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SUMMARY
We consider the scattering of elastic dilatational and shear waves from cylindrical and spherical cavities and
inclusions in an elastic medium. The normal mode series of the scattering amplitude is reformulated in terms of
the S-function, and the poles of the S-function in the complex frequency plane are identified . The amplitude is
rewritten as a "background term" including specular reflections and external surface waves, plus a series of
(internai) resonance terms . This formulation is termed the "Resonance Scattering Theory" (RST) . The convection
between the resonances and the surface waves is established via expressing the complex-frequency poles of the
scattering amplitude by the Regge poles in the complex-mode number plane, and the frequency resonances in
successive modes are recognized as the Regge recurrences of surface-wave resonances . This permits us to obtain
the dispersion curves of phase and group velocities of the (internat) surface waves from the eigenfrequencies of
the cavity. We also mention experiments on ultrasonic scattering from cavities and inclusions.
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RÉSUMÉ
Nous étudions la diffusion d'ondes élastiques de type dilatation ou cisaillement par des cavités et inclusions
cylindriques ou sphériques. La série des modes normaux donnant l'amplitude de diffusion est récomposée en utilisant
la fonction S, et les pôles de la fonction S dans le plan complexe des fréquences sont identifiés. L'amplitude est
réécrite sous la forme d'un « terme de fond », comprenant réflexions spéculaires et ondes de surface externes, plus
une série de termes de résonances (internes) . Ce formalisme est appelé « Théorie de diffusion résonnante »
[« Resonance Scattering Theory » (RST)] . Le rapport entre les résonances et les ondes de surface est établi en
exprimant les pôles en fréquence complexe de l'amplitude de diffusion par les pôles de Regge dans le plan complexe
du numéro de mode, et les résonances en fréquence dans les modes successifs sont reconnues comme les récurrences
des résonances d'ondes de surface . Cela nous permet d'obtenir les courbes de dispersion pour la vitesse de phase et
de groupe des ondes (internes) de surface, en utilisant les fréquences propres de la cavité . Nous mentionnons
également des expériences sur la diffusion ultrasonore par des cavités et inclusions .

MOTS CLÉS

Cavités, incursions, théorie de la diffusion résonnante, RS T, ondes de surface, pôles de fréquence complexe, pôles de Regge, dispersion, vitesse
de phase, vitesse de groupe .
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1. Introduction

The Resonance Scattering Theory (RST) has first
been formulated ([1] ; see also [2, 3]) for the case of
sound scattering from a solid cylinder or sphere in a
fluid. The resonance frequencies, which may e . g . be
represented by a "pole diagram" in the complex fre-
quency plane [4, 5], were shown to originate from the
phase matching of surface waves [2, 3, 6] . When the
frequency poles are transferred to the complex mode
number plane [6], where they constitute the "Regge
poles", they determine by their real and imaginary
parts the propagation constant and attenuation of
the surface waves, respectively ; the dispersion and
attenuation curves of the surface waves can be
obtained from the resonance frequencies without
having to go through the (complex) Watson
transformation.
A similar program may be carried out for ultrasonic
wave scattering from cavities of cylindrical [7-9] or
spherical [10-13] shape, or from solid
inclusions [14, 15] . This topic is chosen here to present
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the resonance theory, since surface waves and resonan-
ces in acoustic scattering from elastic objects are
treated elsewhere in this issue [16, 17] . While experi-
ments on resonant acoustic scattering from solids
are quite numerous by now (see, e. g., [18, 19] and
references quoted therein), ultrasonic experiments on
scattering from cavities or inclusions as donc so
far [20-23] have not been specifically designed to
detect resonances, so that resonance effects appear in
their results only indirectly .

2. Resonance theory

We consider an infinite-cylindrical cavity in a solid
(density p, wave speeds c p , c,) filled with a fluid
(density pf , sound speed c f) . The displacement field
u in the solid is represented by a scalar (<) and a
vector (`h) potential :

(2 .1)

	

u=V(D+Vx`P

(with V . Y'=0), and a normally incident p-wave
(suppressing exp-i co t) is given by :

Co
(2 .2) bine=e`ikPXi= y_ (2-S„o)inJ,,(k,r) cosngp,

n=0

where kp =w/cP . Scattered elastic waves are of botte
p-type,

(2 .3) (Dse= 1 Y, (2 - Sn0)
2 n--0

x in (Si"-1) H„1} (kP r) cos n tp,

or s-type ("mode conversion"),
M

(2 . 4) 1F9. = 1 E (2-c5no) in Sns Hn 1 i (k s r) sin n tp,
2n=o
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where k,=w/c s. A standing wave exists in the fluid
filler:

