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Some Typical Processing Problems

Compression [/ Visualization
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Denoising
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Some Typical Processing Problems

Compression [ Visualization

Many interesting new contributions with a SP perspective
[Coifman, Maggioni, Kolaczyk, Ortega, Ramchandran, Moura, Lu, Borgnat]
or IP perspective [EIMoataz, Lezoray]
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Outline

e Introduction:

Graphs and elements of spectral graph theory

e Kernel Convolution:

- Localization, filtering, smoothing and applications
e Spectral Graph Wavelets
* Multiresolution

* From Graphs to Manifolds
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Elements of Spectral Graph Theory

Reference: F. Chung, Spectral Graph Theory
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Definitions

A graph (G is given by a set of vertices and «relationships »
between them encoded in edges G = (V,F)

A set V of vertices of cardinality |V| = N
A set Eofedges: ec F, e=(u,v) withu,veV

Directed edge: e = (u,v), € = (v,u) and e # €'
Undirected edge: e = (u,v), € = (v,u) and e = ¢
A graph is undirected if it contains only undirected edges

A weighted graph has an associated non-negative weight function:
w:VxV-osRY (u,v)¢ E=wu,v)=0

e
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Matrix Formulation

Connectivity captured via the (weighted) adjacency matrix
W (t,v) = w(U, V)  withobvious restriction for unweighted graphs
W (u, u) = 0 2o s
Let d(u) be the degree of u and D = diag(d) the degree matrix

Graph Laplacians, Signals on Graphs
L=D-W Lo = D 122D 1/2
Graph signal: f:V — R

Laplacian as an operator on space of graph signals

Lfw) =) (f(u)— f(v))

v~YUuU
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Some differential operators

The Laplacian can be factorized as £ = SS*

Explicit forms: ()

-1 u

S*f(u,v) = f(v) — f(u) is a gradient

Z g(u,v) — Z g(v',u) is a negative divergence
(u,v)ER (v, u)eR

P
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Properties of the Laplacian

Laplacian is symmetric and has real eigenvalues

Moreover: (f,Lf) =Y (f(u)— f(v))" >0 Dirichlet form

u~v

positive semi-definite, non-negative eigenvalues
Spectrum: 0= Ao < A1 < ... A\nax

(G connected: A1 > 0

A; =0 and Ajy1 >0 @G has ¢+1 connected components

Notation: (f,Lg) = f'Lg

e
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Measuring Smoothness

(F.Lf) = (flu) = f())” >0

unv

is a measure of « how smooth » fison G

Using our definition of gradient: V. f = {S* f(u,v),Vv ~ u}

Local variation ||Vufll2 = Z 5% f(u,v)]?

Total variation |f|rv = Z IVuflz = Z Z |5 f(u, v)|?

ueV ueV v~U

CPr(
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Notions of Global Regularity for Graph

® Discrete Calculus, Grady and Polimeni, 2010

Edge of
Derivative %

= Vw(m,n) [f(n) — f(m) l l

m [ )
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Notions of Global Regularity for Graph

® Discrete Calculus, Grady and Polimeni, 2010
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Notions of Global Regularity for Graph

® Discrete Calculus, Grady and Polimeni, 2010

Edge of
Derivative %

— aolmn) [f(n) = £(m) l

m L

AEPF

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




12

Notions of Global Regularity for Graph

® Discrete Calculus, Grady and Polimeni, 2010
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Notions of Global Regularity for Graph

® Discrete Calculus, Grady and Polimeni, 2010

Edge of
Derivative %

= Vw(m,n)[f(n) — f(m)]

m}eeg S.t. e(m,n)]

i [Vl = [ > w(m,n) [f(n) - f(m)]2]

nNENm

of
Graph -
Gradient o [{ %

N[
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Notions of Global Regularity for Graph

® Discrete Calculus, Grady and Polimeni, 2010

Edge of
Derivative %

— ol [f(n) — f(m) l

L S
of ! T
Graph -
Gr:l.(ai?ent Vit = [{ % } c€ s.t. e=( )]

i [Vl = [ > w(m,n) [f(n) - f(m)]2]

nNENm

N[
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Notions of Global Regularity for Graph

® Discrete Calculus, Grady and Polimeni, 2010

T or
D S = Va7 — f(m) |
i
Of '8 T
)
SR [ de mJ ecE S.t. e=(m,n)

N[

it 1Vmtll2 = [ > w(m,n)[f(n) - f(m)}2]

Variation
nNENm

Quadratic % Z ||vmf||% — Z w(m,n) [f(n) — f(m)]2 = f'Lf

Form
meV (m,n)e&

‘
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Smoothness of Graph Signals

f*L.f =0.14 f*Lof = 1.31 f*L3f = 1.81
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Remark on Discrete Calculus

Discrete operators on graphs form the basis of an interesting field
aiming at bringing a PDE-like framework for computational analysis
on graphs:

e Leo Grady: Discrete Calculus

e Olivier Lezoray, Abderrahim Elmoataz and co-workers: PDEs on
graphs:

- many methods from PDEs in image processing can be
transposed on arbitrary graphs

- applications in vision (point clouds) but also machine learning
(inference with graph total variation)

Fe

I

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




15

Walks, Paths and Distances

Walk: a sequence of vertices {vo, v1, ..., vk} with (v;—1,v;) € E(G)
Rem: a path is a walk with no repeating edges

Length = cardinality or sum of edge weights along path

Shortest paths and adjacency/Laplacian

d(i,7) = length of shortest path between ¢ and j
W™i, j] = number of walks of length n between i and j

For any 2 vertices 4,5 if d(4,j)>s then L£*[i, j] =0

AEPF
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Laplacian eigenvectors

Spectral Theorem: Laplacian is PSD with eigen decomposition
L=D-W {(Aeyup) be=01,.. N—1
L =UAU"
That particular basis will play the role of the Fourier basis:

Graph Fourier Transform, Coherence

F(Ae) = (£, u) Zf 1)ug (1

1
@ := max |[(ug, d;)| € [—, 1{ Graph Coherence

I
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Important remark on eigenvectors

Optimal - Fourier case What does that mean 77

Eigenvectors of modified path graph

AEPF
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Examples: Cut and Clustering

1C(AA
C(A, B) Z Wi, j] RatioCut(A, A) := 5 (|A| )

1€A,jEB

min RatioCut(A, A)
ACV

EPFL O
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Examples: Cut and Clustering

1C(A,A
C(A,B):= »  WIij] RatioCut(A,A4) := > (|A| )

1€A,JEB

- VIAI/IA] ifie A
min RatioCut(A4, A) fli] =
ACV

A itieA

|7l = V/IV] and (f,1) =0
f'Lf = |V| - RatioCut(A4, A)

P
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Examples: Cut and Clustering

C(A, B) Z Wi, j] RatioCut(A, A) := 14, 4)
2 |4
1€A,JEB

o VIAI/IA] ifie A
min RatioCut(A4, A) fli] = — _
AcY ~JIAYA] i

|71l = VIV]and (f,1) =0
fLf = |V|-RatioCut(A, A)
in_ f*Lf subject to|f| = /[V] and (f,1) =0

Relaxed b1em Looking for a smooth partition function

[ @ P
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L
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Ipython Notebook example !
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Examples: Cut and Clustering

Spectral Clustering
arg min f'Lf subject to||f|| = +/|V| and {f,1) =0

fERIV

By Rayleigh-Ritz, solution is second eigenvector u;

Remarks: Natural extension to more than 2 sets
Solution is real-valued and needs to be quantized.

