most of the results in this paper are part of the
authors masters thesis [6], where also missing details
can be found.

1. Association schemes: Definitions and nota-
tions

We recall the following from [1]:

Let X be a finite set and I'={T, ..
n+ 1 relations on X.

(1. 1) Definition: The pair (X, I') is called (symmetric)
association scheme with n classes iff:

(i) T is a partition of X xX and I'y is the diagonal
relation, i.e. To={(x, x)|xeX };

(ii) each relation I', is symmetric, i.e. (x, y)eI', iff
(y, x)eTy;

(iii) for all (x, y)eI,, the number :

Ph=[{zeX|(x, Del, ( Yel}},

.,T,} a set of

depends only on i, jand k (i, j, k=0, 1, ..., n).

So an n-class symmetric association scheme can be
seen as a colouring of the complete graph Ky with n
colours, such that the number of triangles with a
given colouring on a given base depends only on the
colouring and not on the base.

Let D, denote the adjacency matrix of I';, i.e. D;(x, »)
equals 1 or 0 according to whether (x, y) is in ', or
not.

It can be shown that the matrices Dy, ..., D, span a
commutative (n+1) dimensional subalgebra of
R(X, X), called the Bose-Mesner (BM) algebra of the
scheme. Moreover, such an algebra admits a base of
{(n+1) mutually orthogonal symmetric idempotents,
denoted by J,, ...,J,. Also, the BM-algebra can be
simultaneoustly diagonalised by a matrix S in
R(X, X} and this matrix S can be partitioned as
S=[SoS;...S,] such that J,=|X| 'S, S;.

The first and second eigenmatrices of the scheme shall
be denoted by P and Q. P and Q are both real
{(n+ 1) x (n+1) matrices. (In fact, the k-th column of
P consists of the eigenvalues of D, and Q is then
defined by PQ=QP=|X|L)

Their importance in the theory of association schemes
stems from the fact that they can be computed from
the parameters pi-‘j of the scheme.

We shall denote the k-th column of Q(P) by
Q. (P)(k=0,...,n). The numbers v,:=P,(0) and
u,: =Q,(0) are called the valencies and multiplicities
of the scheme.

Let there be given n+ 1 distinct non-negative numbers
Zgs Zqs - - -5 Z,. Then there exists n+1 polynomials
©0(2) ..., 9,(z) in R[z] (i.e. with real coefficients)
such that @, (z)=Q, (), i=0,1,...,n).
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(1.2) Definition: If for all k, the polynomial ¢,(z)
defined above has degree k, then we call (X, I') Q-
polynomial wih respect to z,, . . ., z,,.

P-polynomial schemes are defined analogously. It can
be shown that a scheme is P-polynomial iff it is
metric, i.e. iff the function d on X x X defined by
d(x, y)=iiff (x, y)eI'; is a metric on X. (This rather
surprising fact is one of the many examples in the
theory of an interconnection between algebraical and
combinatorial properties.)

(1.3) Definition: A vector ®e R (X) with ®(x)=0 for
all xeX is called a design.

The set Y:={xeX|®(x)>0} is the support of @,
b:= 3 ®(x) is the total number of points of ®. The

xeX
inner-distribution of @ is the vector a=(ay, . .., a,)"
defined by a:=b"'®"D,®(k=0,...,n and
the outer-distribution of ® is the matrix

B=[D,®,...,D,®].

Remark that a design @ can be seen as a subset Y of
X with multiplicities ®( ) accorded to each point y
in Y. Then B(x, k) is the number of points in Y
(counted according to their multiplicities) in relation
k with x in X an g, is the average of B(y, k) over y
inY.

For any vector w=(w,, ..., w)T in R"*!, we define:

s (w) is the number of i # 0 such that w; # 0, and t (w)
is the largest ¢ such that w,=w,=...=w,=0.

(1.4) Definition: If (X, I') is Q-polynomial, and @ a
design with inner-distribution a, then the degree s and
the maximum strength t of ® are s:=s(a), t:=t(a" Q).
We shall say that @ is a t-design of degree s in (X, T').

One of the main aims of the theory is to obtain
bounds on subsets (or on the total number of points
in designs) whose inner distribution satisfy certain
properties. To this end, the following Theorem is
fundamental ([1], (3. 8)):

(1.5) (Linear programming bound):

BQ.=|X|J, @,
a"Q=|X|b||J,@|]>20.

