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Résumé – Cette contribution présente une méthode d’apprentissage profond pour l’extraction et la fusion d’informations d’images acquises
sous différents points de vue dans le but de produire des caractéristiques plus discriminantes entre objets. Notre approche a été conçue pour
mimer l’analyse morpho-constitutionnelle utilisée par les urologues pour classer visuellement des fragments de calculs rénaux à partir de leur
surface et section. Des stratégies de fusion de caractéristiques profondes ont permis d’améliorer les performances des extracteurs (structures
principales des réseaux) à vue unique de plus de 10 % en termes de précision de la classification des calculs rénaux.

Abstract – This contribution presents a deep-learning method for extracting and fusing image information acquired from different viewpoints
with the aim to produce more discriminant object features. Our approach was specifically designed to mimic the morpho-constitutional analysis
used by urologists to visually classify kidney stones by inspecting the sections and surfaces of their fragments. Deep feature fusion strategies
improved the results of single view extraction backbone models by more than 10% in terms of precision of the kidney stones classification.

1 Introduction
Urolithiasis refers to the formation of kidney stones that can-

not be expelled from the urinary tract. This is a medical condi-
tion that has been increasing over the last few years [1]. Uro-
lithiasis is caused by multiple factors, where diet is the most
important, but also genetic inheritance, water intake, and a se-
dentary lifestyle could promote the formation of kidney stones
[2].

The Morpho-constitutional analysis (MCA) is the most im-
portant method for kidney stone characterisation. MCA is a
combination of a visual examination under the microscope of
the stone’s texture, appearance, and color (surface view and
cross-section view), and a biochemical analysis by Fourier Trans-
form Infrared Spectroscopy (FTIR) [3]. If carried out properly,
a timely treatment (diet adaptation, surgery) can be prescribed
for each patient, reducing the risk of stone recurrence [3].

However, MCA has a major drawback, the results of this
analysis are often available only after several weeks. Thus, uro-
logists increasingly aim at visually identifying the morphology
of kidney stones only with the help of the image displayed on
the screen [4] during the removal process (Endoscopic Stone
recognition (ESR)). However, this visual analysis (surface view
and cross-section view) requires a great deal of experience due

to the high similarities between classes that only a limited num-
ber of specialists have.

Therefore, different Machine Learning (ML) approaches have
been proposed [4, 5, 6, 9] for the classification of kidney stones,
demonstrating that it is a problem that can be solved with tradi-
tional and deep learning techniques with very encouraging re-
sults. However, most of these models were trained on ex-vivo
stones placed in controlled environments, whereas in reality,
images may suffer from motion blur, reflections, illumination
variations, as occurs in common practice during an endoscopic
imaging session. Moreover, there is no ordered manner of com-
bine surface and cross-section views information for exploiting
the visual information in a way that a specialist would do it
using MCA [3]. Besides, in most cases the amount of training
data available is limited, thus these contributions use data aug-
mentation techniques to increase the amount of input data, but
some limitations have not been addressed. Nonetheless, these
works [4, 5, 6] have demonstrated the potential of automatic
ESR in an in-vivo dataset.

Table 1 gathers the previous works which have addressed the
problem of recognizing kidney stone types using only images.
This table provides also an overview on the used data (urinary
calculus classes and acquisition conditions).



TABLE 1 – Overview of the kidney stone classes and acquisition conditions in the-state-of-the-art works, as well as for this
contribution. Acid Uric (AU), Whewellite (WW), Weddellite (WD), Struvite (STR), Cystine (CYS), and Brushite (BRU).

Reference Kidney Stone Composition Image Type AcquisitionAU WW WD STR CYS BRU Surface Section
Serrat et al. (2017) [9] ✓ ✓ ✓ ✓ ✓ ✓ Ex-vivo
Torrel et al. (2018) [8] ✓ ✓ ✓ ✓ ✓ ✓ Ex-vivo
Black et al. (2020) [7] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Ex-vivo
Martinez et al. (2020) [6] ✓ ✓ ✓ ✓ ✓ In-vivo
Lopez et al. (2021) [10] ✓ ✓ ✓ ✓ ✓ ✓ In-vivo
Estrade et al. (2021) [5] ✓ ✓ ✓ ✓ ✓ In-vivo
This contribution ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Ex-vivo

TABLE 2 – Comparison of the precision obtained by the three main contributions for the most common kidney stone classes. The
precision is given for each individual class and classifier. The taxonomy per stone class same as in Table 1. The average precision
(weighted by the image number of each class) are also given for each kidney stone type. The results obtained in [9, 8, 7, 6, 10, 5]
correspond to different datasets under different acquisition conditions.

