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Foreword

Priors for This Course

Bayesian modelling is a very broad topic; this course takes the
following viewpoint

Agnostic Approach to Bayesian Modelling No Bayesian preaching;
quantifying the asymptotic statistical performance of
Bayesian estimators is a valid approach

Focus on the Information Procesing Context

Final user is not a statistician but an algorithm
that needs to make decisions autonomously
More interested in the algorithm's output than
by the statistical model in itself
Potentially large amount of data to be processed

Bias Towards Black-Box Modelling In particular, will often trade
model expressivity for inference simplicity



Foreword

Priors for This Course (Contd.)

Bias Towards Exact Inference Conjugate priors,
Rao-Blackwellization

or at Least Asymptotically Correct Inference In particular, will
cover MCMC rather than variational methods

Bias Towards Sequential Models Where data is indexed by time

Focus on Latent Models Because they are fun and ubiquitous in
machine learning, esp. for (partly) unsupervised tasks



The Posterior

Part I

Bayesian Modelling

2 The Posterior
Bayesian Inference
Bayesian Model Selection
Bayesian Prediction
Bayesian Estimators
An Example: Signal in Noise

3 The Prior
Je�rey's Priors
Improper Priors
The Normalization Penalty
Conjugate Priors
Exponential families



The Posterior Bayesian Inference

Bayesian Modelling

Bayesian Model

1 Likelihood The data y is assumed to be generated from a pdf

y ∼ `(y|θ)

called the likelihood, when viewed as a function of θ

2 Prior The parameter θ is itself endowed with a prior pdf

θ ∼π0(θ)

Considering θ as a random quantity and using π0 to specify the
prior information characterize the Bayesian approach to statistical
modelling*

*In the Bayesian literature, approaches that do not follow this principle are
referred to as classical or frequentist



The Posterior Bayesian Inference

A Note on Notations

1 In most probability and mathematical statistics texts, it is
considered to be safer to use di�erent notations for the
random variable Y and the values y that it may take*

This is usually not the case in Bayesian texts
In this course, boldface is used to highlight quantities that
really need to be interpreted as random variables

2 π(θ|y) should generally be understood as a conditional pdf
(dominating measure is Lebesgue or counting*, unless
otherwise speci�ed) but will sometimes be used to denote
probability measures: π(dθ|y) (continuous) or π(θ = θ|y)
(discrete)

3 Bayesian texts usually make heavy use of overloading, denoting
all densities by p or π and di�erentiating them only by their
arguments (π(y|θ), π(θ), . . . ); this is not the default option in
this course

*This helps understanding why P(Y = y) is not necessarily equal to 1!
*Although the integral notation is used by default



The Posterior Bayesian Inference

Bayesian Inference

The Bayesian Posterior

The Bayesian paradigm provides a principled way to perform
inference through the posterior distribution

π(θ|y) = `(y|θ)π0(θ)∫
Θ`(y|θ′)π0(θ′)dθ′

(1)

The normalizing constant Z(y) = ∫
Θ`(y|θ)π0(θ)dθ is usually

called the (Bayesian) evidence

Eq. (1) is often abbreviated to
π(θ|y) ∝ `(y|θ)π0(θ) B*

*∝ should not hide factors that depend on θ



The Posterior Bayesian Model Selection

The Bayesian approach provides a general framework for choosing
between competing models

Given two models M1 and M2 with likelihoods `1(y|θ1),
`2(y|θ2) and priors π0,1(θ1), π0,2(θ2) (respectively), de�ne a
model indicator m with prior P(m = i) = p0,i

The posterior π on {1}×Θ1 ·∪{2}×Θ2 is

1

Z(y)

2∑
i=1
1{m = i}`i(y|θi)π0,i(θi)p0,i

with global evidence

Z(y) =
2∑

i=1

∫
Θi

`i(y|θi)π0,i(θi)dθi︸ ︷︷ ︸
Zi(y)

p0,i



The Posterior Bayesian Model Selection

Bayes Factors

The posterior to prior odds ratio

π(m = 2|y)

π(m = 1|y)

p0,1

p0,2
= Z2(y)

Z1(y)

is called the Bayes factor (for model 2 vs model 1)

This is the preferred tool for deciding between the two models but
the framework also suggests a di�erent option

Model Averaging

If u is a function of interest that is de�ned under both
M1 and M∈, the expected posterior estimate is

E(u|y) =
2∑

i=1

Zi(y)p0,i∑2
j=1 Zj(y)p0,j

∫
Θi

u(i,θi,y)πi(θi|y)dθi



The Posterior Bayesian Prediction

Of particular interest is the case where we seek to predict a new
observation y? assumed to be an independent replica of y given θ

Bayesian Predictive Distribution

y?|y ∼
∫
Θ
`(y?|θ)π(θ|y)dθ

Similarly, in the model averaging setting

y?|y ∼
2∑

i=1

Zi(y)p0,i∑2
j=1 Zj(y)p0,j

∫
Θi

`(y?|θi)πi(θi|y)dθi



The Posterior Bayesian Prediction

Bayesian Sequential Inference
Assume that we are now given a sequence of observations y1, . . . ,yn

conditionally independent given θ

Sequential Update of the Posterior

πn(θ|y1:n) = Zn−1(y1:n−1)

Zn(y1:n)
`(yn|θ)πn−1(θ|y1:n−1)

where

Zn(y1:n) = Zn−1(y1:n−1)
∫
Θ
`(yn|θ)πn−1(θ|y1:n−1)dθ

with associated predictive distribution∫
Θ
`(yn+1|θ)πn(θ|y1:n)dθ



The Posterior Bayesian Prediction



The Posterior Bayesian Prediction

Open Questions

1 How to summarize information from π?

2 What is in�uence of the prior π0, how to set π0?

3 How to determine π (or characteristics of it)?



The Posterior Bayesian Estimators

How to summarize information from π?
Decision Theoretic Framework

Given a loss function c(θ,θ′) that represents the cost of
confounding θ and θ′

Estimate θ by minimizing the Bayesian risk

θ̂ = argmin
t∈Θ

∫
Θ

c(θ, t)π(θ|y)dθ︸ ︷︷ ︸
RB(y,t)

Posterior Mean Estimate

c(θ,θ′) = ‖θ−θ′‖2 gives P

θ̂ = E
[
θ|y]

with associated Bayes risk trace(Cov
[
θ|y]

)



