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SUMMARY
In this paper, the Rao-Wilson bound [1], together with the dual of Lloyds Theorem are generalised to t-designs
with repeated points in Q-polynomial association schemes . The proof uses a generalisation of a result of Connor
[5] for classical 2-designs. Moreover, a new proof is given of a sharper version of McWilliams inequality, and

e

the case of equality is treated . With e = [ t/2], the generalised Rao-Wilson bound becomes b >_0(y) E u;, where
j=o

b denotes the total number of points and uo , . . . , u„ are the multiplicities of the scheme, if some point y is

repeated (F (y) times. Specializing to Johnson- and Hamming-schemes, we find b > e ;
( v)

for classical t-designs
e

e

on v points having b blocks, if some block i is repeated e j times (see [4]), and b>_et E n (q-1)' for orthogonal
i=o J

arrays of maximum strength t and length n, over a q-letter alphabet, having b rows, if some row i is repeated e,
times .
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RÉSUMÉ
Dans cet article, la borne de Rao-Wilson [1], ainsi que le dual du théorème de Llord, sont généralisés aux t-designs
à points répétés dans les schémas-d'association Qpolynomiaux . La démonstration utilise une généralisation d'un
résultat de Connor [5] pour les 2-designs classiques . De plus, on donne une nouvelle démonstration de l'inégalité de
McWilliams dans une version légèrement plus forte, et on traite le cas de l'égalité . Avec e = [t/2], la borne généralisée

e

de Rao-Wilson devient b >_ (D (y) ~ u ;, où b est le nombre total de' points, et °ü0 ; ii, . . . , u„ sont les multiplicités du
j=0

schéma, si un point y est répété (D(y) fois. Se restreignant aux schémas de Johnson et de Hamming,-on trouve

b__>e,{ v , pour des t-designs classiques à b blocs, sur v points, si un bloc -t est répété e; fois ([4]), et

e

	

n
b>e,

	

, (q-1)', pour des tableaux orthogonaux de force maximale t, à-b lignes, de longueur n, sur un alphabet
J=0

à q lettres, si une ligne i est répétée e; fois .

MOTS CLÉS

Schéma d'association, t-designs aux blocs répétés, tableaux orthogonaux aux lignes répétées, borne de Rao-Wilson .
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Introduction

The theory of P- and Q-polynomial association sche-
mes is of interest both to coding theory and design
theory. Indeed, both the Hamming scheme (which
provides a setting for coding theory) and the Johnson
scheme (which provides a setting for design theory)
are P- and Q-polynomial . Delsarte [1] was the first
to make a systematic use of these facts to prove in a
unified way a number of hitherto unconnected results
from design and coding theory .
He showed in particular that his concept of a t-design
in Q-polynomial schemes generalises the classical t-
designs (in Johnson schemes) and the orthogonal
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and u 0 , ii, . . . , u, are the multiplicities of the scheme)
together with a « dual » of Lloyd's Theorem in case
of equality .

The Rao-Wilson bound reduces to b _>
v

(Wilson-
e

Petrenjuk) for classical t-designs with b blocks on v

points, and to b>n
( n 1

(q-1)` (Rao) for orthogo-

nal arrays with b rows, of wordlength n over a q-
letter alphabet. In [1] Delsarte also introduced t-
designs with repeated points in Q-polynomial sche-
mes, and this generalises classical t-designs with
repeated blocks and orthogonal arrays with repeated
rows.
There has been some interest in classical t-designs
with repeated blocks . In particular, Mann [2] generali-
sed Fisher's inequality for 2-designs to b>-e,v if some
block is repeated e, times (see also [3]) and this was
generalised further by Wilson and Ray-Chaudhury to

v
b >_ ei

	

for t-designs.
e

This paper is constructed as follows : after section 1,
which introduces association schemes and some nota-
tion, section 2 contains a more or less straightforward
generalisation of [1], section 3 . 5 . In section 3 we give
a new proof of a sharper form of McWilliams ine-
quality (see [1], section 5 . 1) and discuss the case of
equality. Then, in section 4, we generalise the Rao-
Wilson bound to b >_ th (y) (u 0 + u t + . . . +ue), where
b denotes the "total number of points" in the t-design
and (D(y) denotes the number of occurrencies of the
point y. Moreover, a result of Connor for 2-designs
(see [3], [5]) is generalised and this is used to obtain
a "dual" of Lloyds Theorem in case of equality .
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arras of maximum strength t (in Hamming schemes),
and' proved the Rao-Wilson bound I Y I ? u0
+ut + . . . +ue for a t-design Y (where e=[t/2]



Most of the results in this paper are part of the
authors masters thesis [6], where also missing details
can be found .