Some examples of association schemes are:

— the Hamming scheme H(n, q). Here the set X
consists of all words of length n over a g-letter alpha-
bet and two words are in relation T'; iff they have
Hamming-distance i. The multiplicities are given by

ui=<'?)(q—1)";
1

— the Johnson scheme J(n, v). Here the set X consists
of all n-subsets of a fixed v-set, and for A, BeX,
(A, B) el iff ]A ﬂB] =n—i.
The multiplicities are given by u;= <U) — ( . Y | )

i i—
Both the Hamming- and Johnson schemes are P- and

Q-polynomial. Moreover, the concept of a t-design ®
in Q-polynomial schemes as defined above, coincides
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for ® a 0-1 vector [or ® € Z(X)] with that of classical

t-designs in Johnson schemes (with repeated blocks)
and with that of orthogonal arrays of maximum
strength t in Hamming schemes (with repeated rows).

The reader not familiar with association schemes is
adviced to skip section 2 (at least on first reading).

2. Idempotents from 7-designs

For the rest of this paper, let (X, I') be an n-class
association scheme, Q-polynomial with respect to the
points z,=0, z,...,z, and the polynomials
0o(2)=1, ¢,(2),...,0,(z). The sum-polynomials
(Wilson-polynomials) s, (k=0, . . ., n) are

Yy (2)= _Z @; (2).

Moreover, let PeR(X) be a design with support
Y £ X, of maximum strength ¢ [note that ®( y)>0 iff
y€eY by definition] with associated inner distribution
aeR"1,

The total number of points b of @ is b= Y, ¢(x).

xeX
Let e:=[t/2].
This section is devoted to the generalisation of [1],
section 3. 5.
So let H,(k=0, 1,...,n) be the k-th characteristic
matrix of Y (see [1]). We define the diagonal matrix
AeR(X x X) by A=diag(®), and A is the restriction
of Ato Y xY.
Moreover, let L,:=A'?H,.
The following three theorems are given in [1] for the
case that @ is a 0-1 vector (i.e. for a set Y without
repeated points).

(2.1) Theorem:

) LTL,=STAS;,  (,j=0,1,...,n);

@ LTLP=b Y ¢5a* Q. G, j=0,1,...,n);
k=0

(i) L,Li= Y Q/()AY*(D,)Y)AY?
i=0
=|X|AY2(J | Y)AY?  (k=0,1,...,n).
Proof: As in [1], Thm. (3.13) and (3.14). O
(2.2) Theorem:
{0 it bise
bl if i=j<e.
Proof: As in [1], Thm. (3. 15). Note that a” Q,=0 for

k=1,...,t and q;=0 if i, j<e, k>2e by the Q-
polynomlal property. []
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Let us now define the matrices Eg E,, ...,
E.;1eR(Y xY) by:

(2.3) Definition:

1
Ei‘:’—LiL-ir (l'—=0, 1,...,6),
b
E,,,=I-E,—...—E,

Then the main results of this section is:

(2.4) Theorem: E,, E,, ..., E,,, are mutually ortho-
gonal symmetric idempotents in R(Y xY), of rank
Ug, Uy, « . U | Y | —ttg— 1y —

Proof: The first part follows dlrectly from (2.2).

To find the ranks, note that:

rank (E;) =TR (E) = lTR (L L))

—

= TR (LTL)=TR (I,) =[]

3. The McWilliams inequality

The results of this section belong to the theory of
orthogonal polynomials. Their importance for Q-poly-
nomial schemes stems from the connection of the
polynomials @, (z) with the Q-matrix of the scheme.

We recall the following facts from [1), section 5:

Let R, [z] denote the set of real polynomials of degree
at most »n, and let the inner-products (, ) and [ , ]
on R, [z] be defined as:

n

(f 9= 2 v. [ (z)g(z),

[f gl:= Z viz; f(2) & ().

Then the polynomials ¢@g, ¢4, ..., ®, are orthogonal
with respect to (, ) and the sumpolynomials
VYo, - . -, V, are orthogonal with respect to | , .

k

(Remember that Y, (z)= Y. @, (2)).
k=0

Let {, have zeroes py, ...,p,. The k-th Christoffel-
number w, of {, corresponding to p, is defined by:

e—1

=2 (b (pyoy)
i=0

(where o> =[;, ;).