The Posterior Bayesian Estimators

The Bayesian estimator associated with the loss c also minimizes
the total risk

θ̂(y) = arg min
t:Y→Θ

RB(t)

where

RB(t) =
∫
Y

∫
Θ

c(θ, t(y))`(y|θ)π0(θ)dydθ

=
∫
Y

(∫
Θ
`(y|θ′)π0(θ′)dθ′

)∫
Θ

c(θ, t(y))π(θ|y)dθdy

=
∫
Θ

∫
Y

c(θ, t(y))`(y|θ)dy︸ ︷︷ ︸
RF (θ,t)

π0(θ)dθ

and RF (θ,δ) is the frequentist (or classical) risk

RF (θ, t) = E
[

c(θ, t(y))
∣∣θ]



The Posterior Bayesian Estimators

Classical approaches focus on

setups where the minimizer of RF (θ, t) does not depend on θ
(e.g., Gauss-Markov theorem for the linear model)

the worst-case (�minimax�) approach argmint maxθ rF (θ, t)

The Bayesian Estimator
weights the frequentist risk according to the prior π0

U Introduce a total ordering on the set of estimators t

D Depends on the choice of π0



The Posterior Bayesian Estimators

(in)Famous Counter-Example

The MAP (Maximum A Posteriori) Estimator

θ̂MAP = argmax
θ∈Θ

π(θ|y)

also called posterior mode estimate

May be interpreted in the previous framework, when θ
is a discrete parameter and c is the 0�1 loss P

c(θ,θ′) =
{

0 if θ′ = θ
1 otherwise

No decision-theoretic justi�cation of the MAP when θ is a
continuous parameter



The Posterior Bayesian Estimators

Why the MAP?

U Computational Convenience and Ease of
Interpretation

θ̂MAP = argmax
θ∈Θ

{
log`(y|θ)+ logπ0(θ)

}
This is just penalized Maximum-Likelihood (ML)
estimation with − logπ0(θ) interpreted as a penalty on
the parameter estimate

U Often viewed as an acceptable proxy for the posterior
mean (based on asymptotic arguments)

D Not justi�ed from a Bayesian perspective, often
implies that π0 be tuned from y to achieve desired
results (so-called �empirical Bayes� approaches)

D May lead to incorrect decisions in the model selection

context



The Posterior Bayesian Estimators

A Di�erent MAP: the Marginal MAP

When the parameter θ consists of a discrete θd and a continuous θc

components, the global posterior mean is most often useless

Usual Two-Step Approach for this Case*

1 Marginal MAP Estimation of θd

θ̂d = arg max
θd∈Θd

∫
Θc

π(θd,θc|y)dθc︸ ︷︷ ︸
π(θd |y)

2 Conditional Posterior Mean Estimation of θc

θ̂c = E[θc|y,θd = θ̂d]

*Not the only option, check that the loss
c[(θd ,θc), (td , tc)] =1{td 6= θd}(tc −θc)2 implies
a slightly di�erent solution P



The Posterior An Example: Signal in Noise

Please bear with me Although the details may seem a bit
involved, the following example is very important:

Posterior calculations are key to the Bayesian approach

Many observations that pertain to this simple model are valid
in great generality



The Posterior An Example: Signal in Noise

Signal in Noise Model

Assume that we observe

yi = θdθcsi +ui for i = 1, . . . ,n

where

(ui)i≥1 is an iid N (·|0,w)-distributed noise sequence

(si)i≥1 is a known (deterministic) signal

θd ∈ {0,1} is the signal presence indicator parameter

θc ∈R is the (unknown) signal amplitude parameter

For (θd ,θc) we assume the independent prior*

π0(θd,θc) = pθd (1−p)1−θd︸ ︷︷ ︸
Bernoulli

N (θc|0,v0)︸ ︷︷ ︸
Gaussian

*Equivalent model speci�cation
π0(dθ) = pδ0(dθ)+ (1−p)N (θ|0,v0)dθ



The Posterior An Example: Signal in Noise

Signal in Noise Model

The Posterior

π(θd = 0|y) = 1−p

(1−p)+p
√

vn
v0

exp
(

vn〈s,y〉2

2w2

)
π(θc|θd = 0,y) =N (θc|0,v0) =π0(θc)

π(θc|θd = 1,y) =N

(
θc

∣∣∣∣vn〈s,y〉
w2 , vn

)

where 
vn =

(
1
v0
+ ‖s‖2

w

)−1

‖s‖2 =∑n
i=1 s2

i

〈s,y〉 =∑n
i=1 siyi



The Posterior An Example: Signal in Noise

Details...



The Posterior An Example: Signal in Noise

The Marginal MAP + Conditional Posterior Mean

θ̂d =
{

1 if
√

vn
v0

exp
(

vn〈s,y〉2

2w2

)
> 1−p

p

0 otherwise

θ̂c =
{

vn

w2 〈s,y〉 if θ̂d = 1

0 if θ̂d = 0

The global posterior means yields

(θ̂d, θ̂c) =
(
π(θd = 1|y) , π(θd = 1|y)

vn

w2 〈s,y〉
)

The global MAP chose θ̂d = 1, θc = vn/(〈s,y〉w2) when

exp

(
vn〈s,y〉2

2w2

)
> 1−p

p

and (θ̂d = 0,θc = 0) otherwise



The Posterior An Example: Signal in Noise

Interpretation of the Results

The Frequentist Perspective

Assuming a persistent signal, 1
n

∑n
i=1 s2

i −→
n→∞ ρ > 0, and under P(θd ,θc)

1 The Maximum Likelihood Estimator (MLE) is consistent:

〈s,y〉/‖s‖2 as.−→θdθc

2 θd may be estimated from the Generalized Likelihood Ratio
(GLR) test θ̂d =1{D > s} where

D = 2log
exp

(− 1
2w

∑n
i=1(yi −〈s,y〉/‖s‖2si)2

)
exp

(− 1
2w

∑n
i=1 yi

2
) = 〈s,y〉2

w‖s‖2

If s is kept �xed with n, the probability of wrongly deciding θd = 0
tends to zero, while the probability of wrongly deciding θd = 1 tends
to 1−F(s), where F is the cdf of the chi-square distribution with
one degree of freedom



The Posterior An Example: Signal in Noise

For the Bayesian Marginal MAP Estimator

As n →∞,

vn =
(

1

v0
+ ‖s‖2

w

)−1

≡ w

‖s‖2

Hence,

When θ̂d = 1, θ̂c ≡ 〈s,y〉/‖s‖2, the Bayesian estimator is
equivalent to the MLE

The decision region for θ̂d = 1 is approximately given by

〈s,y〉2

w‖s‖2 > 2log
(1−p)

p
v0

p
p

w
+ log‖s‖2

and equivalent to the GLR statistic with an increasing threshold;
the Bayesian estimator is a consistent estimator of θd

