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Résumé – L’estimation des variations de phase d’un signal sinusoidal peut être menée dans le domaine de Fourier. Le papier
propose d’étudier une approche géométrique en démontrant que la bin fréquentielle décrit une ellipse dans le plan complexe. On
améliore ainsi le suivi de phase et l’estimation des déplacements sub-millimetriques en prenant en compte cet aspect ; ce résultat est
démontré sur des données fournies par un radar millimétrique.

Abstract – Estimating the phase variation of a sinusoidal signal can be performed in the Fourier domain. This paper proposes to
investigate a geometrical viewpoint and demonstrate that the frequency bin of interest is distributed along an ellipse in the complex
plane. One can improve phase tracking at least theoretically by accounting for this observation and improve the sub-millimeter
displacement estimation. This result is demonstrated on data provided by a millimeter-wave radar.

1 Introduction
The Discrete Fourier Transform (DFT) is a powerful tool to
investigate the frequency content of a signal. Furthermore, in
several applications, the estimation and the time evaluation
of the signal phase is fundamental. Among these, the radar
applications are of growing interest, due to recent improved
integration and cost. Interesting applications vary from the
automotive to the healthcare field : while in the former their
implementation can be considered established [7], in the latter
first commercial applications are increasingly appearing [4].
In these cases, the target displacement is estimated from the
beat signal phase. If this estimation is done through a DFT ap-
proach, it is generally assumed that the complex components
of the corresponding frequency bin should describe, in their
time evolution, a circle of unity radius and centered in the com-
plex plane origin. We show in this work that this is generally
not the case : the trajectory is inherently ellipse shaped. This
translates into a phase (and therefore displacement) estimation
error : this error can be up to ≈ 1.6% the carrier wavelength
and can be significative for submillimetric displacements. In
Section 2, we show the DFT transform of a pure tone signal
and how the complex components evolution describe an el-
lipse shape, under certain conditions. In section 3, we briefly
sum up the lossless model of a FMCW signal and the related
interest for a DFT approach. Then, in Section 4, we compare
the theoretical curve with actual radar measurements.

2 A theoretical DFT study
Consider the N -point sinusoidal signal with amplitude M ,
normalized frequency α and initial phase angle ϕ [rad]

sn = M cos (αn+ ϕ) , n = 0, . . . , N − 1 (1)

where the normalized frequency can be defined as

α = 2π
f

fs
= 2π

p

N
(2)

and fs the sampling frequency [Hz].
In this work, we are interested in deriving an analytical formula
for the k-th DFT bin :

Sk =
1

N

N−1∑
n=0

sne
−iβkn, k = 0, . . . , N − 1 (3)

where i =
√
−1 and βk = 2π k

N . The discrepancy between
the true frequency and the DFT frequency is denoted
δ = α− βk = (p− k)2π/N .

For the signal under test, we have

Sk =
M

2N

[
eiϕ

N−1∑
n=0

ei(α−βk)n + e−iϕ
N−1∑
n=0

ei(α+βk)n

]
(4)

p integer It is a simple matter to show that Sp = SN−p =
M/2eiϕ and Sk = 0 otherwise. In this case, all the signal
energy is concentrated in one bin.

p not integer Using geometric series, we obtain [2]

Sk =
M

2N

[
eiϕ · 1− ei(α−βk)N

1− ei(α−βk)
+ e−iϕ · 1− e−i(α+βk)N

1− e−i(α+βk)

]
=

M

2N

[
Ueiβk − V

cosα− cosβk

]
where U = cos(αN + ϕ) − cosϕ = M−1(sN − s0) and
V = cos(αN + ϕ− α)− cos(ϕ− α) = M−1(sN−1 − s−1).
Rearranging terms as U = −2 sin(αN/2+ϕ) sin(αN/2) and
V = −2 sin(α (N/2− 1) + ϕ) sin(αN/2), the DFT bin can
be simplified into