In general, k-MEANS is used.

First k eigenvectors of sparse Laplacians via Lanczos,
complexity driven by eigengap |Ax — Ag11]

Spectral clustering := embedding + k-MEANS

VieV :im (u(i),. .. up1(i))
@
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Graph Embedding/Laplacian Eigenmaps

Goal: embed vertices in low dimensional space, discovering geometry
(Z1,...2N) = (Y1, .- YN)
z; € RY v €RF k< d

Good embedding: nearby points mapped nearby, so smooth map

A
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Graph Embedding/Laplacian Eigenmaps

Goal: embed vertices in low dimensional space, discovering geometry
(1, 2Nn) = (Y1, YN)
z; € RY v €RF k< d
Good embedding: nearby points mapped nearby, so smooth map

minimize variations/ Wi, §1(yi — y;)2
maximize smoothness of embedding | !
Laplacian Eigenmaps

arg min y'Ly

A TiDy = 1% * Ly =D
" D — 0 ) fix scale Y Y

A
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Laplacian Eigenmaps

:‘H') - =T * o~ ..ﬁ"‘?
~ - . . ; v -

,’7” s &"‘: T T, A
Nwb 1=50 N=10 t=50 N=15 1=50

K, i Ny

N=5 =250 N=10 =250 N=15 =250

N=5 L= N=10 tew= N=15

AEPF
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Remark on Smoothness

Linear / Sobolev case

Smoothness, loosely defined, has been used to motivate various
methods and algorithms. But in the discrete, finite dimensional

case, asymptotic decay does not mean much

VB <M e fILf <M <> MfOP <M
1

P
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Smoothness of Graph Signals Revisited

f*L.f =0.14 f*Lof = 1.31 f*L3f = 1.81

EPFL O
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Remark on Smoothness / Sparsity

Non-Linear / Besov Case:

a 1/p
18, = (o )IP) " 0<p<2
k=1

By o = {f st.|flg, <o with o < NYP~1/2 | f|| = 1}

Best M-term approximation error: e/ M| = Z {Dm. )
k> M

Jackson-type Inequality and Sparsity
Letf € By, 0 <p <2

M) < |flg, 7 (M7 =N7T)<a’r(M"—-NT)
with 7 =2/p — 1

o )
LTS | EPFL ‘
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Functional calculus

It will be useful to manipulate functions of the Laplacian

f(L), f: R R

£kUg — )\’Z Wy » polynomials

Symmetric matrices admit a (Borel) functional calculus

Borel functional calculus for symmetric matrices
fiL)y=2_ fOoue;
0ES(L)
Use spectral theorem on powers, get to polynomials
From polynomial to continuous functions by Stone-Weierstrass

Then Riesz-Markov (non-trivial !)

e

I
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Example: Diffusion on Graphs

Consider the following « heat » diffusion model

g — —Lf %f’(é,t):—)\eﬂf,t) ]E(gao) = JEO(E)

ot
f (4,t) = e A fo () f = e~ - fo by functional calculus
Explicitly: fi) = S: S: e~ "My (2)ue(g) fo(J)

jev /¢

et = g e upul

14

i, 5] = Ze_t”\‘zue() ue(J)

T

€

I(I’fl.
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Example: Diffusion on Graphs

29

examples of heat kernel on graph

e —wvegete

e S

M e wpma 08
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Simple De-Noising Example

Suppose a smooth signal fon a graph

. IVAB<M e fiLf<M

Original Noisy

\
\Jp= [
/ 7 fﬂ;\/\‘g ﬂ K
\ NZY Q’\\\V\E%\@ I 15
(\p/ \45/ \\/ > >/§<?/ VA

But you observe only a noisy version y <

y(i) = £(i) + n(i) <

A
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Simple De-Noising Example

31

De-Noising by Regularization
argmin|| f — yll3 s.t. f/LF <M
f

T .
Aargmnin SIf =yl + L7

FO)§ s 7, m) = g(L;7,7)

el
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Simple De-Noising Example

De-Noising by Regularization
argmin|| f — yll3 s.t. f/LF <M
f

argmin 5./ I + /127 T2 > £+ (e —u) =0

FO)§ s 7, m) = g(L;7,7)

P
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Simple De-Noising Example

31

De-Noising by Regularization
argmin|| f — yll3 s.t. f/LF <M
f

argmin 5./ I + /127 T2 > £+ (e —u) =0

Graph Fourier

— > DR0+5 (R0 -a0)=o

vee{0,1,...,N —1}

FO)§ s 7, m) = g(L;7,7)

(P
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Simple De-Noising Example

De-Noising by Regularization
argmin|| f — yll3 s.t. f/LF <M
f

axgmin 7|yl + 1L — > L fat o (fomy) =0

Graph Fourier

— > DR0+5(R0-i0) =0,
vee{0,1,...,N—1)

ﬁ(f) — T y(¢) “Low pass” filtering !

T+ 2\

FO)§ s 7, m) = g(L;7,7)

P
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Simple De-Noising Example

De-Noising by Regularization
argmin|| f — yll3 s.t. f/LF <M
f

argmln—Hf y\|2+f£7°f :{> L" fo + = ([« )—O

Graph Fourier

— > DR0+5(R0-i0) =0,

vee{0,1,...,N —1}

~ T
() = 71(¢)  “Low pass” filtering !
— > 0= i

Convolution with a kernel: f(g)@()% T, fr) — g(ﬁ; T, 7“)

@ ECOLE POLYTECHNIQUE
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Simple De-Noising Example

32

argming {||f — y[|3 + /" Lf}

AEPF
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Simple De-Noising Example

argmin; {||f — y|l3 + /" Lf}

o F O W 2
08 A NS Y - 72D
a (7 /\2@}\/ N g (

08
/ S Q SN N e
06 \<ﬁ\/ \>/lé) \\/\\\\/\E/—/—> /<\?/ |/;l§ 056
0.4 { 7 //\ 4 % SAVY '% ! 0.4
\ \ \ \ §\~" S '},9’\ »«1@
02 ( - Y L 4‘/10\\[ 05 02
s, \ X \7)
0 d 4@1“! 0 0
N z
02 g \/§ 05 02
SU—
0.4 7 » 04
1= >
e N -15 06
A\ e
A 08