*

*When θd = 0, 〈s,y〉2/(w‖s‖2)
L−→χ2

1 and when θd = 1,

E〈s,y〉2/(w‖s‖2) = θ2
c ‖s‖2/w+1 = O(n)



The Posterior An Example: Signal in Noise

The Global Posterior Mean

(θ̂d, θ̂c) =
(
π(θd = 1|y) , π(θd = 1|y)

vn

w2 〈s,y〉
)

Also estimates consistently θd and θc but with a signi�cant
over-shrinkage for θc

The Global MAP

chose θ̂d = 1, θc = vn/(〈s,y〉w2) when

exp

(
vn〈s,y〉2

2w2

)
> 1−p

p

Correctly detects that θd = 1 but eventually fail with positive

probability when θd = 0



The Posterior An Example: Signal in Noise

Role of the Prior

Shrinkage E�ect vn < w/‖s‖2 and hence

|E(θc|θd = 1,y)| < |θ̂ML|
Decreasing v0 makes the shrinkage more aggressive,
letting v0 →∞ makes both estimators equivalent (and
not only asymptotically equivalent)

Complexity Penalty
Increasing values of v0 renders the most complex
alternative (θd = 1) less likely due to the
normalization penalty: larger spaces = bigger
normalization constants
If (si) was a large-dimensional signal, this e�ect
would even be prevalent over the (more obvious)
e�ect of p (smaller p makes θd = 1 less likely)
Letting v0 →∞ causes the alternative θd = 1 to
be never accepted B
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The Prior

The Prior

Choosing the Prior is a very important issue in some contexts

But for information processing one generally sticks to
conjugate prior families, tuning them to be somewhat
noninformative*

Here we will just discuss

1 Je�rey's prior

2 Improper prior

3 Conjuguate priors

*Without being to careful about what the term exactly means



The Prior Je�rey's Priors

Je�reys' Rule

When the Fisher information I(θ) = E
[

dlog`(y|θ)
dθ

]2
is �at (does not

depend on θ), a noninformative choice for the prior is to take a �at
prior as well

U Reasonable

U Suggests a rule that is coherent under
reparameterization

Je�reys' Rule

π0(θ) ∝ I1/2(θ) P

Location Parameter `(y−θ) π0(θ) ∝ 1 P
Scale Parameter 1

σ`(y/σ) π0(σ) ∝ 1/σ

Binomial Probability py(1−p)1−y π0(p) ∝ p−1/2(1−p)−1/2 (Dirichlet
or Beta (1/2,1/2) distribution)



The Prior Improper Priors

Improper Priors

D Je�reys' prior are most often improper, in the sense
that they cannot be normalized to a proper pdf such
that

∫
Θπ0(θ)dθ = 1

Improper priors can nonetheless be used in cases where
Z(y) = ∫

Θ`(y|θ)π0(θ)dθ is �nite for all y (despite the fact π0 is
not a real pdf)

They often lead to easier calculations

As well as to Bayesian estimators that are very close to ML
estimators (see our signal in noise example)

However, they usually imply incorrect complexity penalties in
the model selection (or testing) context (our signal in noise

example again)



The Prior The Normalization Penalty



The Prior Conjugate Priors

Conjugate Prior

Conjugacy

Given a likelihood function `(y|θ), the family Π of priors π0 on Θ is
conjugate if the posterior π(θ|y) also belong to Π

In this case, posterior inference is tractable and reduces to updating
the hyperparameters* of the prior

*The hyperparameters are parameters of the priors; they are most often not
treated as a random variables



The Prior Conjugate Priors

Discrete/Multinomial & Dirichlet*

If the observations consist of positive counts y1, . . . ,yd modelled by
a Multinomial distribution

`(y|θ,n) = n!∏d
i=1 yi!

d∏
i=1

θ
yi

i

The conjugate family is the Dirichlet(α1, . . . ,αd) distribution

π0(θ|α) = Γ(
∑d

i=1αi)∏d
i=1Γ(αi)

d∏
i
θ
αi−1
i

de�ned on the probability simplex (θi ≥ 0,
∑d

i=1θi = 1), where Γ is
the gamma function Γ(α) = ∫ ∞

0 tα−1e−tdt (Γ(k) = (k−1)! for
integers k)

*Bernoulli/binomial & Beta, when d = 2



The Prior Conjugate Priors

Figure: Dirichlet: 1D marginals



The Prior Conjugate Priors

Figure: Dirichlet: 3D examples (projected on two dimensions)



The Prior Conjugate Priors

Multinomial Posterior

Posterior
π0(θ|y) = Dirichlet(y1 +α1, . . . ,yd +αd)

Posterior Mean* (
yi +αi∑d

j=1 yj +αj

)
1≤i≤d

MAP (
yi +αi −1∑d

j=1 yj +αj −1

)
1≤i≤d

if yi +αi > 1 for i = 1, . . . ,d

Evidence

Z(y) = Γ(
∑d

i=1αi)
∏d

i=1Γ(yi +αi)∏d
i=1Γ(αi)Γ(

∑d
i=1 yi +αi)

*Also known as Laplace smoothing when αi = 1



The Prior Conjugate Priors

Conjugate Priors for the Normal I

Conjugate Prior for the Normal Mean

For the N (y|µ,w) distribution with iid observations y1, . . . ,yn, the
conjugate prior for the mean µ is Gaussian N (µ|m0,v0):

π(µ|y1:n) ∝ exp
[−(µ−m0)2/2v0

] n∏
k=1

exp
[−(yk −µ)2/2w

]
∝ exp

{
−1

2

[
µ2

(
1

v0
+ n

w

)
−2µ

(
m0

v0
+ sn

w

)]}
=N

(
µ

∣∣∣∣ sn +m0w/v0

n+w/v0
,

w

n+w/v0

)
where sn =∑n

k=1 yk
*

*And y1:n denotes the collection y1, . . . ,yn



The Prior Conjugate Priors

Conjugate Priors for the Normal II

Conjugate Priors for the Normal Variance

If w is to be estimated and µ is known, the conjugate prior for w is
the inverse Gamma distribution Inv-Gamma(w|α0,β0):

π0(w|β0,α0) = β
α0
0

Γ(α0)
w−α0+1e−β0/w

and

π(w|y1:n) ∝ w−(α0+1)e−β0/w
n∏

k=1

1p
w

exp
[−(yk −µ)2/2w

]
= w−(n/2+α0+1) exp

[−(s(2)
n /2+β0)/w

]
where s(2)

n =∑n
k=1(Yk −µ)2.