Sk = ak
[
sin(αN/2 + ϕ)eiβk − sin(α (N/2− 1) + ϕ)

]
where

ak =
−M sin(αN/2)

N(cosα− cosβk)
, α0 =

(N − 1)

2
α
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Applying a rotation of angle βk/2 we obtain

e−iβk/2Sk = 2ak cos(βk/2) sin(α/2) cos (α0 + ϕ)

+ i · 2ak sin(βk/2) cos(α/2) sin (α0 + ϕ)

Splitting real and imaginary components Sk = xk+ iyk yields

R

(
xk

yk

)
= D

[
cos (α0 + ϕ)
sin (α0 + ϕ)

]
(5)

with the rotation matrix

R =

[
cos(βk/2) + sin(βk/2)
− sin(βk/2) cos(βk/2)

]

D = 2ak

[
cos(βk/2) sin(α/2) 0

0 sin(βk/2) cos(α/2)

]
Finally we obtain the main result of the paper

zk =

(
xk

yk

)
= RTD

[
cos (α0 + ϕ)
sin (α0 + ϕ)

]
(6)

It holds zTkAzk = 1 where A = RTD−2R is symmetric
positive definite (SPD). This indicates that the locus of each
DFT bin is a 2-D ellipse when ϕ varies. The inclination of the
ellipse is controlled by βk via the rotation matrix while the
length of each ellipse axis is controlled by the matrix D.
In the limit, the term ak writes [2]

ak =
M

2N

(−1)k sin
(
δN
2

)
sin

(
δ
2 + βk

)
sin

(
δ
2

) →
δ→0

M

2

(−1)k

sinβk

and

D →
δ→0

2ak cos(βk/2) sin(βk/2)I2 = (−1)k
M

2
I2

where I2 is the 2-by-2 identity matrix. This means that when
the DFT bin is ’close’ to the true frequency, the ellipse becomes
a circle as expected. For the case where k = p, then

zp =
M

2

(
cosϕ
sinϕ

)
and in this case the DFT bin belongs to a 2-D circle.

When there exists a DFT bin such that βk ≃ α, we see that
the eccentricity of the ellipse will be small (i.e. the ellipse
tends to a circle) and the diagonal matrix is a multiple of I2.
This is shown in Figure 1, where the blue curve represents Eq.
(6) for p = 2.5, k = 2 and M = 3. The red curve represents
the circle of radius M/2 which we would obtain if p = k. In
this case, the rotation angle is βk/2 ≈ 3.6 deg while the major
and minor axes are 1.06 and 0.85, respectively.

It must also be noted that, in order to correctly estimate the
phase angle ϕ, we need to correct the elliptical shape of zk.
We then calculate zk,corr as

zk,corr = RD−1zk (7)

from which we estimate the corresponding phase as

ϕ̂ = arctan(
zk,corr.2
zk,corr.1

) (8)

where the 1, 2 indexes indicates the vector component along
the first and second direction along an orthonormal basis. A last

FIGURE 1 : DFT bin locus for the case of p = k (red curve)
and p = 2.5, k = 2 (blue curve). For both cases a magnitude
of M=3 is imposed.

remark is about how the correction method could be applied.
When experimental data is available, a shape fitting algorithm
could be applied to the dataset and the ellipse parameters are
then retrieved. In this case, the matrices R and D are directly
estimated. Another approach would be to estimate a priori
the ak value. This could be done like in [1]. Then, both R and
D can be calculated and the correction procedure carried out.