00

(2 .5) ~f = 1 E (2-S„0)inCP J e, (k f r)cosncp,
2n=o

where kf =co/cf . Similar equations hold [8] for s-wave
incidence (assumed SV, so that only Y-51 00), with
coefficients S„P, Sns and C„. The sets of S`e form the
2 x 2 S-matrix .
Satisfying the boundary conditions (continuity of
normal stresses and displacements, zero tangential
stress) at the cylinder radius r =a leads te, 3 x 3 linear
systems :

(2 .6a)

	

DPSP=EP,

	

DaS„=En,

where DP, s are 3 x 3 matrices and EP , s vectors, all
with known elements [8] which consist of cylinder
functions of order n and arguments oc =k p a, [i=k s a
and y = k f a, and :

PP

	

- S'Pn

	

n

(2 .6 b)

	

S„=

	

Ps

	

S; =

	

S„s
Csn

Using Cramer's rule, the elements S„ are thus frac-
tions with D„ (co)-det(DP)--det(Dn) in the denomi-
nator. Resonances occur when D„ (w)=0 ; the complex
solutions w„j (j=1, 2, . . . ) represent resonance fre-
quencies common to all four amplitudes S" . Alterna-
tely, at a given w (real), D e, (w)=0 is an equation for
n with complex solutions n=vj (w) . While w„j are
complex-frequency poles ("SEM poles", see [17]) of
the scattering amplitude, v j (w) are its complex mode
number ("Regge") poles [16]; both are related
through D v(co) =0.
More explicitly, one may write for S", e . g .,

(2 .7a)

	

SPP=S(o)PPZnZ)-Knn n Z(1)-Kn

	

n

where :

(2 .7 b)

	

Kn= P	 ' J„(Y)
Pf Jn (Y)

with Z ;;) expressed by the elements of DP, and
S;,° j PP= exp 2 i Ô„ the value of SPP for an empty cavity
(pf =0). Expanding K„ (a) about the resonance value
Uni =(Re w„j) a/cP leads to:

(2 .8) SPP-1 =e2 1 8,

x
l
-	 MnJ

	

+lie - ` SnsinS„ ,
j = 1 oc-Œ"j +(i/2) rnj

where :

(2 .9a)

	

Mnj =(Z„
1) _Znz))lK„(ani),

(2 .9 b)

	

I „j= -2Im Z„1)/K' (Uni) .
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This is the Breit-Wigner €orm of the scattering ampli-
tude, as developed in nuclear scattering [24] . It
consists of a sum of resonant terras (with M„j: internal
resonances), and a smooth background term corres-
ponding to the scattering from an empty cavity,
second term in equation (2 .8). However, this
background still contains resonances corresponding
to external (Franz) waves, as well as geometrical (spe-
curlarly reflected, and transmitted) waves [16] .
The quantities v, (co) are the propagation constants of
surface waves, as in the Watson-transform
method [16] . This can be seen, e. g., by expressing the
resonance denominator in a in equation (2 . 8) by one
linear in n (assumed a continuous variable) [6, 25] ;
this furnishes the Watson results without having to
go through the complex arithethic . The surface wave
parameters are thus:

(2 .10 a)

	

c"= aco/Revj(co)

(phase velocity),

(2 .lOb)

	

c~P(w)=a/Re(dvj/d (o)

(group velocity), and (amplitude exp-cp/(p l ):

(2 . 10c)

	

cp 1 = 1 /I m v1

(attenuation) . Their wavelength (in the fluid) is :

(2 . 10,1)

	

= 27ra
Re vj '

showing that a resonance (Re v j -> n) occurs when the
circumference of the cavity equals an integral number
of wavelengths of the surface wave ("phase mat-
ching") .
For the internal surface waves which have small imagi-
nary parts, one has at resonance (w= Re œ n,) approxi-
mately:

(2 . 11 a)

	

cj'(Rew„j)=aRew„j/n,
(2 .11 b)

	

c;P(Rew„j)=adRew„J/dn

(to be understood as a difference quotient), so that
the dispersion curves of surface waves at the reso-
nance points can be directly read off from the latter .
A similar theory was developed for the case of scatte-
ring from spherical [14] and cylindrical [15] inclusions .