The Prior Conjugate Priors

The Gamma, Chi-Square and Inverses

The Gamma Distribution*

Gamma(θ|α,β) = βα

Γ(α)
θα−1e−βθ

where α is the shape and β the inverse scale parameter
(E(θ) =α/β, Var(θ) =α/β2)

θ ∼ Inv-Gamma(θ|α,β): 1/θ ∼ Gamma(θ|α,β)

θ ∼ Chi-square(θ|ν): θ ∼ Gamma(θ|ν/2,1/2)

θ ∼ Inv-Chi-square(θ|ν):
1/θ ∼ Chi-Square(θ|ν) or θ ∼ Inv-Gamma(θ|ν/2,1/2)

*MATLAB's convention is to use gam*(a,b), where b = 1/β is the scale
parameter



The Prior Conjugate Priors

Figure: Gamma pdf (k =α,θ = 1/β)



The Prior Conjugate Priors

Conjugate Priors for the Normal III

Conjugate Priors are However Available Only in Simple Cases

In the previous example there is no (useful) conjugate prior when
both µ and w are unknown.

Hence, it is very common to resort to independent marginally
conjugate priors: eg., in the Gaussian case, take
N (µ|m0,v0) Inv-Gamma(w|α0,β0) as prior, then π(µ|w,y) is
Gaussian, π(w|µ,y) is inverse-gamma but π(µ,w|y) does not
belong to a known family*

There nonetheless exists some important multivariate
extensions : Bayesian normal linear model, inverse-Wishart
distribution for covariance matrices

*Although closed-form expressions for π(µ|y)
and π(w|y) are available P



The Prior Exponential families

The previous examples are instances of a general framework

Exponential Family Distributions

`(y|θ) = h(y)exp
[〈s(y),ψ(θ)〉−B(θ)

]
where s(y) are the su�cient statistics

If ψ is an invertible mapping it is possible through the
reparameterization η=ψ(θ) to rewrite the above in canonical (or
natural) form

`(y|η) = h(y)exp
[〈s(y),η〉−A(η)

]
and A is called the log-partition function



The Prior Exponential families

Exponential family distributions play a very important role in
statistics

1 Any likelihood-based estimator of θ (incl. Bayesian estimators)
can only depend on y through the statistic s(y)

2 ∇2A(η) = Cov(s(y)|η) and hence `(y|η) is a log-concave
function of η* P

3 ∇A(η) = E(s(y)|η) and hence the maximum likelihood estimator
η̂ML corresponding to independent observation y1, . . . ,yn is the
unique solution of the equation

E(s(y)|η) = 1

n

n∑
i=1

s(yi)

*∇2A(η) is also equal to the �sher information
matrix for η



The Prior Exponential families

Conjugacy in Exponential Families

The conjugate distribution for

`(y|θ) = h(y)exp
[〈s(y),ψ(θ)〉−B(θ)

]
is

π0(θ|µ0,λ0) = Z−1
0 (µ0,λ0)exp

[〈µ0,ψ(θ)〉−λ0B(θ)
]

where µ0 has the same dimension as s(y) and λ0 ∈R+*

After seeing n independent observations y1, . . . ,yn, the posterior
update consists in

µ←−µ0 +
n∑

i=1
s(yi)

λ←−λ0 +n

*May be improper for some value of µ0,λ0
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Latent Variable Models Model and Graphical Representation

Latent Variable Model

The observation y is viewed as the marginal outcome of a larger
scale random experiment which involves an unobservable
component x

`(y|θ) =
∫
X

f (x,y|θ)dx

x is referred to as latent, missing or hidden data and (x,y) is
complete the data

Usually, the model is naturally speci�ed in a hierarchic fashion also
called generative model

x ∼ q(x|θ)

y|x ∼ `(y|x,θ)



Latent Variable Models Model and Graphical Representation

Graphical Representation: Bayesian Networks (Directed
Graphical Models)



Latent Variable Models Model and Graphical Representation

Plates for Conditionally Independent Replications



Latent Variable Models Model and Graphical Representation

A Fairly Common Graph



Latent Variable Models Missing data

Interpolation of Corrupted Audio Samples

[Ó Ruanaidh and Fitzgerald, 1996; Godsill and Rayner, 1998]

x1, . . . ,xn ∼ Gaussian AR Model(a1, . . . ,ar ,v)

yk = xk unless k is the index of a corrupted sample

Given some priors on a1, . . . ,ar and v, how do we reconstruct the
signal xj at indices j where the corresponding observation is
missing?

Here the goal is to recover (xj) rather than to the estimate the
autoregressive parameters



Latent Variable Models Signal Decomposition and *CA Models

Estimation/Detection of Multicomponents Signals in Noise

[Andrieu and Doucet, 1999]

yk =

xk︷ ︸︸ ︷
r∑

i=1
ai cos(ωik+ϕi)+uk

where (uk) is a Gaussian white noise of variance v

Given some priors on v, (ai), (ωi), (ϕi) and r, how do we
estimate the number of components and their frequencies?

How to recover the noiseless signal (xk)? In this case, it is
possible to bypass parameter estimation and use model
averaging computing E

[
xk|y1:n

]



Latent Variable Models Signal Decomposition and *CA Models

Probabilistic PCA

[Tipping and Bishop, 1999] Cov(yk) ≈ FF ′ where F is a rank r
matrix is interpreted as

xk ∼N (0, Ir)

yk = Fxk +uk

where uk ∼N (0,vId) (and d À r).

The above is fully equivalent to assuming that yk is
N (0,FF ′+vId)�distributed but the latent variable view suggests an
algorithm for estimating FF ′ and v* as well as extensions

Methods for estimating r

Methods to deal with missing data

Models with di�erent marginal distribution

*Note that another important direct observation in this context is the
convexity of K 7→ − log |K |+ trace(KC)



Latent Variable Models Mixture Models

Finite Mixture Model

Mixture PDF

f (y) =
r∑

i=1
αifi(y)

Missing Date Interpretation

P(xk = i) =αi

yk|xk = i ∼ fi(y)



Latent Variable Models Mixture Models

Mixture modelling is used in a variety of applications

As a �exible tool for
modelling densities

As a clustering method −1
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Latent Variable Models Scale Mixture

Scale Mixture

Eg., model for �sparse� regression [Tipping, 2001]

y = v′x+u

where v contains observed covariates and the vector x of regression
coe�cients xi is given an independent heavy-tailed prior speci�ed in
hierarchical form*:

1 si ∼ Gamma(s|α0,β0)

2 xi|si ∼N (x|0,1/si)

Also often used to model heavy-tailed observation noise, etc.