Reference Precision Per Class Weighted
Precision ML MethodAU WW WD STR CYS BRU

Serrat et al. (2017) [9] 0.65 0.55 0.69 0.50 N/A N/A 0.63 Random Forest
Torrel et al. (2018) [8] 0.76 0.67 0.80 071 N/A 0.72 0.74 Siamese CNN
Black et al. (2020) [7] 0.94 0.95 N/A 0.71 0.75 0.75 0.85 CNN – ResNet101
Martinez et al. (2020) [6] 0.91 0.94 0.92 N/A N/A N/A 0.92 Random Forest
Lopez et al. (2021) [10] 0.98 0.93 0.95 N/A N/A 0.96 0.95 Inception
Estrade et al. (2021) [5] 0.99 0.90 0.93 N/A N/A N/A 0.94 ResNet152v2

Multi-View (MV) classification is an area of ML that com-
bines features from different sources or feature subsets, known
as views, to identify objects with higher accuracy, since diverse
characteristics are extracted, synthesized and combined [11].

This variant of learning can improve the performance by op-
timizing multiple functions, one per view, and in that way, in-
formation can be obtained from different perspectives of the
same data inputs. Moreover, MV can also be applied to Convo-
lutional Neural Networks (CNNs) to boost the performance in
situations where a single image does not yield sufficiently dis-
criminative information for accurate classification by combi-
ning useful information from different views, so more compre-
hensive representations may be learned yielding a more effec-
tive classifier. This MV approach stands in contrast to previous
works for ML-based ESR, which made use of single models
which combined image patches to train either a shallow or a
DL models, as summarized in Table 2. These previous works
showed the potential gains that could be obtained through an
automated mechanisms for ESR, but those methods either used
ex-vivo images acquired using high-quality microscopes or di-
gital cameras or did not take into account the fusion of surface
and cross-section views information to perform a prediction.

In this work, we leverage recent strides in DL research that
have sought to combine information from multiple views and
we demonstrate that MV learning can be applied to ESR, with
promising results. We show that such an approach can be be-
neficial for the identification of kidney stones by maximizing
the amount of information that the model can use for classifi-
cation. Through several experiments, we demonstrate that by
combining the information of surface and cross-section views
in the same model, we can obtain a method that is more explai-

nable and similar to what specialists do in clinical practice (i.e.,
MCA).

2 Materials and Methods
2.1 Kidney stone dataset

The ex-vivo dataset includes 305 kidney stone images acqui-
red (two reusable digital flexible ureteroscopes from Karl Storz
using video columns, Storz Image 1 Hub and, Storz image1 S)
and labeled manually by the urologist Jonathan El-Beze. To re-
produce in-vivo conditions, the experimental setup used in this
work consists of a small diameter tube where the inner walls
were covered with a yellowish film to display the appearance
of the urinary tract (for more details, see [12]). The ex-vivo da-
taset consists of three subsets. The first subset consist of 177
surface images, 128 cross-section images for the second sub-
set, and the third subset of 305 images (177 cross-section view
+ 128 surface view) of the six kidney stone types with the hi-
ghest incidence, Type Ia (Whewellite, WW), Type IIb (Weddel-
lite, WD), Type IIIb (Acide Urique, AU), Type IVc (Struvite,
STR), Type IVd (Brushite, BRU), and Type Va (Cystine, CYS).
Images of this dataset are shown in Fig. 1.

Classification of kidney stones (i.e., MCA) is usually not per-
formed on whole images [6, 7, 8, 9]. Therefore, in this work as
in previous works, patches of 256×256 pixels were cropped
from the original images to increase the size of the training da-
taset (for more details, see [10]). However, the number of resul-
tant patches for each class is imbalanced (due to the changing
fragment sizes, image resolution, and the number of images in
the original dataset). In order to balance the number of patches
per class, a random sampling approach was used.



FIGURE 1 – Examples of ex-vivo kidney stones images. From
left to right ; WW, WD, AU, STR, BRU, and CYS. The surface
view is in the first row, and their respective generated patches
are in the second row. The cross-section view is in the third row,
and their respective generated patches are in the fourth row.

This step yielded a total of 1000 patches per class (WW, WD,
AU, STR, BRU, and CYS) and view (surface, cross-section,
and mixed (surface + cross-section)). Patches from the same
images were not used in both train/validation and test datasets.
This new dataset was then split into 19200 images (80%) for
training and validation, and 4800 images (20%) for the test.
In order to limit the over-fitting produced by the small size
of the available training dataset, data augmentation was hea-
vily performed. Additional patches were obtained by applying
geometrical transformations (patch flipping, affine transforma-
tions, and perspective distortions). The number of patches in-
creased from 19200 to 153600 using data augmentation (10%
of the original patches were kept for test purposes). The patches
were also “whitened” using the mean mi and standard devia-
tion σi of the color values Ii in each channel [10].