Denoised

Original

A
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Simple De-Noising Example

argming {||f — y[|3 + v/ Lf}
f

o & & usE !
08 A - \\7;@\ ZU\\\x. >‘¥7 ) ’ °
; a (7 v;\/ \//v}\/ N /<
: A Y E
06 \ﬁ/ \\\ L \\/\\\\\4\7/\?/—/—5 //‘T\/?/ \Ié@?\ °
VA N = oo | .
: N R TR ] S A |
o ! . _\ N ¥ \ jw 05 02

-0.4 7 . -0.4
1= ;
-0.6 DN = \’ ~ -0.6
D 1.5
% V7 W -2

Original Noisy Denoised

. T r r T __
orgmin 21—yl + L7F T > LT fe+ S (f—y) =

~ T
L(0) = (/) “Low pass” filtering !
— > 0= i) tev :

A
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Simple De-Noising Example

argming {||f — y[|3 + v/ Lf}
f

1 — Ay 1
Z . N :\ ILSE ® ® £ l@g{m/\ \\,sﬁ@;.
08 ;‘3/" /g\\gﬁ_@/x l<\\/\'>- '§ ; g / 2 VA g /\\Z?/X Z\\/ v /éié? \\/\ e
4 % 7 % /21‘}?/\“% N\ A 15 ( \-",% ' 27 ¢ SQ I
06 \\/\\\\Tﬁ/\//\il?/%@?\ \ Ve \\/\\\\7§ZL’>//\3‘/?/\| 056
\\‘Jé%/\\//\\ '% , \\/ 2 N N2 Ig/(\v@p §‘#¢ 5
0.4 / (W\ S wa\p: \ % ’
<> — DAL g L —
Lo, 4 ) s
N N
° 3 | TR |
-0.2 q N\ " \t\‘,"\v"\‘*"zj’;‘é A v\ \ N /\ -0.2
y 05 NP SHS AN N
//\./‘ — §/‘, /\%} ——
-0.4 / Y » 3 /“ 1 -0.4
P S e
-08 By, < 59 -08
) e b <= )
Original Noisy Denoised
T 9 T
. o . ’r'f T -
arg}{mHQIIf ylla+ 1L L' f, + §(f* —y) =
~ T

L(0) = (/) “Low pass” filtering !
f«(£) T+2X2y( ) D g

2

—1

AN A

Fﬂtering: fout()\ﬁ) — fzn(Aﬁ)h()\ﬁ) fout(i) — fzn()\ﬁ)ﬁ()\ﬁ)uﬁ(z)
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Application: A Recommender System

%

-\‘ ’

R
rra E

50 D
usoTs

X|movie, user| = movie rating
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Application: A Recommender System

Users structured as communities

0 ¥ Y
. ¥ S b B -
= IS O
Lr 2 " ‘@'&‘\é‘mﬁﬁé’%
Vol
, 0% « ,'\\"'!"; ?;,:2. ;‘50‘

——

50 D
usoTs

X|movie, user| = movie rating  Users in community rate similarly

AEPF
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Application: A Recommender System

Users structured as communities

o v h *
AR
B . .‘.ﬁ"a"g-_\‘-
N AS é’.j'n

; i'-‘-.-{:,‘.w

b <A DR

SO Al
\:ﬁg;&_'.'
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.

t\‘ ’

L. i
rra E

50 D
usoTs

X|movie, user| = movie rating  Users in community rate similarly
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Application: A Recommender System

Users structured as communities

(

-

Notseless anifica datasat

C
]
s
o
~
25
Ml
2
15
1
150 200

X|movie, user| = movie rating  Users in community rate similarly

50

00
usots

Movies are clustered in genres.

Similar movies are rated similarlyby users

@ M

FEDERALE DE LAUSANNE

'va-vvi



33

Application: A Recommender System

Users structured as communities

(

X|mhovie, user| = movie rating  Users in community rate similarly

Movies are clustered in genres.

Similar movies are rated similarlyby users

AEPF
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Application: A Recommender System

%

-\‘ ’

R
rra E

50 D
usoTs

X|movie, user| = movie rating
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Application: A Recommender System

106
50 D
usoss

X|movie, user| = movie rating

arg min 7, | X, + | Ag o (X — M) + 7 XL, X' +7.X'L,X
X

Solved using ADMM

AEPF
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Application: A Recommender System

L.
sistless anfica dalase Part of Movielens 10M dataset
r * ag '+ x
Fap's
11 - ruciear vpraphs.
.
1.05 \
L |
095 s T
——— ~ -
09 o
1 0 o 0 o
S 00 15 200 0.85
usoTs 0 2 3 K
percentage of cbservations

X|movie, user| = movie rating

arg min 7, | X, + | Ag o (X — M) + 7 XL, X' +7.X'L,X
X

Solved using ADMM
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Convolution with a kernel and localization

A
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Simple De-Noising Example

argming {||f — y[|3 + v/ Lf}
f

1 — Ay 1
Z . N :\ ILSE ® ® £ l@g{m/\ \\,sﬁ@;.
08 ;‘3/" /g\\gﬁ_@/x l<\\/\'>- '§ ; g / 2 VA g /\\Z?/X Z\\/ v /éié? \\/\ e
4 % 7 % /21‘}?/\“% N\ A 15 ( \-",% ' 27 ¢ SQ I
06 \\/\\\\Tﬁ/\//\il?/%@?\ \ Ve \\/\\\\7§ZL’>//\3‘/?/\| 056
\\‘Jé%/\\//\\ '% , \\/ 2 N N2 Ig/(\v@p §‘#¢ 5
0.4 / (W\ S wa\p: \ % ’
<> — DAL g L —
Lo, 4 ) s
N N
° 3 | TR |
-0.2 q N\ " \t\‘,"\v"\‘*"zj’;‘é A v\ \ N /\ -0.2
y 05 NP SHS AN N
//\./‘ — §/‘, /\%} ——
-0.4 / Y » 3 /“ 1 -0.4
P S e
-08 By, < 59 -08
) e b <= )
Original Noisy Denoised
T 9 T
. o . ’r'f T -
arg}{mHQIIf ylla+ 1L L' f, + §(f* —y) =
~ T

L(0) = (/) “Low pass” filtering !
f«(£) T+2X2y( ) D g

2

—1

AN A

Fﬂtering: fout()\ﬁ) — fzn(Aﬁ)h()\ﬁ) fout(i) — fzn()\ﬁ)ﬁ()\ﬁ)uﬁ(z)
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Example: Diffusion on Graphs

37

examples of heat kernel on graph

e —wvegete

e S

M e wpma 08
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“Convolutions’ and *“Translations’