*Equivalent to π0(x) ∝
(
1+ x2

2β0

)−(α0+1/2)
, which is a scaled Student-t

distribution when β0 = 1/2 P



Latent Variable Models Mixture of Mixtures

Admixtures, Simplicial Mixtures, Partial Membership Models

xk ∼ Dirichlet(α1, . . . ,αr)

yk|xk ∼ f (y|Bxk)

If the columns of B are interpreted as parameters of clusters, yk is
allowed to be explained by a convex combination of these clusters
de�ned by the latent variable xk

If f is such that E[yk|xk] = Bxk, this may be interpreted as a
probabilistic variant of *CA decomposition
If, in addition, B ≥ 0, this is a form of (probabilistic)
Non-Negative Matrix Factorization
In some settings, normalization of x may be restrictive and the
xi are gamma-distributed* [Buntine and Jakulin, 2006]
Most natural for exponential family f [Heller et al., 2008]

*A normalized vector of independent gamma-distributed variables is
Dirichlet-distributed P



Latent Variable Models Mixture of Mixtures

Latent Dirichlet Association

[Blei et al., 2002; Gri�ths and Steyvers, 2002] The �document� yk

consists of a vector of �word� counts and the columns of B are word
frequency patterns (ie., Bij ≥ 0 and

∑d
i=1 Bij = 1)

xk ∼ Dirichlet(α1, . . . ,αd)

yk|xk,nk ∼ Multinomial(y|nk,Bxk)

This is equivalent to the more usual generative representation P

For i = 1, . . . ,nk

1 Draw one �theme� tk,i in {1, . . . ,r} with probabilities
x1, . . . ,xr

2 Draw one word wk,i with probabilities given by the tk,i�th
column of B

Collect these in the word count vector yk

The document is a bag-of-words drawn from di�erent theme-speci�c word

distributions, where the latent variable xk represents the document-level

repartition of the di�erent themes



Latent Variable Models State-Space Models

State-Space Models, Hidden Markov Models (HMMs),
Switching Autoregresions, . . .
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MAP Parameter Inference Structure of the posterior

We start by examining the simpler case where we want to compute
the MAP estimate of θ

The simplest possible case

Assume that (x,y)* has an exponential family distribution in natural
parameterization

f (x,y|θ) = h(x,y)exp
[〈s(x,y),θ〉−nA(θ)

]
and that we use a conjugate prior

π0(θ|µ0,λ0) ∝ exp
[〈µ0,θ〉−λ0A(θ)

]
The posterior is given by

π(θ|y) ∝
∫

h(x,y)exp
[〈s(x,y)+µ0,θ〉− (n+λ0)A(θ)

]
dx

*To simplify the notations, we assume that we have n independent
observations but use x and y to denote the collections of latent and observed
variables respectively; thus s(x,y) =∑n

i=1 s(xi,yi)



MAP Parameter Inference Structure of the posterior

Problem π(θ|y) is not log-concave any more
Optimizing logπ(θ|y) wrt θ is a complex numerical optimization
task and the presence of local maxima is, to some extent,
unavoidable

We do however have a simple closed-form expression of the
gradient wrt θ

∇θ logπ(θ|y) =∫
s(x,y)h(x,y)exp

[〈s(x,y),θ〉−nA(θ)
]

dx∫
h(x,y)exp

[〈s(x,y),θ〉−nA(θ)
]

dx︸ ︷︷ ︸
E[s(x,y)|y,θ]

−n∇θA(θ)+{
µ0 −λ0∇θA(θ)

}
= E

[∇θ log f (x,y|θ)
∣∣y,θ

]+∇θ logπ0(θ)

attributed to Fisher (see disc. of [Dempster et al., 1977])



MAP Parameter Inference The EM Algorithm

The Expectation-Maximization Algorithm
[Dempster et al., 1977]

Given a parameter estimate θ̂k

1 Compute

qθ̂k
(θ) = E

[
log f (x,y|θ)

∣∣y, θ̂k
]+ logπ0(θ)

2 Update the parameter estimate to

θ̂k+1 = argmax
θ∈Θ

qθ̂k
(θ)



MAP Parameter Inference The EM Algorithm

Rationale

1 Because of Fisher relation, the algorithm can only stop in a
stationary point of the log-posterior logπ(θ|y)*

2 It is an ascent algorithm:

qθ̂k
(θ̂k+1)−qθ̂k

(θ̂k)

= E

[
log

f (x,y|θ̂k+1)

f (x,y|θ̂k)

∣∣∣∣∣y, θ̂k

]
+ log

π0(θ̂k+1)

π0(θ̂k)

= E

[
log

f (x|y, θ̂k+1)

f (x|y, θ̂k)

∣∣∣∣∣y, θ̂k

]
︸ ︷︷ ︸

≤0

+ log
π(θ̂k+1|y)

π(θ̂k|y)

*See [Wu, 1983] for necessary topological

and regularity assumptions



MAP Parameter Inference The EM Algorithm

The EM Intermediate Quantity as a Minorizing Surrogate

Figure: One EM iteration for ML estimation



MAP Parameter Inference The EM Algorithm

Rationale (Contd.)

3 In exponential family models with conjugate priors, the EM
principle does de�ne a practical algorithm when

1 E
[

s(x,y)
∣∣y, θ̂k

]
may be evaluated

2 The complete-data ML problem maxθ∈Θ{〈S,ψ(θ)〉−nB(θ)} may
be solved for all feasible S

Then,

θ̂k+1 = argmax
θ∈Θ

{〈E[
s(x,y)

∣∣y, θ̂k
]+µ0,ψ(θ)〉− (n+λ0)B(θ)

}
For the natural parameterization, θ̂k+1 is the unique solution of*

E
[
s(x,y)|θ]

n
= E

[
s(x,y)

∣∣y, θ̂k
]+µ0

n+λ0

*E
[

s(x1,y1)
∣∣θ]= (n+λ0)−1

(∑n
i=1 E

[
s(xi,yi)

∣∣yi, θ̂k
]+µ0

)
for iid observations



MAP Parameter Inference The EM Algorithm

There are many variants

Partial update of θ

Limited increase of q

�Accelerated� methods*

Monte Carlo EM, ie. approximating E
[

s(x,y)
∣∣y, θ̂k

]
by Monte

Carlo averages*

Iterated Conditional Mode (image MRF), Viterbi training
(speech HMM), Classi�cation EM (mixtures) and the likes:

replace E
[

s(x,y)
∣∣y, θ̂k

]
by s(x?k ,y)

where x?k is the most likely sequence given y and θ̂k

May be successful but greedy and biased, possibly unstable in
cases where y is poorly informative about x and θ

*Simple one: compute the gradient and use a quasi Newton optimizer
*Requires MCMC simulations



MAP Parameter Inference The EM Algorithm

The Imputation Bias

Problematic if parameter estimation is the main objective but not
necessarily so in other contexts (eg. clustering)



MAP Parameter Inference The EM Algorithm

In addition The term EM is often used loosely for algorithms that
do not follow the previous principle but use the surrogate
minorization function trick (most often using convex inequalities)

[Hunter and Lange, 2004] propose to call these MM algorithms

Sometimes the term EM is also associated to coordinate ascent
algorithms (that are not MM algs.)



