Algorithm-Architecture matching, an application to the phase
diversity algorithm

Romain BRILLU'2, Sébastien PILLEMENT!, Fabrice LEMONNIERZ, Philippe MILLETZ, Marc BERNOT?, Frédéric FALZON?

1L UNAM Université, Université de Nantes, IETR UMR 6164, Rue Christian Pauc, 44306 Nantes, FRANCE

2Thales Research & Technology Campus Polytechnique, 1 avenue Augustin Fresnel, 91767 Palaiseau,France

3Thales Alenia Space France, 100 Boulevard du Midi, 06156 Cannes la Bocca, France

{firstname . lastname}@thalesgroup .com, Sebastien.Pillement@univ-nantes.fr,
{firstname.lastname}@thalesaleniaspace.com

Abstract — The deployment of an application onto an architecture is often a long and difficult process. This is due to the fact that the charac-
teristics of the target architecture is often taken into account late in the development process of an algorithm which makes the adequacy between
architecture and algorithm more and more difficult. We propose in this paper a formalization of the design process which allows interactively,
the calculation of metrics, the realization of simulation, thus in order to guide the transformations to be operated on the algorithm or on the
architecture to optimize the global performance.The approach is exposed for a space application, which requires both a high computing power
and an architecture compliant with the space constraints. Our methodology based on an algorithm description and a library of architecture
determines the most appropriate algorithm and architectural implementation. This methodology has been tested for real cases implementation,

and has shown promising results.

1 Introduction

The hardware architectures for image or signal processing
applications have seen a rapid evolution. These platforms are
now constructed by assembling standard processors, program-
mable specific circuit (Digital Signal Processor "DSP”, Field
Programmable Gate Array "FPGA”) and integrated circuit (Ap-
plication Specific Integrated Circuit "ASIC”) [11].

This evolution associated with improved methods and tools
for decision support, have allowed to achieve at reasonable cost
implementations of complex algorithms that we would not have
been considered a few years ago. We gradually evolved from
a separate study of algorithms and architectures, to an overall
methodological approach more and more formalized [6].

The Algorithm Architecture Matching ("AAM”) is the si-
multaneous study of algorithmic and architectural aspects of
an application by taking into account their interactions. Thus in
order to obtain the most optimized algorithm implantation on
a well-defined hardware platforms. The AAM allows on one
hand to perform formal verification, to ensure the design conti-
nuity and, to pose optimization problems allowing the best ar-
chitectures design.

However, since the nature of the architecture and the na-
ture of the application constraints may vary over time, the dif-
ficulty of controlling the interaction between architecture and
algorithm finds greatly increased. The AAM is then a recipro-
cal matching process of the algorithm and the architecture. It
shall be based on a system-level formulation of the algorithms

and the architectures, taking into account, the constraints (real-
time, power consumption, environmental...), the computing po-
wer requirements, the nature of the information to be proces-
sed (data-flow, address based) and the nature of the operation
to be done. The optimized configuration of the architecture and
the algorithm then involves many complex research issues and
spotlight the need of a clearly defined methodology allowing a
fast and efficient design space exploration.

This is why we propose a platform-based design methodo-
logy which is based on the usage of formal modeling tech-
niques, clearly defined abstraction levels and the separation of
concerns to enable an effective design process. Thus in order
to ease the interaction between the application and the archi-
tecture, to efficiently reduce the time to market and to prune
solution space by providing design assistance.

The rest of this paper is organized as follows section 2 present
our methodology, the phase diversity applications and the ar-
chitectural constraints related to the spatial domain are presen-
ted into section 3, the results are given into section 4. Finally,
conclusions and perspectives are drawn into section 5.

2 Design space exploration

The methodology (Figure 1) that we propose is based on
SpearDE and OVP tools, as well as a C code and a library of
components provided as input.