(f *g)(n }jf

Inherits a lot of properties of the usual convolution

associativity, distributivity, diagonalized by GFT

:ZW(n) — > fxgo=
¢

L(fxg)=(Lf)xg=f=*(Lg)

Use convolution to induce translations

(T:f)(n) == VN(f *&)(n) = VN Zf Yu (1) (n)
AP
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Spectral Graph Wavelets

5] Hammond et al., Wavelets on graphs via spectral graph theory, ACHA, 2011

AEPF
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Spectral Graph Wavelets

5] Hammond et al., Wavelets on graphs via spectral graph theory, ACHA, 2011
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» Classical setting: (Tg)(t) = g(t — s) = / G(&)e2miEs g2mikt ¢
R
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Spectral Graph Wavelets

5] Hammond et al., Wavelets on graphs via spectral graph theory, ACHA, 2011

e (Generalized translation

» Classical setting: (Tyg)(t) = g(t — s) = / G(&)e2miEs g2mikt ¢
R

» Graph setting:  (Th,9) (1) :== > g(Xe)uj (n)ue(i)

AEPF

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




39

Spectral Graph Wavelets

5] Hammond et al., Wavelets on graphs via spectral graph theory, ACHA, 2011
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Spectral Graph Wavelets

5] Hammond et al., Wavelets on graphs via spectral graph theory, ACHA, 2011

e (Generalized translation
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The Agonizing Limits of Intuition

The Graph Fourier and Kronecker bases are not necessarily mutually

unbiased

1

= o) € | —,1
B oL N1 [xe, 03)] [\/ﬁ ]
i€{1,2,...,N}

Laplacian eigenvectors (Fourier modes!) can be well localized
- phenomenon not yet fully understood, under intense study
- can be observed in lots of experimental data graphs
- not universal: known classes of random and regular graphs have
delocalized eigenvectors
1 < ||Till2 < VNp
- the limit towards low coherence seems well-behaved
(all regular properties emerge)
- HOWEVER in average: 1 N ,
N Z T3]3 =1
=1

umm@

A
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Kernel Localization

The operator 1 should be understood as kernel localization:

From a kernel ¢g(s) generate localized instances:

Kernel Localization

§: Rt >R Tig(i) = > §(Ae)ug(i)ue(5)

By functional calculus, the linear operator
f=g(L)f

1s the kernelized convolution.

Fe

ACPHE
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Polynomial Localization

Given a spectral kernel g, construct the family of features:
Sn(m) = (Tng)(m) — du(m) = VN > d(A)xi(m)x;(n)

Are these features localized 7

Polynomial Kernels are K-Localized

pr (o) Zak)\g if d(¢,n) > K, then (T;pg)(n) =0

P
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Polynomial Localization

Given a spectral kernel g, construct the family of features:
Sn(m) = (Tng)(m) — du(m) = VN > d(A)xi(m)x;(n)

Are these features localized 7

G (M) = (Om, Prc (L))

Gr (M) = (61, (L)) "=y Should be well localized within

ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE

K-ball around n !
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Polynomial Localization

Given a spectral kernel g, construct the family of features:
Sn(m) = (Tng)(m) — du(m) = VN > d(A)xi(m)x;(n)

Are these features localized 7

Suppose the GFT of the kernel is smooth enough (K+1 different.)

G (M) = (Om, Prc (L))

Gr (M) = (61, (L)) "=y Should be well localized within

K-ball around n !
- @
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Polynomial Localization

Given a spectral kernel g, construct the family of features:
Sn(m) = (Tng)(m) — du(m) = VN > d(A)xi(m)x;(n)
Are these features localized 7

Suppose the GFT of the kernel is smooth enough (K+1 different.)

Construct an order K polynomial approximation:

G (M) = (Om, Prc (L))

Gr (M) = (61, (L)) "=y Should be well localized within

K-ball around n !
- @

A

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




44

Polynomial Localization

Given a spectral kernel g, construct the family of features:
Sn(m) = (Tng)(m) — du(m) = VN > d(A)xi(m)x;(n)

Are these features localized 7

Suppose the GFT of the kernel is smooth enough (K+1 different.)

Construct an order K polynomial approximation:

o (m) = (O, Px (L)) Exactly localized in a K-ball around n

n

Gr (M) = (61, (L)) "=y Should be well localized within

K-ball around n !
- @

A
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Polynomial Localization - Extended

fis (K+1)-times differentiable:

Let Kzn = d(z,n) — 1

(Tig)(n)] < \/Npi%f { sup  [g(A) pﬁ(A)I} = VN inf {||§ —px;, lloo}

AE[OaAmax] PK;py

Regular Kernels are Localized
If the kernel is d(i,n)-times differentiable:

[(T39)(n)] < {Qﬁ ()\rzax)dm

sup [g%m) (A)@
AE[0, A max]

A
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Polynomial Localization - Extended

Example: for the heat kernel g(\) = e~ ™"

din din
T _ 2VF (e \* _ BN o (e
HTZQHQ o dzn' 4 o Ajp, T 4d;,,

We can estimate an explicit measure of spread in terms of the degrees:

' T »
"

HfH2 Zd

TN)\ eD T>\max62(Dmax—1) ,h T
A} (Tig) < ———¢ z | L 50

(27)3 il \

T — 0= Tig — 0;, A7 (T;g) — 0

1
AQT —>— dzn
7 S Z

T — +oo = 1;9 —

= @

A
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Localization / Uncertainty

47

Competition between smoothness and localization in the spectral
representation of kernels

AEPF
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Localization / Uncertainty

Competition between smoothness and localization in the spectral
representation of kernels

Remark: Ufai:C/dt\tf(t)\Q /dt‘f/(t)P
R R

AEPF
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Localization / Uncertainty

Competition between smoothness and localization in the spectral
representation of kernels

Remark: Ofai:C/dt\tf(t)\Q /dt‘f/(t)P
R R

Smooth kernels can be used to construct controlled localized features

Example: Spectral Graph Wavelets

AEPF
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Localization / Uncertainty

Competition between smoothness and localization in the spectral
representation of kernels

Remark: Ufai:C/dt\tf(t)\Q /dt’f/(t”Q
R

R

Smooth kernels can be used to construct controlled localized features

Example: Spectral Graph Wavelets

Localization /Smoothness generate sparsity (but more on that later)

n
LIS | EPFL
A -

A
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Spectral approaches to multiresolution

A
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Spectral Graph Wavelets

49

Remember good old Euclidean case:

(W 1)(@) = 5= [ e () flw)do

We will adopt this operator view

§:RT—R Wy =g(L)

P
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Spectral Graph Wavelets

Remember good old Euclidean case:

1

(W 1)(@) = 5= [ e () flw)do

We will adopt this operator view

Operator-valued function via continuous Borel functional calculus
g . R+ — R Wg — g(ﬁ) Operator-valued function