MAP Parameter Inference Variational Inference

Variational Approximation [Neal and Hinton, 1999]

logπ(θ|y) = Cst + log
∫
X

f (x,y|θ)π0(θ)dx

≥
∫
X

log
f (x,y|θ)π0(θ)

q(x)
q(x)dx

The variational algorithm proceeds by alternate maximimizations of
the rhs wrt θ ∈Θ and q ∈Q



MAP Parameter Inference Variational Inference

Variational Algorithm in Exponential Family [Jordan et al.,
1999]

1 For �xed q̂k

θ̂k+1 = argmax
θ∈Θ

{〈Eq[s(x,y)]+µ0,ψ(θ)〉− (n+λ0)B(θ)
}

2 For �xed θ̂k+1

q̂k+1 = argmax
q∈Q

∫
X

log
f (x,y|θ̂k+1)π0(θ̂k+1)

q(x)
q(x)dx

which is a convex optimization problem whenever Q is a
convex set P

If Q ⊃ {p(x|y,θ);θ ∈Θ}, then q̂k+1 = p(x|y, θ̂k+1) and one recovers
the EM algorithm (there is then no variational approximation)



MAP Parameter Inference Data Augmentation

Latent Variable Models are Used in Two Very Di�erent
Contexts

Black-Box or Behavioral Modelling

Mostly `(y|θ) matters and x is essentially �ctitious

Physical Modelling

The latent model is used to represent a system with data
corruption or loss and the de�nition of x is motivated by a physical
interpretation

Especially in the �rst case, it is important to remember that there
is an in�nity of ways in which x could be de�ned for a given `(y|θ)



MAP Parameter Inference Data Augmentation

Di�erent Levels of Data Augmentation

LDA (Latent Dirichlet Association)



MAP Parameter Inference Data Augmentation

Mixture of Student-t Distributions [Peel and McLachlan, 2000]
For robust mixture estimation, one can replace the Gaussian by
(multivariate) Student-t distributions:
`(y|θ) =∑r

i=1αi Student(y|ν,µi,Σi)

To use the EM algorithm in this context, one may use the scale
mixture representation of the Student-t distribution

1 z ∼ Student(z|ν)

2 y|z ∼N (y|µ,ν/zΣ)



MAP Parameter Inference Data Augmentation

Conditional-Dependent Data Augmentation

In the above model assume that we want to update θi only, given
the other parameters (performing alternate maximizations)



MAP Parameter Inference Data Augmentation

The idea used in [Fessler and Hero, 1995] (for EM) and [Doucet
et al., 2005] (for MCMC) is to use non-consistent
conditional-dependent completions that preserve π(θi|y,θ−i)

For instance, if y =∑n
i=1 xi +u, zi =∑

j 6=i xj (assuming that the law of
zi given θ−i = (θj)j 6=i is available)
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Posterior Inference

Posterior Inference

Both latent variable inference and parameter inference through the
EM algorithm rely on evaluation of expectations under p(x|y,θ)

Obviously, this usually only requires the use of Bayes' rule

p(x|y,θ) = `(y|x,θ)q(x|θ)∫
X`(y|x′,θ)q(x′|θ)dx′

In models with more complex dependencies, this can be more
challenging

There exists a general algorithm (called sum-product or belief
propagation) for doing so in models whose Bayesian network
representation forms a tree [Wainwright and Jordan, 2008]



Posterior Inference

From [Wainwright and Jordan, 2008]



Posterior Inference

Posterior Inference in State-Space Models

The �ltering pdfs (p(xk|y1:k,θ))k≥1

may be determined recursively

The smoothing pdfs
(p(xk,xk+1|y1:n,θ))1≤k≤n−1 can be
determined from the corresponding
�ltering pdfs (p(xk|y1:k,θ))1≤k≤n by
backward inductiona

Proceeding similarly, one can
simulate state sequences x1:n from
p(x1:n|y1:n,θ)

For a �xed function s,
E

[∑k
j=1 s(xj)|y1:k,θ

]
may be updated

recursively using an auxiliary
recursion

aRauch-Tung-Striebel smoothing
in linear SSMs
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MCMC Basics Why Do We Need MCMC?

Why Do We Need MCMC for Bayesian Inference?

Unfortunately, the methods discussed so far are usually not
applicable in more complex models:

When computation of E(s(x,y)|y,θ) is no more feasible

When the prior π0(θ) cannot be chosen in a conjugate family

When the inference involves competing models*

Even in simpler models, estimators other than the MAP (so-called
fully Bayesian inference) can generally not be computed using the
algorithms described so far

*Particularly so when the inference involves a potentially unlimited number
of models as in Bayesian nonparametric models



MCMC Basics Why Do We Need MCMC?

Usual solutions include

1 Variational Methods

U Computations scale even for larger models and
datasets

D (Almost) no control over the approximation error

2 Monte Carlo Methods

U The random approximation error is controlled by
the computation time

D Theoretical and practical performance not always
guaranteed for complex models and large
datasets

MC clearly wins when dealing with moderate-dimensional
problems and in cases where inference bias is not tolerable
(statistics, physics, . . . )

In machine learning the issue is less clear-cut*

*And the preferred answer somewhat subject to hype



MCMC Basics Why Do We Need MCMC?

In the following, we give a quick introduction to MCMC (Markov
Chain Monte Carlo) techniques, focussing on the Gibbs sampler*

We denote by π(z) the target density, typically this a full posterior
π(x,θ|y) or conditional π(x|θ,y) and is known only up to an
unknown normalizing constant

*Typically preferred when dealing with behavioral models with conjugate
priors. In physics and, to some extent, statistics the situation is almost reversed
and Metropolis-Hastings MCMC is the basic tool



MCMC Basics Why Do We Need MCMC?