3. Numerical results

The (internal) frequency resonances appear in a plot,
e. g. of I SPP -1 , vs. k p a, as shown in Figure 3 . 1(a)
for a waer-fil ed cylindrical cavity in aluminium .
Here, the resonance and background terms of
equation (2 . 8) interfere ; but if the soft-cylinder
background is coherently subtracted from SPP, one
obtains the pure resonances of Figure 3 . 1(b) . One
notices that peaks of the saure order j recur in succes-
sive modal amplitudes at successively higher frequen-
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cies ; they represent "Regge recurrences" of the j-
th surface wave spanning the cavity's circumference

n

	

successively with n=1, 2, 3 . . . wavelengths. The cor-
responding phase velocity dispersion curves, equation
(2 . 10 a), are shown in Figure 3 .2 .
The background ternis S (°) ik for an empty cavity
themselves have resonances, but with large imaginary

4

	

parts so that e. g. curves I S;,°) nn-11 appear smooth,
as the broad lobes underlying the curves of

=5

1

2
kQ 0 -

2

	

3 4 5
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Fig. 3 . 1 . - Modal resonances for a water-filled cylindrical cavity
in aluminum : (a) `Si"- l . i plotted vs. k" a, (b) I SP'-S„°~ "a- l l ,
background subtracted.
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Fig. 3 .2. - Dispersion curves of internai surface waves
in a water-filled cylindrical cavity in aluminum
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FIg. 3 .3. - Complex-frequency potes of scattering amplitudes from
a spherical void in steel, showing resonances due to Rayleigh (R),
compressional (P) and shear (S) type surface waves .
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Figure 3 . 1(a) . One may find their frequency resonan-
ces, however, by a complex pole search, as shown in
Figure 3 . 3 for a spherical void in steel [13] . The poles
in the a-kp a plane clearly fall into layers due to
Rayleigh (R), compressionnal (P), and shear (S) type
(external) surface waves; their dispersion curves are
shown in Figure 3 .4 . Comparing this with
Figure 3 . 2, one sees that dispersion curves for exter-
nal surface waves start from the origin and reach a
plateau for high frequencies, while for internai surface
waves, they start at infinity from a low-frequency
cutoff, whence they descend to a plateau. This can
be understood geometricaliy .

Fig. 3 .4. - Dispersion curves of surface waves whosc resonances
furnish the potes in Figure 3 .3.
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Fig. 3 .5 . - Theoretical (solid) and experimental (broken curve)
backscattering from a spherical tungsten carbide inclusion in tita-
nium

For a solid inclusion in a solid, results are shown in
Figures 3.5 and 3.6. If the total scattering amplitude,
e. g., the modulus of equation (2 . 3), is plotted vs .
frequency, a rather smooth curve results (solid curve
in Fig . 3 . 5 [22]) . If, however, one plots individual
modes n in the fashion of Figure 3 . 1(b), peaks appear
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(depending, of course, on the materials), which may
be used to obtain dispersion curves, Figure 3 .6. These
indicate the existence of two types of surface waves
(solid and dashed), probably also a Rayleigh wave
(lowest dashed curve) .
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Flg . 3 .6. - Dispersion curves for two familles of surface waves
on an iron sphere in aluminum.

4. Experiments

Experimental results on ultrasonic wave scattering
from cavities and inclusions were obtained both in
the frequency domain and in the time domain (short
pulses) [20-23] . Pulse experiments obtained geometri-
cal and surface wave paths from arrivai times . Besides
spherical and cylindrical shapes, spheroids have also
been investigated . The broken curve in Figure 3 . 5
shows backscattering results for a spherical tungsten
carbide inclusion in titanium [22], as compared to
theory.

5. Discussion

The resonance scattering theory (RST) as developed
for acoustic scattering from solids, has here been
applied to ultrasonic scattering from cavities and inclu-
sions . Internai resonances appear prominently if the
properties (e . g. density) of cavity material and its
filler differ substantially ; if this is not the case, they
are iess evident . Externat resonances on cavities are
always hard to see ; but in ail cases (internai and
externat), resonance frequencies in the complex plane
can be calculated no matter how large their imaginary
part, and their layers define clearly the various types

1
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of surface waves . Experiments have sot yet been desi-
gned specifically to detect resonances ; in a sense, the

pulse arrivais indicate these indirectly, being a cohe-
rent sum of a number of resonances [17].

Portions of this work were supported by the Office
of Naval Research, and by the Army Research Office .
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