Action of operator is induced by its Fourier symbol

Wof(0) =000 Wel)@D) = 3 40 fOuel

i e ) T

ECOLE POLYTECHNIQUE
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Spectral Graph Wavelets

5] Hammond et al., Wavelets on graphs via spectral graph theory, ACHA, 2011
Generalized translation

» Classical setting:
(Tag)(t) = glt = 5) = [ gle)emissemctag
R

» Graph setting: ' ) . '
(Tng)(@) :== ) g(Ae)ug(n)ue(i)

e (Generalized dilation:

AEPF
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Spectral Graph Wavelets

5] Hammond et al., Wavelets on graphs via spectral graph theory, ACHA, 2011
Generalized translation

» Classical setting:

(Toq)(t) = gt — 5) / §(£)e2miEs 2mict ¢

N-—-1

59 5) =
(Thg)(2) == ) g(Ae)up(n)ue(i)
£=0

» Graph setting:

e (Generalized dilation:

Dsg(A) = g(sA)

* Spectral graph wavelet at scale s, centered at vertex n:

A
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Spectral Graph Wavelets

5] Hammond et al., Wavelets on graphs via spectral graph theory, ACHA, 2011
Generalized translation

» Classical setting:

(Tag)(t) = g(t =3) = [ g(ee = esemilag

» Graph setting:
(Thg)(i) ==

e (Generalized dilation:

A
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Spectral Graph Wavelets

5] Hammond et al., Wavelets on graphs via spectral graph theory, ACHA, 2011
Generalized translation

» Classical setting:
(Tag)(t) = glt = 5) = [ gle)e misocamictae

R Original Image Noisy Image
» Graph setting: -

e (Generalized dilation: )
Dsg(A) = g(sA)

* Spectral graph wavelet at scale s, centered at v

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




52

A Continuous Wavelet Transform

Continuous Spectral Graph Wavelet Transform

(Wof)(t,5) = (9(tL)F)(5) = X a(tre) f(O)ue(5)
14

+00 A2
X
If kernel satisfies C'g :/ J ( ) < 400
0 X

Inverse Transform

+-00 3 3
_Z/ Wftjwt,a()dt f@)  f=f—{uo, fHuo

JEV

= @

P
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Frames
JA,B >0, 3h:RT = Ri.e scaling function

0<A<h(u)?+) §(tsu)® < B < +oo

Y A

scaling function wavelets

A simple way to get a tight frame:

500 = [ FAN = 500) = VA0 30N

for any admissible kernel

A
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Scaling & Localization

Effect of operator dilation 7

Need higher polynomial approximation for

large scale kernel (on spectral domain)!

A
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Effect of operator dilation ?




Scaling & Localization

55

Effect of operator dilation 7

Need higher polynomial approximation for

large scale kernel (on spectral domain)!

I
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Effect of operator dilation 7

Need higher polynomial approximation for

large scale kernel (on spectral domain)!

A
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Scaling & Localization

o

Yy ;(7) should be small if ¢ and j are separated, and ¢ is small
Study matrix element: () = (¥e4,05) = <T55@-, 0;)

Theorem: dg(i,7) > K and g has K vanishing derivatives at 0

< Dt for any t smaller than a critical scale

function of dg(i, j)

Reason 7 At small scale, wavelet operator behaves like power of Laplacian

I
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Spectral Graph Wavelet Localization

¢85,’I’L

AEPF
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Spectral Graph Wavelet Localization

¢81,n

Characterizations of this localization

@ Hammond et al., Wavelets on graphs via spectral graph

theory, 2011
y ¢S5an

AEPF

ECOLE POLYTECHNIQUE
a1 Ay FEDERALE DF LAUSANNE

@ Shuman et al., Vertex-frequency analysis on graphs, 2013
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Scaling & Localization
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Remark on Implementation

Not necessary to compute spectral decomposition

Polynomial approximation :

1,

0

0.2;

-0.21

0

) 40 0

z o
ex: Chebyshev minimax

Then wavelet operator expressed with powers of Laplacian:

K—-1

g(tL) ~ Z ap(t)LF

k=0

And use sparsity of Laplacian in an iterative way

i <

A
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Remark on Implementation

Wit ) = (0O F#), (Wit ) — Wi(t.j)| < Bl
sup norm control (minimax or Chebyshev)
N 1 Mn
Wf(tnaj) — <§Cn,0f# + Z Cn,ka(L)f#>
k=1 j
) = a_1(£ —agl) (Tr-1(L)f) — Tr—2(L) f

Shifted Chebyshev polynomial

Computational cost dominated by matrix-vector multiply with

(sparse) Laplacian matrix

J
Complexity: O(Z M,|E|)  Note: “same” algorithm for adjoint !
n=1

[ @ A
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Simple De-Noising with Wavelets

61

argming {||f — y[|5 + /" LS}

AEPF
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Simple De-Noising with Wavelets

argmin {||f —y[|3 + /" LS}

Sagrel with rinee
N e

Noisy

argmin,, {||f — W*all3 + 7llal|1.. }

gl ¢ w-otvuld-ﬂ ’ifuvv
. ..—.. ™ L]

0“ ' .0’ . A
"'*‘_ 4“?'\.‘.’ 'i*
¥ Q{‘Ah', { })

Denoised

AEPF
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Simple De-Noising with Wavelets

Original

argmin {||f —y[|3 + /" LS}

Sagrel with rinee
ARy Y
" W v S
LGN NS o
K-~ N ALY
. e e = S
s AN
p L YN v
< \l "‘*‘.‘4&
..Q-.- -
e e »

Noisy

argmin, {[|f — W*a|[3 + a1}

5 ‘ ‘
Decay of
" wavelet
1 coeflicients
0.5¢
% 1000 2000 3000

Digrel roooneyudied with Thhonoy

Denoised

Tigred revonetyucted with Wavelst 2

AEPF
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Simple De-Noising with Wavelets

Original

Sayel 'm-au.lq)-o v

argmin {||f —y[|3 + /" LS}

Sagrel with rinee
1 ARy Y
. W - e .
. P LR\ R
N ZAV e
o . e e = S A
e SR L <
: RO
? et Ry
NEY WA AV
0z :.¢~ N e *
’1_\-.— ?‘ ;_ ."“_,~ 3 - \ -
ae ";’\,“ , R
2% | 2 | e \ "
" SIS o‘;s:»‘
L = ge ‘

Noisy
avgmin, {|1f = W*all3 + ol

2
Decay of
J h wavelet
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0.5¢
% 1000 2000 3000
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Transductive Learning

Let X be an array of data points x1,%2,...,2T, € R

Each point has a desired class label yi € Y (suppose binary)

At training you have the labels of a subset S of X S|=1l<n

Getting data is easy but labeled data is a scarce resource
GOAL: predict remaining labels

Rationale: minimize empirical risk on your training data such that

- your model is predictive
- your model is simple, does not overfit
- your model is “stable” (depends continuously on your training set)