- ‘ C I
Arci_utecture Code
Library
OVP Profiling
Performance
analysis
\ A A \i
l Architecture Application
il DSE Partitioning Il
Architecture| Application
Model Graph
Scheduling
and Mapping
SpearDE
Performance evaluation
Performance Performance
Evaluation Evaluation
Hardware
architecture Binary
Y VHDL Code Y Code

FIGURE 1 — Representation of the work flow used for our me-
thodology

2.1 Tools presentation
2.1.1 SpearDE

SpearDE [10], software environment developed by Thales
Research & Technology, allows the implementation of signal
or image processing applications on "MPSoC” architectures.
It is designed to support an implementation flow (Figure 2)

Modelling
Application Architecture
Parallelisation
Task parallelism
Functianal application
Data parallelism
Space & time
optimisations | | e
DDEI:J °
Lo _
S
N B0 0w
= _Rapid / Virtual
prototyping ; ‘
Parallelised application 3 T |

=] Code generation S - Gantt chart
T [e {GPP, DSP, GPU, Performance .
‘ FPGA, ...} Simulation

FIGURE 2 — SpearDE work flow representation.

of an application on an architecture written using a specific
model. The application model, express the algorithm through
a synchronous data-flow graph ("SDFG”) that makes paralle-

lism properties explicit. The architecture model highlighting,
the structure of the target machine under an appropriate des-
cription. From these models and with the help of the tool, the
matching of the application and the architecture is realized by
defining a mapping of the application on the architecture. Once
the placement obtained, SpearDE allows on one hand to trigger
code generators in order to provide a parallel code executable
on the targeted machine and secondly to generate a SystemC
simulator to evaluate the performance of the various target ar-
chitectures that can run the application.

SpearDE will then have a key role in our work flow because
it will allow to get performance estimations. However, this tool
can no be used as a unique solution, since it does not provide
any information about the potential application and architec-
ture bottleneck and about the application inherent parallelism,
which are necessary information when you want to construct
jointly the application and the architecture.

2.1.2 OVP

OVP [2] framework developed by Imperas company pro-
pose to model hardware architectures ranging from the simple
processor to Mutiple Processor System on Chip ("MPSoC”)
through the use of the OVP simulation platform (Figure 3). The

OVP Library

<
f———
Peripherals Processors MPSoC Platform:
Library Library Library
0]
o| Peripheral
Architecture P Creation
ldea |
Processor
A Creation
| | MPSOC Platform
— Creation
Application C
Code :
» OVP Profilng

__OVP Simulation platform

P
Analysis

FIGURE 3 — Representation of the possibilities provided by
OVP tool.

OVP environment seek to answer three types of distinct needs :
1) the validation and estimation of performance of an applica-
tion, 2) the description and validation of hardware devices, and
3) it allows to model and simulate MPSoC architectures. To
that end this tool is build around three axis : (1) a simulation
platform OVPSim, (2) a set of application programming inter-
face ("API”), and a rich library of models composed of both
processors, peripherals and MPSoC platform.

In the context of our work flow, OVP is used to determine
for each tasks of the application and for each processing cores

present into the library, the number of instruction needed by
each task to be executed onto each core. From this number it is
easy to get the computation time of the task onto the processing
core.

Since OVP does not provide any performance estimation the
role of this tool is then limited to provide to the user profiling
information in order to identify the application and architecture
bottlenecks.

2.2 Work flow for the DSE

As depicted on (Figure 1) based on these tools and on the
furnished inputs (C code and a library of components), the first
step of our work flow is to realize a C code profiling through
the use of OVP tool, this in order to determine which are the
requirements of the application, the potential parallelism and
the application and architecture bottlenecks.

From these results, the user can either choose, to redefine the
architecture or the targeted architecture, adapt the algorithm if
the demands in terms of resources (memory bandwidth, com-
puting power...) are too important or carry out these actions
jointly. Once the application graph and architecture model de-
termined, the application is then mapped on the architecture.

Based on this mapping SpearDE generates the scheduling of
the application onto the architecture and a SystemC simulator
which provide performance evaluation. From these evaluations
the user can then choose to keep the solution (if it is not im-
provable or if it meets the expressed need), or the user can also
modify the architecture or the application in consequence.