2.2 Methods
2.2.1 Pre-training stage

Previous approaches have used Deep Learning architectures
such as AlexNet, or VGG16 for assessing the kidney stone
classification task [4, 10]. For this contribution, the previously-
mentioned architectures are used for the creation of the MV
models. This network was trained on the entire training data,
combining both surface view and cross-section view patches,
and served as a baseline or comparison for the multi-view im-
plementations introduced in this paper. Once trained, the fea-
ture extraction layers of this single-view network are frozen to
ensure that each branch from the multi-view model extracts the
same features and that any variation in the performance will
rely on the unfrozen layers (fusion and fully-connected layers).

2.2.2 Multi-view model
The frozen layers are duplicated. In this way, one copy will

process only images of the surface of the stone, while the other
copy will process images of the cross-section view. These fro-
zen layers are connected to a fusion layer, which will be res-

FIGURE 2 – Proposed Multi-View model. First part of the mo-
del corresponds to the duplicated feature extraction layers. One
copy will process only surface view images, the other will pro-
cess cross-section view images. A fusion layer is added to com-
bine information from the different views. The fused feature
map is then fed to the classification layers

ponsible for mixing the information of the two views. In this
work, the two late-fusion methods proposed in [11] are explo-
red. The first method concatenates the feature vectors obtai-
ned from each view, and connects the resulting representation
to a fully connected layer. As per the second method, feature
vectors are stacked and max-pooling is applied across them.
Lastly, the output of the late-fusion layer is connected to the
remaining part of the MV model, which merely consists of the
classifier. The proposed model is shown in Fig. 2. To make
a direct comparison of the feasibility and performance of this
architecture against previous works, we used the same hyper-
parameters as [4]. Cross-entropy loss is used to compute the
classification loss, and optimization is performed using Adam
optimizer with a learning rate of 2e−4. Batch-size selected was
64 for both multi-view and single-view networks.

3 Results and Discussion
Several experiments were performed to assess the ability of

MV models to predict the kidney stone class, combining in-
formation from surface and section views, as done during an
ESR procedure [5]. Precision (P) and Recall (R) metrics are
determined for each class individually. The results reported for
both late-fusion techniques in the multi-view models show that
combining information from different classifiers yields signi-
ficant results compared to the single-view classifiers. For ins-
tance, for a single-view AlexNet network, the results obtained
were 0.84 and 0.83 for precision and recall, respectively. In
contrast, MV networks, independent of the late-fusion strategy,
performed better compared to the other experiments. Table 3
shows the scores for all the models used for this work, and the
UMAP visualizations on Fig. 3a, and Fig. 3b show how stone
type clusters are distributed for both SV and MV networks.
One disadvantage of using concatenation as fusion strategy is
that the number of features of the first layers of the classifier
increases considerably, limiting its implementation on systems



(a) SV-AlexNet (b) MV-AlexNet-max

FIGURE 3 – UMAP visualizations showing the learned representations (i.e., feature maps) for (a) the Single-View (SV) AlexNet
architecture with no fusion, and (b) in Multi-View AlexNet architecture with a max-pool late-fusion layer. As it can be observed
in the figure, more separate clusters are obtained through the use of feature fusion layers

with reduced memory.

TABLE 3 – Weighted average metrics comparison for sec-
tion, surface, and mixed (surface and cross-section) view
patches. Multi-View network with max-pool as late-fusion stra-
tegy (MV-AlexNet-max). Multi-View network with max-pool
as late-fusion strategy (MV-VGG16-max). Multi-View net-
work with concatenation as late-fusion strategy (MV-AlexNet-
conc). Single-View AlexNet network (SV-AlexNet). Single-
View VGG16 network (SV-VGG16).

Surface Cross-section Mixed

Classifier P R P R P R

MV-AlexNet-max – – – – 0.95 0.94
MV-VGG16-max – – – – 0.94 0.94
MV-AlexNet-conc – – – – 0.94 0.93

SV-AlexNet 0.77 0.71 0.88 0.87 0.84 0.83
SV-VGG16 0.79 0.70 0.89 0.89 0.83 0.81

4 Conclusion and future work
We showed that by mixing information from different views,

it is possible to train more accurate models for predicting kid-
ney stone composition from images obtained from ureteroscopy.
Thus, AI technology can be included in the current stone re-
moval workflow, speeding up preventive diagnosis measures.
However, we make use of a very-limited ex-vivo dataset in a
simulated environment. We aim to solve this problem by ap-
plying metric learning in future work to tackle the amount of
data that we require for training, as well as to increase inter-
class separability.
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