Fo

A

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




63

Transductive Learning

Ex: Linear regression Yp = 0 -x +0b
Empirical Risk: | X'8 —y|; = > = (XX") Xy

if not enough observations, regularize (Tikhonov):

IX'3 —yl5 +llfl; === 6=XX"+al)"'Xy

Ridge Regression

A
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Transductive Learning

Ex: Linear regression Yp = 0 -x +0b
Empirical Risk: | X'3 — y||3 ::> B =(XXH"'Xy

if not enough observations, regularize (Tikhonov):

IX'3 —yl5 +llfl; === 6=XX"+al)"'Xy

Ridge Regression
Questions:

How can unlabelled data be used 7

More general linear model with a dictionary of features 7

|®x0—yl5.5+ aS(3)

dictionary depends on data points simplifies /stabilizes selected model

o @ A
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Learning on/with Graphs

How can unlabelled data be used 7

Assumption:

target function is not globally smooth but it is locally smooth over regions

of data space that have some geometrical structure

Use graph to model this structure

A
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Learning on/with Graphs

Example (Belkin, Niyogi)

Affinity between data points represented by edge weights
(affinity matrix W)

Z Wi (f(xi) — f(x)))°
i jEX
— f'ILf L-Ww-D

measure of smoothness: Af

Revisit ridge regression: | X483 — yl||3 + a|8]|5 + v8' X LX'(3

4

Solution is smooth in graph “geometry”

A
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Transduction & Representation

More general linear model with a dictionary of features ?

® y dictionary of features on the complete data set (data dependent)

M restricts to labeled data points (mask)

arg min ||y — M<I>X5||§ + 048@)

B /
Model Selection penalty, sparsity 7

Empirical Risk
HIPIEAt TS Smoothness on graph ?

Important Note: our dictionary will be data dependent but its construction

is not part of the above optimization

ol @

A
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Sparsity and Smoothness on Graphs

scaling functions coeffs

481 48}
46 461 .
Gy 209
44 I s S V:"’l 44 I S AR IR O] Sy 1 1
-98 -96 -94 -92 -90 -88 -98 -96 -94 -92 -90 -88
48 48
46 46
e T SO g s o O
O SO
» 44 L L e e e e ————— L 44 SR LS SOOI ———— e ———
;' -98 -96 -94 -92 -90 -88 -98 -96 -94 -92 -90 -88
48
46
44

_98 -96 -94 -92 -90 -88

AEPF
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Sparsity and Transduction

argmin [y — M3 + S (9)

Since sparsity = smoothness on graph, why not simple LASSO ?

argmin [y — M@x 83 + af Al

A
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Sparsity and Transduction

argmin [y — M3 + S (9)

Since sparsity = smoothness on graph, why not simple LASSO ?

argmin [y — M@x 83 + af Al

Bad Idea:

We know there are strongly correlated coefficients
(LASSO will kill some of them)

There is no information to determine masked wavelets

A

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE
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Group Sparsity - take I

69

Scaling functions not sparse are optimized separately

Group potentially correlated variables (scales)

scale 2

scale 1

scaling level

L

AEPF
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Group Sparsity - take I

Scaling functions not sparse are optimized separately

Group potentially correlated variables (scales)

scale 2 Ne ~‘
1
1
1

scale 1 I

scaling level m.

AEPF
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Group Sparsity - take I

69

Scaling functions not sparse are optimized separately

Group potentially correlated variables (scales)

scale 2

scale 1

scaling level m.

AEPF
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Group Sparsity - take I

Scaling functions not sparse are optimized separately

Group potentially correlated variables (scales)

scale 2

- Few groups should be active = local smoothness
Scale

Inside group, all coeflicients can be active

Formulate with mixed-norms ||5|| D,q

Simple model, no overlap, optimized like LASSO

scaling level

A
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Preliminary Results

30 ‘ ‘
—©-Laplacian Eigenmaps
—p—Laplacian Reg.

25+ —~#— Adaptive Threshold 2-ClaSS USPS
—*—Haar-like basis

2ol O State of the art

Simulation results from Gavish et al, ICML 2010
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Preliminary Results

30 ‘ ‘
—©-Laplacian Eigenmaps
—p—Laplacian Reg.

25+ —~#— Adaptive Threshold 2-ClaSS USPS
—*—Haar-like basis

2ol 0 State of the art

Simulation results from Gavish et al, ICML 2010

Test Error (%)
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Preliminary Results

70

30

—©-Laplacian Eigenmaps
—p—Laplacian Reg.

—#— Adaptive Threshold
—*—Haar-like basis

O State of the art

N
(€2}
T

Test Error (%)
&

0 20 40 60 80 100

2-class USPS

Simulation results from Gavish et al, ICML 2010

5% labeled recovered

«

No. Comparable to state-of-art :(

vvv”vys

AEPF
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Example: Shape Descriptors

Shape represented by 3D point cloud

k-Nearest Neighbors

Construct graph
e — Neighborhood

Ex: Localized heat kernel on point clouds

ENP U Y - e PP P )

A
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Example: Shape Descriptors

Idea: use multiscale localized features on graph

Ex: graph wavelet transform of coordinates maps

" : A
) . ) - i J A
* ,)
: @\ .\
X Bl A
- '\
I A\ d AN 3 A

AEPF

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




73

Example: Shape Descriptors

Application 1: sparse/dense description & robust matching

’ .—‘-—-
"-

I\

Application 2: parts matching

AEPF
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AEPF
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Outline

e Introduction:

Graphs and elements of spectral graph theory

e Kernel Convolution:

- Localization, filtering, smoothing and applications
e Spectral Graph Wavelets
* Multiresolution

* From Graphs to Manifolds

AEPF
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Outline

e Introduction:

- Graphs and elements of spectral graph theory

e Kernel Convolution:

- Localization, filtering, smoothing and applications

e Spectral Graph Wavelets

e Multiresolution

* From Graphs<eRManifolds

A
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Graph wavelets

* Redundancy versus sparsity

- can we remove some or all of it 7

* Faster algorithms

- traditional wavelets have fast filter banks implementation
- whatever scale, you use the same filters

- here: large scales -> more computations

* (Goal: solve both problems at one

I
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Basic Ingredients

Euclidean multiresolution is based on two main operations

Filtering (typically low-pass and high-pass)
Down and Up sampling

20000000
QQQQCQ.Q

A
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Basic Ingredients

77

Euclidean multiresolution is based on two main operations

Filtering (typically low-pass and high-pass)
Down and Up sampling

00000000
QQOQCQCQ

mm-»’z. .!‘.‘: > Goit) |

Analysis fier 0 Oownsample  ypsample g-,-'mg;,' /_V__“
s (+ )
. i X o \=
g ) " 42 } > Gy