If the solution is chosen SpearDE will then be triggered to
generate the executable binary code, while the user will gene-
rate the VHDL code by hand.

3 Phase diversity application

Controlling the stability of a space optical telescope requires
the precise knowledge of the wavefront error caused by the mi-
salignments of optical parts. Phase retrieval for in orbit space
telescope characterization occurred for the first time when the
Hubble space telescope showed critical optical aberrations [3,
5, 4] due to errors in the primary mirror figure. The methods
developped to solve this problem are very well suited to the
retrieval of telescope aberrations through the instrument Point
Spread Function (PSF) computed from the observation of point
objects . They are, however, not able to infer optical aberra-
tions from extended objects or scenes. In the Earth observation
domain, the telescope observes only extended scenes and the
challenge is thus to compute the telescope wavefront error not
from stars but directly from images of Earth scenes.

This question has been precisely adressed by Gonsalves [8,
7] who proposed a Phase-diverse phase retrieval method taking
images of incoherently illuminated extended objects as input
and doing a non-linear optimization of an objective function
for retrieving the wavefront error. We propose, in this study, to

use this method to build a real time implementation of a spa-
ceborne active optics for Earth observation by taking an AAM
aproach. Indeed, AAM is motivated by the fact that such a real-
time implementation is subject to harsh space constraints (re-
duced onboard resources, cooling, radiations etc.) reducing the
number of potential target and the operating frequency while
the amount of data needed by the phase diversity algorithm is
quite large and the algorithms on which the method is based
(Fast Fourrier Transform, non-linear optimization ...) are quite
complex.

4 Experimentations and results

4.1 Application task graph

The application task graph that we extract from the phase
diversity application is described on Figure 4. The task graph
is organized around five tasks and works on large images sizes
(More than 200 images of sizes 1024*1024).

Satellite
Images
© parameters
comparison correction

Acquired
Images Information
extraction from

acquired image

Computation
of simulated

Satellite
Parameters PSE
images

» Computation

FIGURE 4 - Phase diversity application task graph

The two first tasks performed by the algorithm are to com-
pute the PSF function based on the actual satellite parameters,
and from these results to generate the simulated images.

In parallel of these two tasks the algorithm extract the rele-
vant information from the images taken by the satellite. Which
lead to the following task that make a comparison between the
simulated images and the acquired images.

Based on these results, the final tasks realize an non-linear
optimization to correct the satellite parameters.

4.2 Architectural constraints

Since the phase diversity application will be embedded in-
side an observation satellite. Constrained associated with the
spatial environment must be taken into account and determine.

The main constraints are about the radiation aspects, which
will reduce the number of potential target, the operating fre-
quency, and the amount of on chip and off chip memory. Mo-
reover being given that a satellite once set in orbit is a device
that is no longer repairable, the safety under operation of the
architecture is increased.

Finally still in order to reduce the weight of the satellite the
power has to be minimal in order to limit the number of cooling
equipment present on board. To that end the number of cores,
the size of the interconnect and the amount of memory should
be kept at a minimum.

4.3 Results

Based on our methodology, on the application tasks graph
and on the architectural constraints, the first step of our AAM
methodology allows to identify the application and architectu-
ral hotspot, which lead to the diagram presented onto Figure
5.

300

250

200
150
100
50
: B H - -

Proc Freq : 200 Mhz Proc Freq : 200 Mhz Proc Freq : 200 Mhz Proc Freq : 300 Mhz
Bus Freq : 200 Mhz Bus Freq : 200 Mhz Bus Freq : 300 Mhz Bus Freq : 300 Mhz
DDR Freq : 200 Mhz DDR Freq : 200 Mhz DDR Freq : 300 Mhz DDR Freq : 300 Mhz

Computation time (s)

W DDR bandwidth 32 bits/cycles 8 DDR bandwidth 64 bits/cycles DDR bandwidth 96 bits/cycles ™ DDR bandwidth 128 bits/cycles

FIGURE 5 — Temporal diagram identifying the application and
architectural hotspot

The results shows that the limiting factor of the performance
is the external memory access.