1. Association schemes: Definitions and nota-
tions

We recall the following from [1]:
Let X be a finite set and F= { F o , . . . , r" } a set of
n + 1 relations on X .

(1 . 1) Definition : The pair (X, F) is called (symmetric)
association scheme with n classes iff :
(i) F is a partition of X x X and T o is the diagonal
relation, i . e. I' o = { (x, x) I x e X } ;
(ii) each relation h k is symmetric, i . e . (x, y) e Fk iff
(Y, x)erk
(iii) for all (x, y) e Fk, the number

p =l{zeXI(x, z)eFi, (z, Y)EF,}I,

depends only on i, j and k (i, j, k =0, 1, . . . , n).
So an n-class symmetric association scheme can be
seen as a colouring of the complete graph K X with n
colours, such that the number of triangles with a
given colouring on a given base depends only on the
colouring and not on the base .
Let Di denote the adjacency matrix of F i, i. e . D i (x, y)
equals 1 or 0 according to whether (x, y) is in Fk or
not .
It can be shown that the matrices D o, . . . , D" span a
commutative (n + 1) dimensional subalgebra of
R (X, X), called the Bose-Mesner (BM) algebra of the
scheme. Moreover, such an algebra admits a base of
(n + 1) mutually orthogonal symmetric idempotents,
denoted by J0, . . . , J". Also, the BM-algebra can be
simultaneoustly diagonalised by a matrix S in
R (X, X) and this matrix S can be partitioned as
S = [S O S, . . . S"] such that Jk = I X I 1 Sk ST

k ,
The first and second eigenmatrices of the scheme shall
be denoted by P and Q. P and Q are both real
(n+ 1) x (n+ 1) matrices. (In fact, the k-th column of
P consists of the eigenvalues of D k and Q is then
defined by PQ=QP= I X 11 .)
Their importance in the theory of association schemes
stems from the fact that they can be computed from
the parameters p of the scheme .
We shall denote the k-th column of Q(P) by
Qk (Pk) (k = 0, . . . , n) . The numbers vk : = Pk (0) and
uk : = Qk (0) are called the valencies and multiplicities
of the scheme.
Let there be given n + 1 distinct non-negative numbers
z o , z 1 , . . . , z,,. Then there exists n+ 1 polynomials
cp o (z), . . . , (p" (z) in R [z] (i . e. with real coefficients)
such that (pk (z i ) = Qk (i) (k, i = 0, 1, . . , n) .
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(1 .2) Definition: If for all k, the polynomial (p z (z)
defined above has degree k, then we call (X, F) Q-
polynomial wih respect to z0 , . . . , z,, .
P-polynomial schemes are defined analogously. It can
be shown that a scheme is P-polynomial iff it is
metric, i . e . iff the function d on X x X defined by
d (x, y) = i iff (x, y)eF i is a metric on X . (This rather
surprising fact is one of the many examples in the
theory of an interconnection between algebraical and
combinatorial properties .)

(1 . 3) Definition: A vector (D e R (X) with (D (x) ? 0 for
all x e X is called a design .
The set Y : = { x e X I (D (x) > 0 } is the support of (D,
b : = y ) (x) is the total number of points of ( . The

xcX
inner-distribution of (P is the vector a = (a o, . . . , a.)T
defined by ak : = b-1 (DT D k q) (k = 0, . . ., n) and
the outer-distribution of is the matrix
B=[Do l, . . .,D"(D] •
Remark that a design (D can be seen as a subset Y of
X with multiplicities 4)(y) accorded to each point y
in Y . Then B (x, k) is the number of points in Y
(counted according to their multiplicities) in relation
k with x in X an ak is the average of B (y, k) over y
in Y .
For any vector w = (w0, . . . , w)T in R"+ ', we define :
s (w) is the number of i * 0 such that wi e 0, and t (w)
is the largest t such that w 1 = w 2 = . . . =W,=0-

(l.4) Definition : If (X, T) is Q-polynomial, and F a
design with inner-distribution a, then the degree s and
the maximum strength t of 4) are s : = s (a), t : = t (aT Q) .
We shall say that ( is a t-design of degree s in (X, F) .
One of the main aims of the theory is to obtain
bounds on subsets (or on the total number of points
in designs) whose inner distribution satisfy certain
properties . To this end, the following Theorem is
fundamental ([1], (3 .8)) :
(1 . 5) (Linear programming bound) :

BQk=IXIJk (D,
aTQ=IXIb-1IJk .D Il 2 >0.