The importance of the Christoffel-numbers stems
from Theorem (3.1) below, which is slightly more
general than [1], Thm. (5. 4).
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(3.1) Theorem: Let meN, by, ...,b, and q,, .. .,q,
be given, such that:

1= Z bjf(gy) for all f(z)eR,[z]

Then m<2s—1 and equality holds iff q,, . .
the zeroes of , and b, . .
Christoffel numbers of ..

Proof: Define:

., q, are
., by are the corresponding

g(2) :=(q9,—2)(q,—2). . .(¢,—2)

If m=2s then [g, g]=I[g? 1]=0, which is impossible
since g#0. Som<2s—1.
If m=2s—1 then for k=0,1,...,s—1 we have

[g, W ]=[g ¥\, 1]1=0. Since ¥, ..., ¥, are a base for
R,[z], g must be a multiple of ¥, i.e. g4, ...,q, are
the zereos of Y, The rest of the Theorem follows
from [1], Thm. (5.4). [

We can use (3.1) to give a new proof of a stronger
form of McWilliams inequality s(a)=[t (aT Q)/2] ([1],
Thm. (5.5)) and to treat the case of equality (not
discussed in [1]).

(3.2) Theorem: Let acR"*! with A := ) a;#0.

i=0
Then 2s(a)=t(a” Q).
Moreover, in case of equality we have, with
s=s(a), iy, ...,i the values of i#0 such that a;#0,
Ziys - - - 2y, the zeroes of g and w, . . ., w the corres-
ponding Christoffel-numbers:

- 1, ,-1 .
a,.j—AIX] w;z, G=1,...,9)
and
ao=A/N,(0).
Proof: With t : =t(a” Q), we have

n

0=a"Q,= Z a; Q ()= Z aij(pk(zii)
j=0

i=0
(k=1,...,1)
and
a’ Q,=A.
So:

(1) 2 “ij(Pk(Zi,-)=A 6k,0=A|X|V1((pk’ 1)
i=o0

for k=0,1,...,¢t

Now o, . . ., @, are a base for R, [z], so (1) holds also
if @,(2) is replaced by zf(z) for some f(z)eR,_[z]
and we find:

2 X (ayz, A7 |X ] fp=Lf 1)

for all f(z)eR,_,[z].

Traitement du Signal

167

Now apply (3.1). To find the value of a,, note that
as a consequence of (1), we also have:

s

B Y afG)=A|X|" (L)

j=0
for all f(z)eR,[z].
Now take:
J@)=¥,(2)/ Y, (0).

(£ D=9,0)"" (Yo, D=|X |,
f@=1 and  f(z)=0 (=1,...,9),

Then:

hence from (3) we find:
a,=A|X| "1 (£ D=AN,(0). O

4. The generalised Rao-Wilson bound

Let @ be a design with support Y, degree s, maximum

strength ¢, inner-distribution a and outer distribution

matrix B, and let b= ) ®(y) be the total number of
yeY

points of ®.

Let yeY. We define s,, the degree relative to y, and
t,, the maximum strength relative to y, as

s,:=s(B(y), t,:=t(B(»Q

[where B(y) denotes the row of B indexed by y).
We have:

(4.1) Lemma: t<t,<25,<2s.

Proof: The maximum strength of ® being ¢, we have
a* Q,=0 for k=1,...,t, or {by (1.5)] equivalently,
BQ,=0 for k=1, ...,t So certainly B(y) Q,=0 for
k=1,...,t,ie tst,

The second inequality follows from (3. 2).

Finally, a,=1/b ) ®(x)B(x,i) so a,=0 implies

xeY

B(x,i)=0 for all xeY, hence s,<s. []

In [1), (5.37) it was shown that s={t/2] (McWilliams-
inequality). The notions of maximum strength and
degree relative to y in Y are new.

Now we come to the main Theorem of this paper.
Let e={t/2].

(4.2) Theorem: (i) For all yeY, we have:

(M b2®()VY.(0) and s 2e.

If, for some yeY, either of these bounds is attained,
so is the other, and in this case, t is even and \, has e
zeroes z;, . . .,z;, [where iy, ...,i, are the values of

i#0 such that B(y,i)#0]. Moreover,
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2) B(y,ik)=b|X)_1z,.kwk" (k=1,...,e),

where w, . . ., w, are the Christoffel-numbers of ..
(ii) For all x,yeY with x#y we have:

(3) B/ (x)—,(0) (b/® (»)— V. (0))
2{V.(z)}* if (x»el,
Proof: From definition (2. 3) and (2. 1) (iii) we find:
E,(x,0)=b"" @(x)'? @ (»)'? Q. (w)
if (x,»er,
and, since Q, (u)=®,(z,),

E.p1(x,0)=8,,—b7" @(x)'?® () ¥, (z,)
if (x,y)el,.