However since in the space domain the memory is a crucial
point, we then choose instead of increasing the number of ex-
ternal memory, to reduce the amount of data to be transferred
from and to the memory.

This decision have led to a transformation of the algorithm
in order to find a new operating point, and a modification of the
architecture in consequence (memory size, number of cores...).

All these decisions being facilitated thanks to our methodo-
logy that provides design assistance in order to converge ef-
ficiently and quickly to an optimal solution for both the algo-
rithm and the architecture. This have led to the results presented
onto Figure 6 that met the imposed constraints.

200
150
100
0 L L

Architecture 1

Computation Time (s)

g

Architecture 2 Architecture 3

 Taille de limage 1024*1024 Taille de limage 512*512 ™ Taille de limage 256*256 ® Taille de limage 128*128

FIGURE 6 — Performance estimation obtained at the end of our
methodology.

5 Conclusion and Perspectives

Through this study we observed that the DSE of heteroge-
neous MPSoC architecture can be particularly time consuming
despite the assistance providing by existing tools.

Indeed in the context of MPSoC architectures the number of
parameters that need to fixed is huge. Moreover since each ar-
chitectural modification impact the algorithm specification per-
forming the DSE by hand is almost impossible.

This is why it’s necessary to introduce new heuristics and
new tool that allow to efficiently construct MPSoC architecture.

Since the most difficult and time consuming task is to deter-
mine for each algorithm specification what is the best architec-
ture and best mapping. Our proposal is to develop a tool that
based on an algorithm specification and on a set of processing
cores will autonomously go through the solution space and de-
termine what is the best mapping and the best architecture for
each algorithm specification and user constraints.

Then from these results, SpearDE will be triggered to ge-
nerate the executable binary code, while based on a set of ge-
neric interfaces (Develop in the context of the FlexTiles project
[9, 1]) the VHDL code of the architecture will be automatically
generated.

Références

[1] [online]. available :http :/flextiles.eu/wordpress3/.
[2] [online]. available :http ://www.ovpworld.org/.

[3] G.Louis D. and L.Richard G. Correction of misalignment dependent
aberrations of the hubble space telescope via phase retrieval. In Cur-
rent developments in optical engineering and commercial optics, pages
201-214, 1989.

[4] J. R. Fienup. Phase-retrieval algorithms for a complicated optical sys-
tems. Applied Optics, 32 :1737-1746, 1993.

[5] J. R. Fienup, J. C. Marron, T. J. Schulz, and J. H. Seldin. Hubble space
telescope characterized by using phase-retrieval algorithms. Applied Op-
tics, 32 :1747-1767, 1993.

[6] D. Ginhac. Adquation Algorithme Architecture - Aspects logiciels, ma-
triels et cognitifs. Habilitation a diriger des recherches, University of
Burgundy, 2008.

[7]1 R. A. Gonsalves. Phase retrieval and diversity in adaptive optics. Opt.
Eng., 21 :829-832, 1982.

[8] R. A. Gonsalves and R. Childlaw. Wavefront sensing by phase retrieval.
In Proc. Soc. Photo-Opt. Instrum. Eng., volume in Applications of Digital
Image Processing I1I, A. G. Tescher, ed., pages 32-39, 1979.

[9] F. Lemonnier, P. Millet, G. Marchesan Almeida, M. Hubner, J. Becker,
S. Pillement, O. Sentieys, M. Koedam, S. Sinha, K. Goossens, C. Piguet,
M. Morgan, and R. Lemaire. Towards future adaptive multiprocessor
systems-on-chip : an innovative approach for flexible architectures. In
Embedded Computer Systems : Architectures, MOdeling and Simulation,
2012.
[10] E. Lenormand and G. Edelin. An industrial perspective : a pragmatic
high-end signal processing design environment at thales. In SAMOS,
page 5257, 2003.

[11] S.Borkar. Thousand core chips : a technology perspective. Design Auto-
mation Conference, 978-1-59593-627-1, 2007.