4

*

—»| H2) +

Andlysis filer 1 Downsample!  Upsample 1 Synthesis
fiker 1

A
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Basic Ingredients

Euclidean multiresolution is based on two main operations

Filtering (typically low-pass and high-pass)
Down and Up sampling

Flltermg is fine but how do we downsample on graphs 777

1oL Jol 1ol 1o

-—mm-»‘z--%‘.‘z > Golt) |

Oownsample  Upsample Syothests /"\
fiero ( + )
—_— \

il Analysis fiker 0

» ¢2 »; 42 Jl » G —

Andlysis filer 1 Downsampled L‘bsam:m

— H| m —

Synthe sis
fiker 1

A
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Basic Ingredients

Subsampling is equivallent to splitting in two cosets (even, odd)

00000000
1Ol 10X 10X IO
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Basic Ingredients

Subsampling is equivallent to splitting in two cosets (even, odd)

00000000
1Ol 10X 10X IO

Questions:  How do we partition a graph into meaningful cosets 7

Are there efficient algorithms for these partitions ?
Are there theoretical guarantees 7

How do we define a new graph from the cosets 7

A
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Cosets - A spectral view

Subsampling is equivallent to splitting in two cosets (even, odd)

00000000
1Ol 10X 10X IO

Classically, selecting a coset can be interpreted easily in Fourier:

() = 5 £(3) (1 + cos(i))

eigenvector of

largest eigenvalue

A
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Cosets and Nodal Domains

Nodal domain: maximally connected subgraph s.t. all vertices have

same sign w.r.t a reference function

We would like to find a very large number of nodal domains, ideally | V] !

Nodal domains of Laplacian eigenvectors are special (and well studied)

A
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Cosets and Nodal Domains

Nodal domain: maximally connected subgraph s.t. all vertices have

same sign w.r.t a reference function

We would like to find a very large number of nodal domains, ideally | V] !

Nodal domains of Laplacian eigenvectors are special (and well studied)

Theorem: the number of nodal domains associated to the largest laplacian

eigenvector of a connected graph is maximal,

V(Pmax) = V(G) = |V
IFF G is bipartite

In general: v (G) = ‘V| — X(G) + 2 (extreme cases: bipartite and complete graphs)

= & P

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




81

Cosets and Nodal Domains

Nodal domain: maximally connected subgraph s.t. all vertices have

same sign w.r.t a reference function

We would like to find a very large number of nodal domains, ideally | V] !

Nodal domains of Laplacian eigenvectors are special (and well studied)

For any connected graph we will thus naturally define cosets and
their associated selection functions

V_|_ — {Z eV s.t. ¢N—1(7:) > O} V_ = {Z eV s.t. Q5N_1(i) < O}

M, (i) = 5 (1+ sen(éx-1 (1)) M_(i) = 5 (1~ sn(én—1 ()

ursm%

I
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Examples of cosets
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Simple line graph 000006000

o (u) = sin(wku/n + 7/2n)

A =2 —2cos(mk/n)

P
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Examples of cosets

Simple line graph 00000000 000000000

or(u) = sin(wrku/n + 7/2n) A =2 — 2cos(mk/n) 1<k<n

CPr(
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Examples of cosets

Simple line graph 00000000 000000000

........ '
Simple ring graph . @
® ®
¢x(u) = sin(2mku/n) o7 (u) = cos(2mku/n) 1<k <n/2

A = 2 — 2cos(2mk/n)

CPr(

m*ﬂun nn l \\F
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Examples of cosets

Simple line graph 00000000 000000000

....... o ®
Simple ring graph . . O O
e o o o
o _© O O
¢x(u) = sin(2mku/n) oz (u) = cos(2mku/n) 1<k< n/2

A = 2 — 2cos(2mk/n)

CPr(
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Examples of cosets

Simple line graph 00000000 000000000

....... o ®
Simple ring graph . . O O
® ® ® ®
o _© O _ O
Lattice L J ®

I(I’ﬂI
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Examples of cosets

Simple line graph 000006000 " JOX XOX XOX XO
Simple ring graph

Lattice @

e

0000 o
oY YeX
Yo Yo
0e0®
Yo Yo

O) JOX _
L JOX @
O) JOX _

quincunx
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The Agonizing Limits of Intuition

e Multiplicity of Ay ax
- how do we choose the control vector in that subspace ?
- even a prescription can be numerically ill-defined
- graphs with “flat” spectrum in close to their spectral
radius
* Laplacian eigenvectors do not always behave like

global oscillations

- seems to be true for random perturbations of simple
graphs

- true even for a class of trees [Saito2011]

Fe

ACPHE
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A Laplacian Pyramid on Graphs

86

AEPF
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A Laplacian Pyramid on Graphs

86

Downsampling

Filtering
Single level pyramid

AEPF
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A Laplacian Pyramid on Graphs

Downsampling

Coarsening
Graph reduction

Filtering
Single level pyramid

Prediction/Interpolation

AEPF
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A Laplacian Pyramid on Graphs

Filtering
Single level pyramid

Downsampling

Coarsening
Graph reduction

Prediction/Interpolation
%raph sparsification J

A
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A Laplacian Pyramid on Graphs

Filtering

Single level pyramid .
Downsampling

Coarsening
Graph reduction o .
Prediction/Interpolation

Graph sparsification

Single level pyramid

— N N

5] Shuman, Faraji, VDG, A framework for multiscale transforms on graphs, 2013

- (e
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The Laplacian Pyramid

87

Analysis operator

T

)yl

> Ylow

(P
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The Laplacian Pyramid

Analysis operator

T

> Y1

> Ylow

Coarsening

&

AN CP LG
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The Laplacian Pyramid

Analysis operator

T

> Y1

nterpolation

> Ylow

Coarsening

&

AEPF
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Downsampling

Vi =V = {i €V tumax(i) > 0}

Relaxed solution to 2-coloring for regular graphs

Exact for bipartite graphs

Connections with nodal domains theory for © )

laplacian eigenvectors

(e)

A
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The Laplacian Pyramid

Analysis operator

T

) Hu

(P
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The Laplacian Pyramid

Analysis operator

T

<

(P
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The Laplacian Pyramid

Analysis operator

T

—
<

— MHz = x—GH_~x

P
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The Laplacian Pyramid

Analysis operator

T

<

(P
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The Laplacian Pyramid

Analysis operator

T

P
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The Laplacian Pyramid

91

Analysis operator

Yo _ Hm T
(51 I-— GHm ’

\ 7 \ 7
TV TV

Y Ta

I3 Do, Vetterli, Framing Pyramids, IEEE TSP, 2003

AEPF
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The Laplacian Pyramid

Analysis operator

Yo . Hm T
U1 - I-— GHm ’

\ 7 \ 7
TV TV

Y Ta

Simple (traditional) left inverse

p=(G TI)( %
——\ U1
N——

Ts

Yy

T.T, =1 with no conditions on H or G

I3 Do, Vetterli, Framing Pyramids, IEEE TSP, 2003

T

A
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The Laplacian Pyramid

92

Pseudo Inverse ?