(k=0,1,...,¢),

Now note that, by (2. 4), E, , ; is a symmetric idempo-
tent.

As a first consequence, we have E, ., (,))20, i.e.
b=®(y) ¥, (0) for all yeY.

Together with (4. 1), this proves (1).

Secondly, any 2 x 2 principal submatrix of E,, , must
be non-negative definite, hence must have non-nega-
tive determinant.

So for all x, ye Y with x#y, E(x, x) E(y, y) 2E(x, y)>.
This is equivalent to (3).

To prove (i), first note that if b=® (y) ¥, (0) for some
yeY, it follows from (3) that {,(z,)=0 for all u#0
such that (y, x)eTI’, for some xeY. So if i, .. i, are
the values of i#0 such that B(y,i)#0 then V,
(z,.j)=0 for j=1,...,s, and V, has at least s, zeroes.
Since ¥, (z)eR, [z}, it follows that s,<e, hence as a
consequence of (4.1), we have s,=e.

On the other hand, suppose s,=e for some yeY. By
(4.1), we then have 25, =t =t, so t is even. Moreover,
from (3.2) we find the expressions (2) for B(y, i),
together with @(y)=B(y, 0)=b/\y,(0), ie
b=0(MVY.0). O \
(4.3) Remark: (4.2) (i) Generalises [1], Thm. (5.21)
and (5.22), and provides new proves of these
Theorems. Moreover, (4.2) (ii} generalises a result of
Connor for classical 2-designs (see [5] and also [3]).

The following Theorem should be compared to [1],
Thm. (5.24):

(4.4) Theorem: If t=s then ® is constant on Y.
Proof: As in the proof of (4. 1), we find:

B(») Q=0 (k=1,...,tyeY).

Since also B(y) Q,=b, we can write, if io=0, i, ...,
are the values of i such that q;#0:

B(y,i) (pk(zij)=b 8k,0=b|X I “How D
=0

(k=0,...,t,yeY).

J
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Now o, . .
that:

., @, are a base for R,[z], so it follows

Z B(»,1)f(z)=b|X|"*(£ 1)

[f(2)eR,[z], yeY].
With f; defined by:

(4)

fi@: =11 2=z

k4
j#k (2 — 2

Ji has degree s<t and f,(z;)=9, ; and we find from
(4): B(y,i)=b|X| ' (fi» 1), independent of yeY.
In particular, ®(y)=B(y, 0) is constant on Y. [

Conclusions

A generalisation is proved of the Rao-Wilson bound
and the dual of Lloyds Theorem in case of equality
for t-designs with repeated points in Q-polynomial
schemes.

Moreover, a stronger form of McWilliams inequality
is derived. This shows in particular that the fact that
the inner-distribution of perfect codes and of tight
designs is determined by the parameters of the scheme
is a direct consequence of equality in the McWilliams
bound.

REFERENCES

[1]1 P. DeLsarTE, An algebraic approach to the association
schemes of coding theory, Philips Research Reports,
Suppl. No. 10, 1973.

[2] H. B. Mann, A Note on Balanced Incomplete Block
Designs, Ann. Math. Stat., 40, 1969, pp. 679-680.

31 3. H. v. Lint, Combinatorial Theory Seminar E.U.T.,
Springer-Verlag, Berlin-Heidelberg-New York, 1974.

[4] D. K. Ray-CHAUDHURY and R. M. WiLson, On t-designs,
Osaka J. Math., 12, 1975.

[5] W. S. Connor Jr., On the Structure of Balanced Incom-
plete Block Designs, Ann. Math. Stat., 23, 1952, pp. 57-
71.

[6] H. D. L. HorLimanN, Association Schemes, Master’s
Thesis, Eindhoven University of Technology, Dept. of
Math. and Comp. Sc., 1982 (avaolable on request).

[71 R. M. Wison, Incidence Matrices of t-Designs, Lin.
Algebra and Appl., 46, 1982.

[81 R. M. Wison, Inequalities for t-Designs, J. Comb.
Theory, A, 34, 1983, pp. 313-324.

volume 1 - n° 2 - 1984



	page 1
	page 2
	page 3
	page 4
	page 5
	page 6

