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SUMMARY
The unicity distance is frequently rather losely used as a measure of the length of the cryptogram needed to
break the enciphered text.
In this paper we discuss some aspects and details of this intuitive idea and introduce the Pe-security distance as
a measure of cryptographic performance . In contrast to the classical unicity distance which uses the equivocation
we consider the error probability as the fundamental parameter which has to be used . We also show that the
classical unicity distance can be seen as a special case of the Pe-security distance .
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RÉSUMÉ
Le présent article est une contribution à la notion intuitive de la distance d'unicité considérée comme une mesure
caractéristique de la longueur du texte nécessaire pour briser un cryptogramme .
On situe le travail dans le cadre d'une indice d'études sur la performance cryptographique en utilisant la distance de
sécurité-Pe comme mesure de performance . Au contraire de la distance d'unicité utilisant l'équivocation, les auteurs
traitent la probabilité d'erreur comme la variable fondamentale dans la partie performance .
On montre ensuite que la distance d'unicité classique peut être considérée comme un cas particulier de la distance
de sécurité-Pe .
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1. Introduction

The use of cipher systems makes it possible to send
secret messages via public insecure channels . How-
ever, the secrecy of the message depends highly on
the cryptografic performance of the cipher system
used. When evaluating the theoretical strength of
cipher systems with a probabilistic model, it is assu-
med that the cryptanalyst behaves rationally, that he
or she at least knows the set of transformations, the
statistics of the message and the key source .
In Shannon's paper [1] it is pointed out that if the
cryptanalyst intercepts a cryptogram, that he or she
is able to calculate the a posteriori probabilities of the
various possible messages and keys which might have
produced this cryptogram. This set of a posteriori
probabilities describes how the cryptoanalyst's knowl-
edge of the message and the key gradually becomes
more precise as more enciphered text is intercepted .
Shannon used as a measure of theoretical strength
the equivocation, which deals with a simplified
description of the set of a posteriori probabilities .
Shannon's approach has led to the so-called (classical)
unicity distance and will be described in section 2 .
Although Shannon's information measure leads to
easy manipulation in a natural and intuitive way
between different probability distributions, still the
underlying relevant parameter is the error probability
(or probability of incorrect identification) Pe faced
by the cryptanalist .
In cases where determining the error probability in a
direct manner is quite involved, bounds on Pe can be
considered. By bounding Pe with information meas-
ures and/or distance measures, a region is determined
in which the actual Pe can be found. The uncertainty
in the value of Pe is resolved only in limiting cases
where the bounds are tight . In this context it seems
to be a natural way to make use of the concept of
distance measures since the error probability is actu-
ally a distance measure itself. This approach, which
can be found in Van Tilburg and Boekee [2], has led
to the introduction of the Pe-security distance and
will be described in section 3 . Finally, in section 4
conclusions are drawn .

2. The classical unicity distance

As it appears from the literature, the Unicity Distance
(UD) is often linked to the random cipher model
and/or the key equivocation. As a result of this several
authors have given definitions of the unicity distance
which are incomplets, biased and more restrictive
than necessary . As a consequence of this the UD is
easily given a wrong interpretation . To clarify this
,confusion let us first consider the UD as derived by
Shannon [1, p. 693] . Shannon defined the (classical)
UD for the message based on a ciphertext-only-
attack, UDRC(ML/EL), by evaluating the key equivo-
cation and the key appearance characteristic in a
Random Cipher (RC) . As a result he obtained

(1)
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UDRC (ML /E L ) = H (K)/D (ML),
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where D(ML)=log 1 4 l -H(M L)/L is the average
redundancy per message source symbol in a sequence
ML of L message source symbols, H (K) = I Yt" I is the
entropy of the key source and EL is the enciphered
message of length L . Unfortunately this UD is someti-
mes confused with the UD for the key based on a
ciphertext-only-attack. It trivially holds that

(2 )

	

UDRC(K/EL) > UDRc(M' ,/EL ),

so that (1) an (2) yields

(3)