Some examples of association schemes are :
- the Hamming scheme H (n, q) . Here the set X
consists of all words of length n over a q-letter alpha-
bet and two words are in relation F, iff they have
Hamming-distance i . The multiplicities are given by

ui= (n) i (q-1)` ;

- the Johnson scheme J (n, v) . Here the set X consists
of all n-subsets of a fixed v-set, and for A, B e X,
(A, B) e F, iff I A f B I= n- i .

V
The multiplicities are given by u i=

	

-

	

.
i

	

i-1
Both the Hamming- and Johnson schemes are P- and
Q-polynomial . Moreover, the concept of a t-design 4)
in Q-polynomial schemes as defined above, coincides
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for I a 0-1 vector [or c-Z(X)] with that of classical
t-designs in Johnson schemes (with repeated blocks)
and with that of orthogonal arrays of maximum
strength t in Hamming schemes (with repeated rows) .
The reader not familiar with association schemes is
adviced to skip section 2 (at least on first reading) .

2. Idempotents from t-designs

For the rest of this paper, let (X, h) be an n-class
association scheme, Q-polynomial with respect to the
points z,=0, z1,

.,z. and the polynomiale
(p0 (z) = 1, (p l (z), . . . , (pn (z) . The sum-polynomials
(Wilson-polynomials) `Yk (k = 0, . . . , n) are

k

Wk (z)= ~, (pi (z) .
i=o

Moreover, let 1 E 11(X) be a design with support
Y g; X, of maximum strength t [note that 1(y) > 0 iff
y e Y by definition] with associated inner distribution
aElln+1
The total number of points b of 4) is b= E cp(x) .

xeX
Let e : = [t/2] .
This section is devoted to the generalisation of [1],
section 3 .5 .
So let Hk (k =0, 1, . . . , n) be the k-th characteristic
matrix of Y (see [1]). We define the diagonal matrix
A E fl l (X x X) by A = diag (V), and A is the restriction
of A to Y x Y .
Moreover, let Lk : = A112Hk .
The following three theorems are given in [1] for the
case that 4 is a 0-1 vector (i . e. for a set Y without
repeated points) .

(2 .1) Theorem

(i)

	

LTLi=STASi

	

(i,j=0, 1, . . .,n) ;
n

(n) II LT L; II Z
= b

	

q aT Qk

	

(i, j = 0, 1, . . . , n) ;
k=0

n

(iii) LkLk=

	

Qk (i)Al i 2 (D i )Y)A 1 / 2

i=o

=1 X1A 1 J 2 (Jk1Y)A 1 " 2

	

(k=0, 1, . . .,n) .

Proof.• As in [1], Thm. (3 .13) and (3 . 14) . 0

(2 .2) Theorem

LTLj= t 0

	

if i :54j. i, j _< e,
bI

	

if i=j_<<e.
Proof As in [1], Thm. (3 .15) . Note that ê Q=0 for
k=1, . . .,t and q~=0 if i, j<e, k>2e by the Q-
polynomial property . El
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Let us now define the matrices E0,
Ee+ l E ll8 (Y x Y) by :
(2 . 3) Definition :

E i = 1 Li LT

	

(i=0, 1, . . ., e),

Ee+i=I-Eo- . . . -Ee .

Then the main results of this section is :
(2 .4) Theorem E 0, E l , . . ., Ee+ 1 are mutually ortho-
gonal symmetric idempotents in ll (Y x Y), of rank
u0, ul, . . ., Ue7 IYI-uo-ul- . . . -ue .
Proof. The first part follows directly from (2 .2) .
To find the ranks, note that:

rank(Ek)=TR(E k)= bTR(Lk Lk)

= b
TR (Lk Lk) = TR (I nk) = uk . C7

3. The McWilliams inequality

The results of this section belong to the theory of
orthogonal polynomials. Their importance for Q-poly-
nomial schemes stems from the connection of the
polynomials cpk (z) with the Q-matrix of the scheme.
We recall the following facts from [1], section 5 :
Let Io n [z] denote the set of real polynomials of degree
at most n, and let the inner-products ( , ) and [ , ]
on Rn [z] be defined as :

n

(f g) _ E vif (zi) g (zi),
=0

n

[f g] : _

	

vi zi f (zi) g (zi) •
i=1

Then the polynomials (po, 9 1 , . . . , 9. are orthogonal
with respect to ( , ) and the sumpolynomials
'P0, • • • , ` 1n are orthogonal with respect to [ , ].

k

(Remember that Y'k (z)= E cpk (z)) .

k=0

Let lir e have zeroes pl, .,p,. The k-th Christoffel-
number W k of lire corresponding to p, is defined by :

e-1

Wk 1=

	

(`Pj(pJ/cîj)
2

j=0

(where c i,"=[*,, ~ij]) .