Basic Monte Carlo Doesn't Solve the Problem

Self-Normalized Importance Sampling

Simulate (z(j))1≤j≤m from q and estimate Eπ[g(z)] by∑m
j=1 w(j)g(z(j))∑n

i=1 w(i)

where
w(j) =π(z(j))/q(z(j))

Very useful* but does not scale well to large dimensions

*Main tool in Sequential Monte Carlo methods



MCMC Basics (Minimal) Markov Chain Theory

Transition Kernel

The probability distribution of a Markov chain (z(j))j≥1 on Z is fully
determined by its initial distribution ν(z) and its transition kernel
k(z,z′), which are such that

P(z(1) ∈ A) =
∫

A
ν(z)dz

P(z(j) ∈ A|z(1), . . . ,z(j−1)) =
∫

A
k(z(j−1),z)dz



MCMC Basics (Minimal) Markov Chain Theory

Chapman-Kolmogorov Equations

P(z(j+1) ∈ A) =
∫

z∈Z

∫
z′∈A

ν(z)kj(z,z′)dzdz′

where
kj(z,z′′) =

∫
kj−1(z,z′)k(z′,z′′)dz′

kj(z(1),z) is the conditional pdf of z(j+1) given z(1)



MCMC Basics (Minimal) Markov Chain Theory

Stationary Distribution

De�nition

π is stationary for k if ∫
π(z)k(z,z′)dz =π(z′)

Hence π is a stationary point of the kernel k, viewed as an operator
on pdfs

It is easily checked that this implies that if ν=π,

P(z(j) ∈ A) =
∫

A
π(z)dz

for all j ≥ 1



MCMC Basics (Minimal) Markov Chain Theory

Detailed Balance Condition and Reversibility

Determining the stationary distribution(s) is hard in general, except
in cases where the following stronger condition holds.

Detailed Balance Condition

π(z)k(z,z′) =π(z′)k(z′,z) for all (z,z′) ∈Z2

The chain is then said to be π-reversible and π is a stationary
distribution

Proof ∫
π(z)k(z,z′)dz =

∫
π(z′)k(z′,z)dz =π(z′)



MCMC Basics (Minimal) Markov Chain Theory

Convergence to Stationary Distribution

If π is a stationary distribution, and under additional regularity
conditions not discussed here, the following properties hold

Convergence in Distribution

E[g(z(m))] →
∫
Z

g(z)π(z)dz (irrespectively of ν)

Law of Large Numbers (Ergodic theorem)

1

m

m∑
j=1

g(z(j))
as.−→

∫
Z

g(z)π(z)dz

Central Limit Theorem
p

m

σπ,k,g

[
1

m

m∑
j=1

g(z(j))−
∫
Z

g(z)π(z)dz

]
L−→N (0,1)



MCMC Basics MCMC Essentials

Markov Chain Monte Carlo (MCMC) in a Nutshell

1 Given a target distribution π, which may be known up to a
constant only, �nd a transition kernel k which is π-reversible,
ie., such that

π(z)k(z,z′) =π(z′)k(z′,z)

2 Simulate a (long) section z(1), . . . ,z(m) of a chain with kernel k
started from an arbitrary point z(1) and compute the Monte
Carlo estimate

π̂(g) = 1

m

m∑
j=1

g(z(j))

of
∫
Z f (z)π(z)dz, perhaps discarding in the sum the very �rst

iterations (so called burn-in period)
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The Gibbs Sampler

Partial Updates

In most cases of interest z = (z1, . . . ,zd), and the individual moves
only update some components of z:

The i�th component zi is updated from the kernel k(z,z′i)
The remaining components z−i are left unchanged

The detailed balance condition becomes

π(zi|z−i)k(z,z′i) =π(z′i|z−i)k(z′,zi) P

To ensure irreducibility, all components need to be updated in turn
either systematically* or in a random scanning order

*Prevent the complete chain to be reversible



The Gibbs Sampler

The Gibbs sampler is based on the choice k(z,z′i) =π(z′i|z−i)

Gibbs Sampler

Starting from an initial arbitrary state z(1), update the current state
z(j) = (z(j)

1 , . . . ,z(j)
d ) to a new state z(j+1) as follows.

For i = 1,2, . . . ,d: Simulate z(j+1)
i from

π(zi|z(j+1)
1 , . . . ,z(j+1)

i−1 ,zj
(i+1), . . . ,z(j)

d )

The above is the systematic scan Gibbs sampler; one may also use
the random scan Gibbs sampler by choosing at random the index i
of the component to be updated



The Gibbs Sampler

Gaussian Posterior

In the Gaussian model y1, . . . ,yn ∼iid N (y|µ,v) with constant
(improper) priors for both µ and v*, we have

µ|y1:n,v ∼N
(
µ

∣∣ 1
n

∑n
i=1 yi,

v
n

)
v|y1:n,µ ∼ Inv-Gamma

(
v
∣∣n

2 −1, 1
2

∑n
i=1(yi −µ)2

)

This suggests a simple Gibbs sampler for simulating from the
posterior of (µ,v)

*Arguably not the best choice for v



The Gibbs Sampler

The Systematic Gibbs Sampler for Gaussian Observations
(in MATLAB/OCTAVE)*

n = length(Y);

S = sum(Y);

mu = S/n;

for i = 1:500 % Small number of iterations

S2 = sum((Y-mu).^2);

v = 1/gamrnd(n/2-1,2/S2);

mu = S/n + sqrt(v/n)*randn;

end

*Observe that for loops are unavoidable and hence that MATLAB/OCTAVE
is not very MCMC-friendly



The Gibbs Sampler

Example of Results with, Left n = 10 Observations; Right,
n = 100 Observations from the N (0,1) Distribution
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Rao-Blackwellization

Rao-Blackwellization

If we can �nd (z, t) such that z ∼π, t ∼ ν and E
[
g(z)|t] may be

computed in closed-form,
MCMC simulation t(1), . . . ,t(n) are performed using ν as target pdf
and the Rao-Blackwellized estimator

π̂RB(g) = 1

m

m∑
j=1

E
[

g(z)
∣∣t(j)

]
is used instead of π̂(g) = 1

m

∑m
j=1 g(z(j))

For independent simulations, the Rao-Blackwell Theorem* shows
that

Var
(
π̂RB(g)

)
≤ Var

(
π̂(g)

)
This does not necessarily hold true for MCMC simulations, but
empirically it does in most settings

*Var(E[g(z)|t])+E(Var[g(z)|t]) = Var[g(z)] P



Rao-Blackwellization

The term Rao-Blackwellization is used loosely in MCMC to describe
approaches in which explicit marginalizations replace simulations

A �rst common use of the idea is to run the MCMC simulation
on an augmented target and to use Rao-Blackwellization as a
post-processing for computing estimates

For instance, when using the Gibbs sampler a natural
Rao-Blackwellized estimator of the marginal pdf of zi is