3 FMCW Radar Data and Motion De-
tection Scheme

In a FMCW radar system, the transmitted signal is frequency-
modulated and can be written as :

sTX(t) =
√
A cos

(
φ0 + 2π

[
f0t+

1

2
γt2

])
, t ∈ [0, Tc]

(9)
where f0 is the chirp initial frequency (Hz). The bandwidth
of the signal is ∆f (Hz), Tc is the chirp time duration (s) and
γ = ∆f/Tc (Hz s−1) is the chirp frequency slope.
The received (lossless) reflected signal can be written as

sRX(t) = sTX (t− τ) (10)

where τ = 2R/c is the round-trip time delay (s) for a single
target located at a distance R and c is the speed of light.
At reception, both transmitted and reflected signals are mixed
and Low-Pass (LP) filtered, in order to produce the so-called
Intermediate Frequency (IF) signal sIF

sIF (t) = LP {sTX(t) · sRX(t)}

=
A

2
cos

[
2πτ

(
f0 + γt− γτ2

2
t

)]
(11)

≈ A

2
cos [2πτ (f0 + γt)] (12)

The approximation is justified by the measuring distances
which are usually considered for FMCW applications. For a
target at 3 m distance, τ = 20·10−9s while a high performance
value of γ would be ≈ 4 · 1013 GHz · s−1. Then, γτ2 ≈ 0.016
and therefore Eq. 12 can be considered valid.

2



FIGURE 2 : The transmitted chirps will have a repetition period
of 1/PRF (slow time) while received chirps will have a delay
(τ ) linked to the distance of the target.

In this ideal situation, which can be thought to be approxima-
tely attained in good Signal-to-Noise Ratio (SNR) conditions,
sIF is a sinusoidal signal with frequency fIF = γτ . It is im-
portant to note that both frequency and phase of the IF signal
depend on the target distance R via their dependency in τ .

Small Movements In the scenario of a small movement
around the position R̄, the beat frequency will change by
∆f = 2π∆R/c · γ while its phase changes by a the amount
∆φ = 4π∆R/c · f0 (see Eq. 12). Assuming the same case
parameters as before plus f0 = 122 GHz, we can see that a
∆R = .2 mm displacement would give{

∆f = 167.55 Hz (fIF = 2.51 MHz)

∆φ = 1.02 rad
(13)

Then, we can assume that the beat frequency remains constant
for sub-millimetric movements. This means that the target bin
dos not change as well. On the other hand, the phase will
change proportionally to the target displacement ∆R.
Once the frequency fIF is estimated, the target distance can
be obtained from

R̄ =
c

2γ
fIF (14)

with a spatial resolution of c/2B. Spatial resolution from Eq.
(14) is limited by the available bandwidth and therefore cannot
deliver sub-millimetric resolution. From Eq. (12), we can see
that also the signal phase is linked to the target distance by

φIF (R) = 2πf0τ = 4πR/λ0 (15)

where λ0 = c/f0. Since phase information is limited in the
[0, 2π] interval, no absolute distance can be estimated from
this information. However, as chirps are emitted at a given
Pulse Repetition Frequency (PRF), it is possible to track the
target displacement around the mean distance R̄ whether the
corresponding signal frequency (i.e. the frequency bin) is un-
changed. Therefore, the PRF will determine the radar system
time resolution. We can estimate the target displacement as

∆R =
∆φIF

2π

λ0

2
(16)

i.e. the sub-millimetric spatial resolution is linked to the central
wavelength λ0.

4 Results
As shown above, in order to estimate the sub-millimetric dis-
placement of a target by the means of a FMCW radar system,
we apply Eq. (16) from the estimated phase of the IF signal.
Specifically, this must be done along consecutive chirps (which
is the so called slow time). We can estimate this phase through
a DFT approach by following the phase evolution of the k-th
bin along the slow time. This would mean applying Eq. (3)
to Eq. (12), to which the considerations from Section 2 apply.
Realistically, the corresponding frequency fDFT = 2πk/N
of the k-th bin will be close but not equal to the angular fre-
quency α. Furthermore, the value of α will not be known a
priori (not at least from a radar measurement). This means that
the complex locus of the complex radar (DFT transformed) si-
gnal will be an ellipse. It can be interesting then to evaluate the
intrinsic error which is introduced when the DFT is adopted
for phase estimation. This error is basically due to the fact that
we directly retrieve the phase from an elliptic complex locus.
In Figure 3-a this error is shown for a constant δ difference
(δ = 0.3) and different values of p and k. Specifically, the error
between the expected angle ϕ and the relative angle ϕe − ϕe,0