	

UDRC(K/EL) ? H(K)/D(ML),

Hellman [3] has proved that the RC-model actually
defines a lower bound on the existence of good cipher
systems. For this reason (1) and (3) give a worst case
indication of the strength of a cipher system . How-
ever, these results are not precise and the interpret-
ation depends highly on the size of the key space used
and the message source used .
Since H (M L/K, EL) =0, it follows directly that a gen-
eral relation between the key equivocation and the
message equivocation is given by

(4)

	

H (K/EL) - H (ML/EL) = H (K/ML EL),

in which H (K/M L EL) is the key appearance equivoca-
tion. The left hand side of the equality is based on a
ciphertext-only-attack, while the right hand side is
based on a knwon-plaintext-attack . Hence
Dunham [4] concludes that there is a fundamental
trade-off between protecting the key under a known-
plaintext-attack and protecting the message under a
ciphertext-only-attack when the size of the key space
is fixed. And also, when designing a cipher system
which is to be strong under a ciphertext-only-attack
on the message, (4) suggests that it consequently will
be weak under a known-plaintext-attack . From (4) it
also follows that

(5)

	

H (K/EL) >_ H (ML/EL)

and thus

(6)

	

UDM (K/EL) >_ UDM (ML/EL),

with equality if the key appearance equivocation is
zero, which is in agreement with (2), where M is
the actual cipher model used. In general, the key
equivocation is given by

(7)

	

H (K/EL) = H (KEL) - H (EL) .

If the message source and the key source are stochasti-
cally independent then the key equivocation becomes

(R)

	

H(K/EL)=H(K)+H(ML)-H(EL) .

Using the inequality H (EL) _< log I &L I = L . log
and the fact that

	

we easily find that
H(K/EL) in (8) can be lower bounded by

(9) H(K/EL) >_ H (K) + H (M L) - L . log I ~
=H (K) -L . D (ML) .

If we define the unicity distance UD (K/EL ) for the
key based on a ciphertext-only-attack as the distance
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where H (K/EL ) is zero, then from (9) it follows that

(10)

	

UDM(K/EL) >_ H (K)/D (ML) .

It is tempting to say that the RC reaches this lower
bound, i . e. UDM (K/EL) > UDRC (K/EL) . The next
Lemma may help to make this statement clear .

Lemma 1: The average probability of error (or proba-
bility of incorrect key identification) in a random cipher
model at classical unicity distance is given by

(11)

	

PeRC(K/EuD) =(I X' I -1)/I

	

12 .

Proof Suppose that there are I X 'I different and inde-
pendent keys in the RC so that PeRC (K/EL)=nk/ICI
in which nk is the average number of spurious key
decipherments. According to Hellman [3], Theorem 1,
we have nk =(I ( I -1) .2-L .D(M ) ~ Substitution yields

(12)

	

PeRc(K/EL)=(1-I X' I-1) .2-L .D(ML)

At classical UD it holds that L=H(K)/D(M`') . In
addition, the keys are equiprobable so that
H(K)=log I X' I . Substitution yields the Lemma . El
Remark : It is important that the assumptions imposed
by the RC-model be reasonable for the real secrecy
system including the language used .
Lemma 1 tells us that the cryptanalyst is faced with
an error probability (unequal to zero) at the classical
UD. For this reason H (K/E uD) can not be zero and
the lower bound (10) does not hold in general . This
also shows that Blom's general derivation [5], p . 9, of
Hellman's result is not as general as suggested. Actu-
ally (10) is restricted to the limiting case where
H (K/EL) =0 can be obtained .
Furthermore, it is illustrated in Van Tilburg,
Boekee [2] why the key equivocation (7) itself, when
considered as a measure of theoretical security,
behaves poorly: it defines an upper bound on the
error probability and is usually tight only for large L .
Although the key equivocation may be a poor meas-
ure of theoretical security in many cases, it certainly
does not degrade the use of Shannon's information
measure in cryptanalysis. The strength of this measure
can be explained by the natural interpretation and
accordingly by the convenient way of manipulating
between different probability distributions. This has
been demonstrated by Lu [7] .
Finally, to illustrate the difference between UD (K/E L)
and UD(ML/E') with an extreme example we men-
tion that for a simple substitution cipher using the
English language we may obtain UD (K/E L) = 1,500
and UD (ML/EL ) = 25 respectively .
To understand the introduction and the interpretation
of the Pe-security distance (Pe-SD) as a measure of
cryptographic performance it is necessary to formalize
the UD .