Tol = (TTTa) ' Tu7

Let’s try to use only filters

AEPF
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The Laplacian Pyramid

Pseudo Inverse ?

Tol = (TTTa) ' Tu7

Let’s try to use only filters

Landweber iterations involve only filters:

argmin || Taz — y|3 > @41 =2 +7Ta’ (y — Taiy)

T, = (H," I-H,'GT)

A
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The Laplacian Pyramid

we can easily implement T,’ T, with filters and masks:

g

® @

h

xk h @ g2 ‘?—@7 h TaTTan

With the real symmetric matrix ~ Q = ToZ T, and b= T, y

N-1
TZ I—TQ
7=0

Use Chebyshev approximation of: Lw) =1 (1—7 w)j

ol @

A
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The Laplacian Pyramid

Analysis operator

T

> Y1

> Ylow

Coarsening

&

AN CP LG
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Kron Reduction

In order to iterate the construction, we need to construct a graph on the

reduced vertex set.

A, =Alo,a] — Alo, 0)A(a, ) P A(a, @

A
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Kron Reduction

In order to iterate the construction, we need to construct a graph on the
reduced vertex set.

A, =Alo,a] — Alo, 0)A(a, ) P A(a, @

1 0 Kron reduction
| —> 1/3

1/3
1.0 1.0

1/3

[Dorfler et al, 2011]

A
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Kron Reduction

In order to iterate the construction, we need to construct a graph on the

reduced vertex set.

A, =Alo,a] — Alo, 0)A(a, ) P A(a, @

Ala,a Ala,«

_ )
A= A(a,a] A(a,a)

Properties: maps a weighted undirected laplacian to a weighted

undirected laplacian

spectral interlacing (spectrum does not degenerate)

Ak(A) < Ak(Ar) < )\k—l—n—|a|(A)

disconnected vertices linked in reduced graph IFF there is a

path that runs only through eliminated nodes

I
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Note: For a k-regular bipartite graph

k1, —A
= N

Kron-reduced Laplacian: L, = k*I, — AA7T

P
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Example
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Note: For a k-regular bipartite graph

k1, —A
= N

Kron-reduced Laplacian: L, = k*I, — AA7T

fr(3) :f(z)+f(N_Z) i=1,..,N/2

A
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Filter Banks

98

2 critically sampled channels

Coset 1
Filter H Downsamplej
(%
Filter G Downsamplej
Coset 2

P
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Filter Banks

98

[

2 critically sampled channels

Coset 1
Filter H Downsamplej
Filter G Downsamplej

Coset 2

Theorem: For a k-RBG, the filter bank is perfect-reconstruction IFF

H () +G(0)P =2
HGHGN — i)+ H(N —9)G(i) =0

Lﬁﬂ@

I
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Reduction-aware interpolation

i - )yl

S

G

nterpolation

T
)y

Idea: Optimize interpolation for reduction:

ylu] = Z alv]e®[u] Shifted Green’s function of L at vertex v
veEV,

W)= 3 altle’l] = o] W' €V,
veWV;

A

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




100

Spline-like interpolation

Simple linear model:

finterp(i) - Z a[j]on (Z) finterp = P

JEVr

with:  ¢;(3) = (Tj) (4) ®(i, 5] = i(J)

AEPF
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Spline-like interpolation

Simple linear model:

finterp(i) = Z a[j]‘Pj (%) finterp = P

JEVr

with:  ¢;(3) = (Tj) (4) ®(i, 7] = i(J)

Interpolation condition:
On the known vertices: fr= <I>v,,,a

Solution depends on efficient, robust inversion of: o = @;1 fr

Those weights can be computed using only filtering !

A
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Spline-like interpolation

Regularized Laplacian: L= M—I[' + I|V|

V-1

~ 1
Stable pseudo-inverse: C_l[iaj] = Z 1+
=0

Ty,

we(2)ue(J)

AEPF

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE




101

Spline-like interpolation

Regularized Laplacian: L= H_I»C + I|V|

[V|—1
N 1
Stable pseudo-inverse: L1 2, 7] = ez_% T+ =T, we(7)ug(7)
V|—1
@;(t) = Z ! ug(7)ue(J) Shifted Green’s functions
o 14+ p=1)A

@ M
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Spline-like interpolation

Regularized Laplacian: L= H_I»C + I|V|

[V|—1
- 1
Stabl do-i : LY, 4] = we()ue(j
able pseudo-inverse 4, 7] ezzg 1+ 1A e(%)ue(7)
V|—1
@;(t) = Z ! ug(7)ue(J) Shifted Green’s functions
£=0 L+u7 A
Erfinterp(i) - E”'f"'(i)’ Vi€ Vr Note: ESOJ (Z) 255_15.7 (Z)
= 3 olil(Lrps) ) —6:(i)
JEVr g

Does this property carry over to the Kron reduced Laplacian?

AEPF
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Spline-like interpolation

Lemma: Inversion/Reduction commute for the (regularized) Laplacian

~ 7 \—1

-] _
(£77)y, = (£r)
This implies invariance of the Green’s functions via reduction and therefore

Q@ = ﬁrfr finterp = P

A
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Spline-like interpolation

Lemma: Inversion/Reduction commute for the (regularized) Laplacian

~

(£7Y)y, = (L)

This implies invariance of the Green’s functions via reduction and therefore

X = Erf'r finterp = P

Algorithm: Reduce graph
Apply reduced Laplacian to vertex data

Replace old data with newly calculated coefficients

Filter with Green’s kernel

A
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Sparsification

Kron reduction produces denser and denser graphs

After each reduction we use Spielman’s sparsification algorithm

to obtain an equivallent but sparser graph

Approx preserves Laplacian

uadratic form
4 Explicit control based on effective

resistance of edges

@ Spielman and Srivastava, Graph sparsification by effective resistances, SIAM J. Comp, 2011

e

I
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Sparsification

Kron reduction produces denser and denser graphs

rithm

Approx p

uadratic
1 ed on effective

FEANA OGP SO AVAC TS W AL b § \Jub\JU

@ Spielman and Srivastava, Graph sparsification by effective resistances, SIAM J. Comp, 2011

o

A
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Example

Coarse
«|  Approximations

. Prediction
Errors

2642 1334 669 337

A
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Outlook

Generalized

Operators

Computational
Harmonic Analysis Signal
Applications + Transforms /
. Dicti i
Spectral and Algebraic ICHONAIIES
Graph Theory
+

Numerical Linear Algebra

Theoretical Scalable

Underpinnings Algorithms

e Application of graph signal processing techniques to real science and
engineering problems is in its infancy

e Theoretical connections between classes of graph signals, the underlying
graph structure, and sparsity of transform coefficients
)
A CPF
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