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SUMMARY
Real-World inverse problems generally consist of two major but equally important parts . In all but the simplest
cases incomplete and noisy data are the rule rather than the exception, and here it is emphasized strongly that
careful analysis of such data must take place prior to employment of powerful mathematical techniques of
inversion. It is argued that the quintessential element in solving most nontrivial inverse problems is one of
inference, not mathematical deduction, though the latter remains an important composent .
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RÉSUMÉ
Les problèmes inverses du monde physique consistent en deux parties d'importance égale . A l'exception des cas les
plus simples, les données incomplètes et bruyantes sont la règle, et dans cet exposé on souligne vigoureusement que
l'analyse attentive de ces données doit avoir la préséance sur l'emploi de techniques mathématiques puissantes
d'inversion. Il est soutenu que l'élément clé pour résoudre la plupart des problèmes inverses importants est celui
d'inférence et non pas la déduction mathématique, bien que celle-ci en reste une partie constituante importante .
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1. Introduction

In abstract form the quintessence of the inverse pro-
blem is conveyed by the expression :

(1)

	

u=KU(+e) .

The direct problem is, given a state U and operator
K, determine u. Often one must cope with errors, or
noise, which we denote here by e, and this usually
complicates matters considerably . Much deeper is the
inverse question : given u and a specific K, what is
the true state U? If K should also be a functional of
U the problem becomes arbitrarily nonlinear, as it
does if we wish to associate K with the human brain,
say. In order to focus on the essential features of
inverse problems we shah discuss here only the pure
(noiseless) linear inverse problem, for which we set
e=0, although a few remarks about noise will be
made later .
A more explicit example of equation (1) is provided
by the linear Fredholm integral equation of the first
kind :

(2)

	

u (x) = f
b
K (x, y) U (y) dy,

"

or in a more familiar discrete form :

(3) ui =EKiJU. .
J

It will be useful in the sequel to focus on this last form
as a specific example, because it also encompasses
the well-known problem of matrix inversion in n
dimensions (i =1, 2, . . . , n, j= 1, 2, . . . , n), and that
is a well-defined mathematical problem . If K -1 exists
the problem is solved . But if K is singular, or is not
square, then what ? For example, if j = 1, . . . , man,
how do we proceed? Of course, this is just what
happens in some image-reconstruction problems .
Thesis : The most common scenario of inversion pre-
sents not so much a mathematical problem as one of
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inference, for only in the simplest of situations is there
a unique solution, if any exist at all.
As an illustration of this position we note that most
physicians make their livings by solving inverse pro-
blems. But often it is found that numerous diseases
fit the saure set of symptoms, thereby complicating
the problem significantly . Sometimes, however, a kno-
wledge of the patient's medical history can reduce the
possibilities to only a few.

2. Inverting Dice Data

Consider now a much simpler example : throw an
ordinary die a large number of times n, and count
the number of spots up. For an honest die we would
expect the mean number up to be close to 3 . 5, but
suppose our observation yields instead :

6
(4)

	

4.5= y if,
i=1

where the frequencies are defined as n;/n . If asked to
provide an estimate of the set of frequencies which
would most likely yield this number, it seems a very
difficult problem. There does not seem to be enough
information available, for it is possible that many sets
of f,i can be found that will fit the single datum of
equation (4) . Which set is to be considered correct?
Although this is clearly a problem of incomplete
information, it is just as clear that there is a good
deal more information available in the statement of
the problem. Because each throw of the die, or trial,
is independent of all the others, it follows that of the
6" possible outcomes the number yielding a particular
set of frequencies is just the multinomial coefficient :
(5)

	

W=	
n .

(nf1) ! . . . (nf6) ! .

This is a multiplicity factor, and we need only find
the set of frequencies maximizing il in order to find
the set that can be realized in the greatest number of
ways. It is an equivalent procedure to maximize log
W, so that for very large n we can employ Stirling's
formula and obtain :

(6)

	

H=n -1 log W=-Y-- Y-fi logfi .
i

That is, in asking for the set of frequencies that can
be realized in the greatest number of ways, we have
simply reformulated the problem of maximum
entropy. But, rather than an appeal to a particular
theorem, we have only an application of common
sense! The relation to maximum entropy in the pre-
sent context provides a frequency correspondence, but
the saure analysis can be carried out in terras of
probabilities, and we demonstrate this in the Appen-
dix .
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What we have illustrated with the dice problem is
that for pure inverse problems of the type (3), in
which the states can be interpreted as frequencies and
n is very large, we now have the optimium solution .
Indeed, the solution was spelled out long ago by
Boltzmann and Gibbs. Given data of the form:

M

(7)

	

ui= Y Ki; f;,

	

1<_i<_m<M,
j=1

the set of f which can be realized in the overwhelmin-
gly greatest number of ways is that which maximizes
the entropy (6) subject to the constraints (7) . The
frequencies are :

(8)

	

f;=Z-1 exp [ - EkiKi.j],
i

where :

Z=E exp [-E?,iKij],

is called the partition function . The Lagrange multi-
pliers 1, are found by substituting the f of (8) into
the equations of constraint (7), which yields a set of
coupled differential equations . In addition to the
above scenario of a loaded die, the class of problems
solved in an optimal way by the above procedure
includes statistical mechanics, time-series analysis, and
image reconstruction. In the latter case the indices
refer to a square array of pixels and K . is a point-
spread function. Note, also, that the maximum-
entropy construction provides a completely justifiable
means for interpolation and extrapolation of missing
data. As an aside, one finds that the set of frequencies
solving the dice problem is [1] :

(10)

	

(f1, . . • , .f6)
_ (0.054, 0 .079, 0 . 114, 0 . 166, 0 .240, 0 .348) .