is shown. We can appreciate how the error magnitude is larger
for smaller values of k, while it has a maximum around π/4
(for δ=0.5). The former is due to the fact that the ellipse ec-
centricity is inversely proportional to the value of k. The latter
is linked to the δ chosen value, as can be appreciated from
Figure 3-b where the error as a function of δ is shown. Also in
this case, when the difference δ increases, the eccentricity in-
creases, thus producing a larger error. We can also observe that
the position of this maximum changes with δ, which depends
on the non-linear and trigonometric nature of ∂(ϕ̂− ϕ)/∂δ.

FIGURE 3 : Phase estimation error for (a) a fixed δ value and
(b) a varying δ value, for a fixed k-th bin
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It is interesting to notice that, whenever p ̸∈ N , the phase
information is present in all frequency bins. This information
is affected by the error shown in Fig. 3 which, however, can
be alleviated if a compensation of the elliptic distortion is
applied. This is shown in Fig. 4-c, where the DFT for an
integer and rational p (p = 2, k = 2 and p = 2.2, k = 2,
resp.) are shown. In Fig. 4-a, the corresponding error at the
three indicated frequency bins are shown. These errors are
exclusively due to the elliptic shape of zk. In Fig. 4-b, the
same error is calculated after compensation as per Eq. 7.

FIGURE 4 : DFT of a pure sine for (a) an integer and rational
value of p. In (b) errors corresponding to the frequency bins
k = 1 . . . 3 (red, blue and black lines, respectively). In (c)
errors after ellipse compensation for the same frequency bins.

4.1 Radar Data
In this section, we show radar data from real experimental
acquisitions. The radar system considered is the commercial
solution SiRad SIMPLE manufactured by Silicon Radar, while
the target was a cylindrical target of 6 mm diameter screwed on
a linear actuator who could make very precise displacements
(< 3 µm accuracy) up to 25 mm. The target was displaced
of 8 mm from the idle position, in order to cover at least a
full [0, 2π] angular interval in the corresponding DFT com-
plex plane. The target was put at a distance of 0.282 m from
the radar, while the radar measurement of this distance was
estimated to be 0.276, which corresponds to the 7th DFT bin
(k = 7). The discrepancy between p and k will give rise to a
theoretical elliptic curve in the complex plane. Therefore, we
show in Figure 5 the radar measurement scatter plot with the
ellipse obtained from Eq. (6). Here the magnitude value M
was fitted. We can see that data is scattered along an ellipse
whose parameters estimated by Eq. (6) are :

p = 7.15, k = 7 (17)
βk = 1.67, a = 151.87, b = 155.22 (18)

where a and b are the minor and major axes of the ellipse.

5 Conclusions
In the present work, we investigated the theoretical form of a
DFT of a pure real sinusoidal signal. Specifically, we are inter-
ested in the case where the frequency bin does not necessarily
match the normalized frequency of the analyzed signal. This
is what would usually happen in (among many applications)

FIGURE 5 : DFT of radar measurements (red circles) of a 8
mm displacement movement. The blue dashed line represents
the theoretical DFT ellipse fitted in magnitude, while the two
blue thin lines represent its orientation

FMCW systems, if a DFT approach was chosen to analyze the
output IF signal. We showed that the DFT complex compo-
nents will describe an ellipse in the complex plane. Therefore,
even in ideal conditions, an error will be introduced in the
phase retrieval of such a signal. This error is linked to the
deformation due to the ellipse shape and, therefore, will be
strongly linked to the difference between the frequency bin
and signal frequency (i.e. the value of δ) but also to the abso-
lute value of k. Finally, we showed that this theoretical curve
is retrieved in radar data from an experimental measurement.
Therefore, if a phase estimation should be made starting from a
DFT transformed signal, a compensation for such an elliptical
shape of the complex components should be made.
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