Definition 1 : The unicity distance of a cipher model
(including the message source) is the minimal expected
length of ciphertext, generated by this model, after
which the enciphered text (cryptogram) can be broken
on the average. L
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This definition of the UD covers at least five import-
ant aspects . The first one is that the UD is a minimal
expected length. For an accurate interpretation of the
UD it might be important to consider higher order
statistics too . The second aspect follows from the fact
that the cipher model includes the message source
also. It is evident that the message source greatly
influences the UD . Generally speaking, it is important
to know the proces which has generated the enci-
phered text. The third aspect is inherently related to
the plaintext, i . e. the text generated by the message
source. If the plaintext is known, then we speak of a
UD based on a known-plaintext-attack . If the plain-
text is unknown, then we speak of a UD based on a
ciphertext-only-attack. The fourth aspect has a strong
affinity with the previous one . What is our object :
the key or the message? As illustrated in section 2
they might be quite different . Finally, the fifth aspect
and this might be the most important one : what is
the meaning of "can be broken on the average" .

3. The Pe-security distance

Most of the definitions in the open literature approach
this problem by introducing the key equivocation
and adverbs like almost and nearly . Jürgensen and
Matthews [6] were the first who tried to improve the
rigour of the notion of security in this respect by
using a well-defined probabilistic model and based on
this model addressed the problem by defining the (3-
UD as MIN {L I H (K/EL) <_ (3} . However, as stated
before the key equivocation defines an upper bound
on the error probability and is usually only tight for
large L. Consequently, this contradicts the "minimal
expected length" in definition 1 and the worst case
approach in general . Moreover the interpretation of
the (3-UD is not unique and depends highly on the
size of the key space used . To avoid these problems
one can link a probability function to "can be broken
on the average" .
For example, if the error probability (or probability
of incorrect identification) faced by the cryptanalist
is used, then the cryptogram space is divided into
equivalence classes, one of which has a unique average
error probability Pe for a given cipher model . If we
do this, then it follows from (11) that the classicial
UD is directly related to an average error probability
which is inversely proportional to the cardinality of
the key space used. As a result, the meaning of the
UD for different sizes of the key space is also dif-
ferent, in the sense of Pe . Actually, that is not what
one prefers . For this reason a constant average error
probability is taken as a starting point and
definition 1 can be restated as a security distance .
Definition 2: The Pe-security distance of a cipher
model (including the message source) is the minimal
expected length of the ciphertext, generated by this
model, necessary in order to be able to break the
enciphered text (cryptogram) with an average error
probability (or probability of incorrect identification)
of at most Pe. D
This definition provides a theoretically attractive
measure of cryptographie performance of a cipher
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system. In order to give a mathematically suitable
definition it is necessary to restrict ourselves to a
specific attack, for example as is done in the next
definition [2, Definition 4 .2].

Definition 3: The Pe-security distance for the key
based on a ciphertext-only-attack is defined by

(13) y-SD(K/EL)=MIN{L I Pem(K/EL) <=y}

where: m, is the actual cipher model, and, y, is a
value of the error probability Pe . El
Remark: Depending on what ones object is i . e . the
key or the message, the Pe-SD can be based on
Pem(K/EL) or on Pe,,,(ML/EL) . If a known-plaintext-
attack is used one may use Pem(K/ML, EL) . From the
definition it also follows that the Pe-SD depends on
the cipher model m used and the desirable value y
of PC .
The next corollary [2, Corollary 4.2], shows that the
Pe-security distance can be considered as a general-
ized unicity distance .