3. Generalization

Let us now return to the general situation described
by equation (1) . In most scientific problems of this
kind the set of equations determined by u = KU is
very much underdetermined, K is singular, and there
is no unique solution. The problem is simply not
well enough defined, and without further information
there can be no definite solution. (Note that the
ambiguities at issue here are not merely those of
space attenuation and lack of phase information in
scattering, say . More immediate and severe is the real-
world situation in which there is a genuine paucity
of data.) Put another way, the specified data can only
determine the class C of possible solutions, but which
single solution is to be chosen within that class?
Mathematically, incomplete information forces one to
conclude that the best we can do is obtain an estimate :

(11)

	

U*=R u,
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where the resolvent R is to be determined . At the
very least R must be chosen so that U* lies in the
class C of those possible states which could have
produced the data u . The mathematical statement of
this requirement is that KRK=K, meaning that R is
a generalized inverse. In the case of matrices, at least,
R is then guaranteed to exist by means of a theorem
of Penrose [2] .
Therefore, just as with the case of multiplicity factors
in the dice problem, one always needs some sort of
prior information in order to contract the range of
choices C and indeed make an optimal choice . Of
course, it may happen that no further information is
forthcoming, in which case no one choice within C is
any better than any other . But this is an extraordina-
rily rare occurrence in serious problems .
At this point it is useful to expand our general exam-
ple (3) to include linear noise :

(12)

	

ui -zKüUj +e i ,
i

in which the data points are distorted away from
sharp values in an essentially random way . That is,
the class C of possible solutions is enlarged and its
boundaries have become somewhat uncertain, or
fuzzy. One still needs prior information in order to
make any progress, but now the problem has actually
changed in a qualitative way. The element of random-
ness now appears jointly with that of incomplete
information, and one must invoke a broader
variational principle so as to arrive at an optimal
solution. At this time there does not seem to be
complete agreement on the specific statement of this
larger principle, although definite progress has been
made [3] . Further details can be found elsewhere [4],
and compared with other approaches [5] .

4. Summary

If it is possible to carry out a direct mathematical
inversion and obtain a unique result, then by all
means one should do so . In most problems of intellec-
tual interest, however, this is not possible, owing to
incomplete information, and the problem becomes
one of inference . We must then locate all relevant
prior information to use as constraints in an optimi-
zing principle for making a choice from the class C .
Usually there is a great deal of such prior information
available if one will simply look for it in the statement
of the problem. For a large class of problems, as we
have seen, the principle of maximum entropy leads
to a unique solution in the sense of minimum squared
error, and it can also be shown that the overwhelming
majority of states compatible with the data (3) have
entropy very close to the maximum [3].
The presence of noise complicates the problem, of
course, precluding a sharp specification of the class
C. Because this situation contains elements of both
incomplete information and randomness (error), one
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perceives the need for a complete Bayesian solution.
To the author's knowledge, this has yet to be construc-
ted.

Appendix

It is not always possible to interpret data in a fre-
quency context, in which case one must ultimately
refer to a probability interpretation. As a first step
toward developing such an approach, let us consider
the possibility that two variables x and y may be
necessary for a complete description of some problem .
Suppose, for example, that separate measurements of
these two variables are obtained and we represent
these numbers as expectation values :

where il is presumed that x and y are capable of
taking on values in descrete and exhaustive sets of
mutually exclusive alternatives . In this event the total
system of interest can be desbribed in part by a joint
probability distribution P(x i , yj), with normalization :

(A .2)

	

P(xi, Yj)=~P(xi)=~P(yj)=1 .

For independent variables the distribution factors into
the product P(x i) P(yj), where the single-variable pro-
bability distributions are defined as :

(A . 3 a)

	

P(x i)=EP(x i , Yi),
j

(A .3b)

	

P(Yi)=~P(xi, y .) .
i

Up to a positive constant, here chosen as unity, the
joint entropy is written :

(A .4) H(x, y)= -E P(x i, yj) log P(xi , yj),
i, j

and the individual entropies are :

(A . 5 a)

	

H (x) _ - 1 P(x i , yj) log P(xi)
i, j

_ - E P(xi) log P(xi),

(A . 5 b)

	

H (y) _ - P(x i, yj) log P(Yi)

_ -~ P(Yj) log P(y ) .
j

Note that H (x, y) <_ H (x) + H (y), with equality if and
only if x and y are independent .
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Thus, if x and y constitute independent events, the
principle of maximum entropy (PME) with
constraints (A . 1) yields:

(A .6a) P(xi, Yj)=Z12 exp[ - ilxi -12Yj]
= P(xi) P(Yj),

where :

(A .6b) Z12 (i l , 12)=1 exp [- 11xi - X2Yi]
i, j

= Z1 (il) Z2 (12) .
It may happen, however, that the given data actually
constitute a single datum :
(A .7)

	

w=A11<x>+A12<Y>1

such that :

(A .8a) <x> = ~P(xi,Yj)xi = ~P(xi)xi,
i, j

	

i
(A .8b) <y>=E,P(xi,yj)yj=EP(yj)Yj .

i, J

	

j
Although equations (A . 8) appear equivalent to
equation (A . 1), this is somewhat deceiving. The latter
are two pieces of data, whereas here the single datum
is given by equation (A . 7) . There is now only one
Lagrange multiplier and maximization of the entropy
(A . 4) subject to the constraint (A . 7) yields :

(A .9a) P(xi, Yj)=Zii (X) exp [ - k(Att xi+A12Yj)],
(A .9b)Z12(k)=> exp [ - k(A11xi+A12Yj)],

i, j

and i is determined by :

(A . 9 c)

	

W=_ a 109 Z12 (k) .

Il is still true, of course, that P(x,, y,) and Z12(k)
factor in this case, and H is additive . But we must
notice that only the datum is correlated in the two
variables, and not the variables themselves. A physical
realization of this scenario will be presented below .
If there are two pieces of data :

J
w1=A11<x>+A12<Y>,

w2 - A21<x>+A22<Y>,
(A .10)

the same procedure as above will yield immediately
the expressions :

(A .lia) P(xi, Yi)=Z12 (X1 , k2)
xexp[- X1(A11xi+A12yj) X2(A21xi+A22Yj)],

(A .11 b) Z12 (i1, k2) =
Y-exp[ - X1(A11xi+A12Yj k2(A21xi+A22Yj)],
i, j

(A . 11 c)

wk = - ~ 10g Z12 (11, k2),

	

k =1, 2 .
k
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(A . 1 a) < x > _

	

P(xi) x i,
i=1

(A . 1 b)
J

<y>=1P(yj)yj,
j



An obvious generalization is suggested now, in which
we have M independent variables x m that take on
discrete values x,,(i), such that 15 i 5Im and
15 m 5M. A set of data is specified by:

M
(A . 12) Wk= 1 Akm<xm>,

	

1_<k5K_<_Im,
m=1

for all m . If we adopt the vector notation
x=(x 1 , x2 , . . . , xm), then the distribution of maxi-
mum entropy is :

(A .13a)
K

	

,

P(x) = Z 1 exp E ?k L, Akm xmL~+
=1

	

m=1
(A . 13 b)

K

	

M

Z ( 1 11 . . . , kk) - exp
C- E kk l Akm xm

i, j

	

k=1

	

m=1

with :

(A . 13 c) wk

	

log Z,

	

15k :5 < Im .
k

Equations (A . 13) represent the general solution to a
broad class of noiseless, or pure inverse problems .
The best estimate that npw can be made for a state
of the system, by the criterion of minimum squared
error, is just the expectation value:

(A . 14) <x.>= E P(X)X.-
i, j,

	

. . .

But from equation (A . 14) we notice immediately the
factorization :

(A . 15) Z(X 1 , . . . , 7,j=
Eexp [-J %kAk1x1(l)] . . . exp[ - E%kAkMxMO],
i

	

k

	

j

	

k

and similarly for P(x) . Hence, equation (A . 14) can
be written more explicitly as a single sum:
(A .16a)

< xm > = Zm 1 exp

	

Akm xm (i)] xm (t),
i

	

k

where :
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(A . 16 b) Zm =~ exp [->. kAkmxmO)].
k

That is, dependence on all other variables has drop-
ped out and one need only deal with single-variable
distributions in any calculation .
This last result might have been expected, owing to
the fact that the data contain no information about
possible correlations among the variables . But this
can also be deceiving, because one needs all the varia-
bles in order for the Lagrange multipliers to repro-
duce the data (A . 12) . Moreover, equation (A . 14)
does not really describe a state of the entire system .
Rather, one will eventually be interested in quantities
of the type f (x 1 , . . ., xM) .
A particular advantage of the preceding formulation
is that there is no need for < x m ) in equation (A . 12)
to be positive, for it is an expectation value and
neither a frequency nor a probability . Further advan-
tages can be adduced by considering the specific exam-
ple of image reconstruction . Suppose the experiment
seeks to measure the actual energy or intensity in a
pixel, and our instruments record precisely that . We
attempt to measure the energy xm (i) received in the
m-th pixel, and this energy itself can vary over a
range of values determined by bandlimits and other
factors . The data then take the form (A . 12) in terms
of expected energies in each pixel, se, that Akm is
indeed a point-spread function. Reconstruction of the
image is now a pure probability problem and the
expectation values (A . 16 a) provide the solution .
Note that one need not define either ni or N in this
scenario, although it is still necessary to determine
the Lagrange multipliers from equation (A . 13 c) .

Manuscrit reçu le 9 septembre 1984 .
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