1

m

m∑
j=1

π(zi|z(j)
−i )



Rao-Blackwellization

Another option is to take pro�t of Rao-Blackwellization during
the simulations resulting in marginalized or collapsed Gibbs
samplers

In a Bayesian latent variable model, a typical scheme for the Gibbs
sampler is to alternate {

x|y,θ

θ|x,y

But for an exponential family complete-data model with conjugate
prior, the pdf π(θ|x,y) is available in closed-form, thus allowing for
Rao-Blackwellization



Rao-Blackwellization

Recall that for an exponential family complete-data model with
conjugate prior

π(x,θ|y) ∝ h(x,y)exp
[〈s(x,y),ψ(θ)〉−nB(θ)

]
Z−1

0 (µ0,λ0)exp
[〈µ0,ψ(θ)〉−λ0B(θ)

]
and hence

π(θ|x,y) = Z−1
0 (s(x,y)+µ0,n+λ0)

exp
[〈s(x,y)+µ0,ψ(θ)〉− (n+λ0)B(θ)

]
Thus a Rao-Blackwellized estimator of the posterior mean of θ,
may be computed as

1

m

m∑
j=1

E(θ|x(j),y)



Rao-Blackwellization

But as the normalizing constant Z0 is known explicitly, it is also
possible to integrate out θ to obtain a closed-form expression of
π(x|y):

π(x|y) ∝ h(x,y)
Z0(s(x,y)+µ0,n+λ0)

Z0(µ0,λ0)

The resulting marginal is usually complex but amenable to single
site Gibbs sampling on the components of x = (x1, . . . ,xn), especially
when these are discrete variables

This is the preferred sampling method for LDA and related models
[Gri�ths and Steyvers, 2002; Rigouste et al., 2007]



Rao-Blackwellization

Mixture of Gaussian Example

Assume that we observe y1, . . . ,yn in the Gaussian mixture model∑r
i=1αiN (y|θi,vi). To make derivations simpler, α and v are

treated as �xed parameters and we use an improper �at prior on
the vector of means θ

π(xk,θ|yk) ∝ exp

[
r∑

i=1

(
logαi − (yk −θi)2

2vi

)
1{xk = i}

]

and hence

π(x1:n,θ|y1:n) ∝ exp

[
r∑

i=1
logαini −

θ2
i ni

2vi
+ θisi

vi

]

where {
ni =∑n

k=11{xk = i}

si =∑n
k=1 yk1{xk = i}



Rao-Blackwellization

Upon completing the square,

π(x1:n,θ|y1:n) ∝ exp

[
r∑

i=1
logαini +

s2
i

2nivi

]
exp

[
r∑

i=1
− 1

2vi/ni

(
θi − si

ni

)2
]

and

π(x1:n|y1:n) ∝
r∏

i=1
α

ni
i

√
vi

ni
exp

[
s2

i

2nivi

]
Finally,

π(xk = i|x−k,y1:n) ∝α
ni,−k+1
i

√
vi

ni,−k +1
exp

[
(si,−k +yk)2

2(ni,−k +1)vi

]

where {
ni,−k =

∑
j 6=k1{xj = i} = ni −1{xk = i}

si,−k =
∑

j 6=k yj1{xj = i} = si −yk1{xk = i}



Rao-Blackwellization

To run the collapsed (or marginalized) single site Gibbs
sampler

Repeatedly simulate from the conditionals π(xk|x−k,y1:n)

keeping track of the accumulated component statistics
(ni,si)1≤i≤r

The idea can be extended to mixture models with an unknown
number of components [Nobile and Fearnside, 2007]*

*Recall that this would require using
a proper prior on θ



Rao-Blackwellization

State-Space models

In models with continuous state variables,{
xi|x−i,y,θ 1 ≤ i ≤ n

θ|x,y

is often the only option

There exists variants of the collapsed Gibbs sampler for important
classes of models, in particular for conditionally Gaussian
state-space models [Carter and Kohn, 1996; Doucet and Andrieu,
2001; Cappé et al., 2005]
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Auxiliary Targets

Auxiliary Targets

Apart from Rao-Blackwellization, the other common design trick is
to use cleverly chosen auxiliary targets

[Doucet et al., 2005]

If p(xi|θ1:n,y) is available, scan all
components, alternating between

1 xi ∼ p(xi|θ1:n,y)

2 θi ∼ q(θi|xi)



Auxiliary Targets

Proving that the previous algorithm is correct can be challenging

B#1: The Target pdf
The algorithm is not simulating under π(x1:n,θ1:n|y)

Reverse-Engineering Solution If you believe that the algorithm is
marginally correct for θ1:n then the target pdf must be

paux(θ1:n,x1:n) =π(θ1:n|y)
n∏

i=1
p(xi|θ1:n,y)



Auxiliary Targets

B#2: The Updating Scheme
The algorithm is not alternating between the full conditionals{

xi ∼ paux(xi|θ1:n,x−i)

θi ∼ paux(θi|θ−i,x1:n)

The second update is indeed a draw from*

paux(θi,x−i|θ−i,xi)

paux(θi,x−i|θ−i,xi) =
π(θ1:n|y)p(xi|θ,y)

∏
j 6=i p(xj|θ,y)∫

Θπ(θ1:n|y)p(xi|θ,y)dθi

=π(θi|xi,y,θ−i)︸ ︷︷ ︸
q(θi|xi)

∏
j 6=i

p(xj|θ,y)

*The x−i part is not required and can be �discarded� (in practice, it is not
even simulated)



Auxiliary Targets

The particle Gibbs sampler of [Andrieu et al., 2010] is another
striking example where one simulates a population of �particles�
z(j) = z(j)

1:d and an index k(j) such that only z(j)
k(j) is converging to π(z)

Here, the auxiliary target is

paux(k,z1:d) = 1

d
π(zk)

∏
i 6=k

q(zi)

And the update rule

z−k|k,zk ∼
∏

i 6=k q(xi)

k|z1:d ∼ paux(k|z1:d) = π(zk)/q(zk)∑d
i=1π(zi)/q(zi)

P



Important things that have not been discussed here

Bayesian nonparametric models

Advanced variational methods [Wainwright and Jordan, 2008]

Reversible jump MCMC [Green, 1995]

Sequential Monte Carlo methods [Doucet et al., 2001; Cappé
et al., 2005, 2007] and their applications for static inference
[Andrieu et al., 2010]

Techniques speci�c to the case of state-space models [Cappé
et al., 2005] and applications, eg., to changepoint models
[Fearnhead, 2006]



Thank you for your attention!
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