Corollary 1: The Pe-security distance includes the
classical unicity distance as a special case .
Proof For an RC-model we have (12) :

PeRC(K/EL)=(1 -ICI t) .2-L .D(ML)

If we choose y=(I

	

I -1)/I )f' I2, one easily obtains
MIN {L I L >_ H (K)/D (ML)},

which is the classical unicity distance . 0
Whereas determining the error probability (and thus
the Pe-SD) in a direct manner is quite involved, one
can make use of lower bounds only . This is in agree-
ment with the worst case approach . A natural way
to obtain lower bounds is to make use of the concept
of distance measures, as shown in Van Tilburg and
Boekee [2], since the error probability is actually a
distance measure itself .
For example, for a pure ciphermodel (PC) using a
discrete memoryless source with a priori probabilities
p and q it holds [2, theorem 2 .3], that :

(14) 1(1-7(1-4p2))

< Pepc (K/EL) < 2 H (K/EL) < P

where p= 2 (J4pq)L is the average Bhattacharyya

coefficient. From definition 3 and the above inequal-
ity it is easily found that :

(15)

	

y-SDpc(K/EL) > log[1-(1-2y)2]log (4 pq)

However, if the key equivocation is used, than it
follows that this measure defines an upper bound on
the error probability. For this reason, Fano's inequal-
ity H(K/EL) _< H (Pe) + Pe . log ( I .(I -1) has to be
used to obtain the lower bound .
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The Pe-SD can be applied in the reverse direction too,
i . e . for a given security distance the corresponding
expected value y can be found . By using the same
arguments lower bounds on Pe can be considered in
order to determine y . To illustrate the behaviour of
the different bounds discussed in this paper we con-
sider a memoryless SSC-model with probability
p=0.6. The bounds given in Figure clearly demon-
strate that the key equivocation «1/2)H) is a loose
upper bound on Pe at UD . Furthermore, observe that
for y=0.5 the cryptanalysts decision is not based on
any ciphertext at all (L=0) . This is in agreement with
the best strategy, Le . randomly select a key if no
ciphertext is available .

volume 4-n° 6 -1987

Bounds on Pe for a memoryless
SSC-model with p=0 .6 .

In the case that p = q = 1/2 it easily follows from (14)
that Pe=1/2, and from (15) that y-SDpc(K/EL) ~ 00
independent of the value of y .
This is what we intuitively would expect . Since the
message source symbols have a uniform probability
distribution the redundancy of the message source is
zero, so that every message, even the scrambled one,
has a meaning. For this reason it does not matter
how much ciphertext is intercepted ; the cryptanalyst
will never obtain a unique solution . On the other
hand, if this is the case the cryptanalyst can at best
select a key at random, conform (14) .

4. Conclusion

Shannon obtained a unicity distance for the message
based on a ciphertext-only-attack in a random cipher
mode!, which is referred to as the classical unicity
distance . Hellman has shown that Shannon's random
cipher result actually defines a lower bound on the
existence of good ciphers . Later on, Blom generalized
this result in terras of key equivocation . However,
Blom's result is not as general as suggested .
After formalizing the unicity distance a potential
ambiguity can be found in most definitions in the
literature . This ambiguity can be resolved by introduc-
ing a probability function .

L



A natural probability function is one based on the
expected error probability (or probability of incorrect
identification) faced by the cryptanalyst. As a direct
result the Pe-security distance is introduced as the
minimal expected amount of enciphered text necessary
to make an average probability of incorrect identifica-
tion of at most Pe .
Finally, if the expected error probability Pe is set
equal to (IJ I -1)/I y j 2, then the classical unicity
distance is obtained, which shows that the Pe-security
distance can be considered as a generalized unicity
distance .

Manuscrit reçu le 1 décembre 1986 .
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