The importance of the Christoffel-numbers stems
from Theorem (3 . 1) below, which is slightly more
general than [1], Thm. (5 .4) .

E 1 , . . .,
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(3 . 1) Theorem Let m e f%, b 1 , . . . , b s and q1, . . . , qs
be given, such that :

s

[f, 1] = 1 bj f (q j) for all f (z) e J,,, [z] .
j=1

Then m<_ 2 s-1 and equality holds iff q1 , . . . , q s are
the zeroes of Ors and b 1 , . . . , b, are the corresponding
Christoffel numbers of 4ls.
Proof Define :

g (z) : =(q1 - z) (q2 - z) . . . (qs - z) .

If m = 2 s then [g, g] = [g 2 , 1 ] = 0, which is impossible
since g~É 0. So m<_2s-1 .
If m=2s-1 then for k=0,1, . . .,s-1 we have
[g, %K] = [ Y'k, 1 ] = 0. Since 4o, . . . , 4s are a base for
Js [z], g must be a multiple of Ors , i. e . q 1 , . . ., qs are
the zereos of %rs . The rest of the Theorem follows
from [1], Thm. (5 .4). D
We can use (3 . 1) to give a new proof of a stronger
form of McWilliams inequality s (a) > [t (aT Q)/2] ([1],
Thm. (5 .5)) and to treat the case of equality (not
discussed in [1]) .

n

(3 . 2) Theorem Let a e R"'1 with A : = 5. a, qÉ 0 .
i=0

Then 2 s (a) >_ t (a T Q) .
Moreover, in case of equality we have, with
s = s (a), i 1 , . . . , is the values of i qÉ 0 such that a . :o 0,
z ; 1 , . . . , z 1 the zeroes of ii., and w 1 , . . . , w, the corres-
ponding Christoffel-numbers:

a,j =AIXI -1 wj z j 1

	

(j=1, . . .,s)
and

ao = A/4is (0).
Proof.• With t : = t (aT Q), we have

n

	

s

O=aT Qk= E a . Qk(i)_ E a i, (Pk(zi .)
i=o

	

j=o
(k=1, . . .,t)

aT Qo = A .

So :
s

( 1 )

	

E a i, (p k (z ;j)=ASk ,o =AIXI -1 (cp k,1)
j=o

for k=0, 1, . . ., t.
Now (po , . . . , cp, are a base for li t [z], so (1) holds also
if lpk (z) is replaced by zf (z) for some f (z) E R," 1 [z]
and we find :

s

(2) 1, (a,j z,. A 1 I X I) f (z1;) = [f 1]
J=1

for all f (z) E R,- 1 [z] .

and
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Now apply (3 . 1) . To find the value of ao, note that
as a consequence of (1), we also have:

s
(3) 1 ai;f(zi;)=AIXI -1 (f 1)

j=0

for ail f (z) e R, [z] .

Now take :

f (z)

	

(z)lVk' (0)•
Then :

(f 1)=4Vs(0)-1(*o, 1) =IX I4i (0) -1 ,
f (0) =1

	

and

	

f (z;;) = 0 (j =1, . . . , s),

hence from (3) we find :

ao= AIXI -1 (f, 1)=A/4,s(0)• D

4. The generalised Rao-Wilson bound

Let D be a design with support Y, degree s, maximum
strength t, inner-distribution a and outer distribution
matrix B, and let b = E 4) (y) be the total number of

yEY
points of c.

Let y e Y . We define s y, the degree relative to y, and
t y, the maximum strength relative to y, as

sy :=s(B(y)),

	

ty :=t(B(y)Q)

[where B (y) denotes the row of B indexed by y] .
We have :

(4 . 1) Lemma: t < ty <_ 2 sy < 2 s .

Proof. The maximum strength of b being t, we have
aT Qk =O for k = 1, . . ., t, or [by (1 . 5)] equivaiently,
BQk =O for k=1, . . .,t. So certainly B(y)Qk =O for
k =1, . . .,t, i. e. t_-<_ty.
The second inequality follows from (3 . 2) .
Finally, a1 =1/b Y (D (x) B (x, i) so a, = 0 implies

xeY
B(x, i)=0 for ail xeY, hence sy _s. D

In [1], (5 . 37) it was shown that s>_[t/2] (McWilliams-
inequality) . The notions of maximum strength and
degree relative to y in Y are new .
Now we corne to the main Theorem of this paper .
Let e = [t/2] .

(4 .2) Theorem (i) For ail y e Y, we have:

(1)

	

b >_ 1 (y) 4' (0)

	

and

	

sy >=e.

If, for sonie y e Y, either of these bounds is attained,
so is the other, and in this case, t is even and Wg has e
zeroes z 11 , . . . , z, e [where i l , . . ., Ç are the values of
i 0 such that B (y, i) :o 0] . Moreover,

volume 1 - n° 2 - 1984



t-DESIGNS WITH REPEATED POINTS IN Q-POLYNOMIAL ASSOCIATION SCHEMES

(2) B (y, ik) = b I X I -1 zik wk 1

	

(k =1, . . . , e),

where w 1 , . . . , w e are the Christoffel-numbers of ~r e .
(ii) For all x, y e Y with x #y we have :

(3) (blé (x) - 're (0)) (b/4 (Y) - lfe (0))

{4re(z„)} 2

	

if (x,Y)eF .

Proof From definition (2 . 3) and (2 . 1) (iii) we find :

Ek(x,y)=b -1 I (x)112 I (y) 112 Q, (u)
if (x, y) e tu

	

(k =0, 1, . . . , e),

and, since Qk (u) = (Dk (z u ),

Ee+1 (x, y) =S x,y- b
1 I(x)112 D(y)112 %re(Zu)

if (x, y) E ru.

Now note that, by (2 .4), Ee+1 is a symmetric idempo-
tent .
As a first consequence, we have Ee+ 1 (y, y) >t 0, i. e .
b >_ I (y) W e (0) for all y e Y .
Together with (4 . 1), this proves (1) .
Secondly, any 2 x 2 principal submatrix of Ee+ 1 must
be non-negative definite, hence must have non-nega-
tive determinant.
So for all x, y e Y with x :~É y, E (x, x) E (y, y) > E (x, y) 2 .
This is equivalent to (3) .
To prove (i), first note that if b=(D (y) 1 e (0) for some
yeY, it follows from (3) that Y'e(zu)=0 for all u :gÉ0
such that (y, x) e Fu for some x e Y. So if i l , . . . isy are
the values of i :00 such that B (y, i) :00 then `Pe
(zij)=0 for j = 1, . . . , sy , and V'e has at least s y zeroes .
Since `Ye (z) e Re [z], it follows that s y < e, hence as a
consequence of (4 . 1), we have s y =e.
On the other hand, suppose s y =e for some yEY . By
(4 . 1), we then have 2s y = ty =t, so t is even. Moreover,
from (3 . 2) we find the expressions (2) for B (y, i k),
together

	

with

	

ID (y) = B (y, 0) = b/11t e (0),

	

i. e .
b =D (y) ~ke (0 ).
(4 . 3) Remark : (4 .2) (i) Generalises [1], Thm. (5 . 21)
and (5 . 22), and provides new proves of these
Theorems. Moreover, (4 . 2) (ii) generalises a result of
Connor for classical 2-designs (see [5] and also [3]) .
The following Theorem should be compared to [1],
Thm. (5 .24) :

(4 .4) Theorem If t >_ s then (D is constant on Y .

Proof As in the proof of (4 . 1), we find:

B(y)Qk=0

	

(k=1, . . .,t,yeY) .

Since also B (y) Qo = b, we can write, if io = 0, i 1 , . . . , is
are the values of i such that a i 0 :

E B (y, tj) (Pk (zij) = b bk,0= b I X I - 1 (Pk, 1)
j=0

(k=0, . . .,t,yeY) .
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Now tpo, . . . , (p, are a base for i , [z], so it follows
that :

s

1, B (y, ij )f (z ij) = b 1 X l _
1(, .

1)
(4)

	

j=o

[f (z) e R, [z], y E Y] .

With fk defined by :

À (Z)

	

(z-zij)
_ ~

	

,
j*k (zik -zij)

fk has degree s < t and fk (zij) =Sk, j, and we find from
(4) : B (y, ik)=b X 1 -1 (fk, 1), independent of y e Y .
In particular, ' (y) = B (y, 0) is constant on Y. D

Conclusions

A generalisation is proved of the Rao-Wilson bound
and the dual of Lloyds Theorem in case of equality
for t-designs with repeated points in Q-polynomial
schemes.
Moreover, a stronger form of McWilliams inequality
is derived. This shows in particular that the fact that
the inner-distribution of perfect codes and of tight
designs is determined by the parameters of the scheme
is a direct consequence of equality in the McWilliams
bound .
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