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Résumé – Dans les réseaux, l’importance des rôles des nœuds peut être cruciale dans différents domaines d’application. En
neurosciences, par exemple, dans les réseaux de connectivité cérébrale fonctionnelle, l’organisation en hub révèle les changements
dans différents états de conscience. Cependant, la comparaison de graphes, en tenant compte du rôle des sommets, reste largement
inexplorée. Pour cela, nous définissons une relation d’équivalence sur les nœuds d’un graphe associée à une collection de statistiques
nodales (une fonction sur l’ensemble de sommets) qui nous permet d’identifier les rôles des sommets. Ainsi, nous identifions la
partition induite par cette relation avec le motif structurel du graphe et nous introduisons une nouvelle méthode pour comparer des
graphes en fonction de la correspondance de ces motifs. Nous appliquons notre méthode à des données réelles ce qui révèle des
scores de correspondance élevés chez la population de sujet sains et permet de différencier les patients comateux.

Abstract – In networks, the importance of node roles can be crucial in different application domains, such as social science
or neurosciences. For instance, in functional brain connectivity networks, hub organization reveals the changes in different
consciousness states. However, the comparison of multiple networks instances, by taking into account their respective node roles,
remains largely unexplored. Inspired by the concept of node equivalent, we define an equivalence relation on graph nodes associated
with any collection of nodal statistics (i.e. any functions on the node-set). This allows us to identify node roles with the equivalence
classes of the partition induced by our relation. Thus, we identify such partition with the graph structural pattern and introduce a
new method to compare graphs by the correspondence of their structural patterns. We apply our method to real data concerning
human brain functional connectivity, which reveals high correspondence scores among the healthy population and differentiate at
the nodal level comatose patients from healthy controls.

1 Introduction
In network science, the notion of node roles has proven to

be important in various applications [11, 5]. This concept has
been introduced in social science [4] with at least two different
conceptions: nodal structural equivalence and nodal structural
isomorphism. According to the former, nodes are equivalent if
they share exactly the same neighbors. For the latter, nodes are
equivalent if there exists an automorphism that maps the first
node to the second and vice versa. In this work, we consider
this latter conception and show how node roles can be used for
human brain functional connectivity network comparison.
Functional networks provide a natural model to represent com-
munication among brain regions in a given period of time.
In this graph model, network units correspond to brain re-
gions and edges indicate the presence of a pairwise connection
between them. Individual connectivity networks may evolve
depending on various factors, notably the presence of neurolog-
ical disease. Being able to distinguish between normal versus
pathological networks is highly valuable in neuroscience and
clinical applications. However, there is no clear evidence of
the best measure to be used to discriminate between networks
representative of different brain states [14, 10].
In recent years, nodes organization has proven to be critical in
functional connectivity analysis, for instance to differentiate
various consciousness states [2, 7] or degenerative demen-
tias [18]. Motivated by these reasons, we have lately pro-
posed a new framework to compare graph instances based on
a new similarity score that evaluates the node roles’ correspon-

dence [8]. With respect to other proposed graph similarities
based on Graph Neural Networks, our method defines a new
way to consider regional information without the permutation-
invariance assumption. Hence, the graph similarity score takes
into account regional node labeling when comparing networks
through their local information (nodal-statistics). This is espe-
cially suitable for our neuroscience application, where brain
regions are not exchangeable.
Here, we propose to use such a framework for the discrim-
ination task of comatose patients from healthy controls. In
this task, classical graph metrics analysis was found not to
be significant in the discrimination, while dissimilarity in the
nodal organization was determined through the definition of a
hand-crafted disruption index [2].

2 Nodal-statistics-based equivalence re-
lation

2.1 Single undirected unweighted graph
First, we propose a new way to determine node role in a sin-

gle undirected unweighted graph. In particular, we define the
graph structural pattern as the equivalence classes of an origi-
nal equivalence relation. The traditional structural equivalence
definition identifies two nodes as automorphically equivalent
if it exists a node permutation preserving the adjacency matrix
(an automorphism) which maps the first node to the second
and vice versa [13].
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Figure 1 – Left: Visualization of the structural pattern associated with the Degree statistics in two graphs, G and G′. Nodes with the
same structural role have the same color. Right: computation of the correspondence structural pattern score. Adapted from Brain Design by

A.S. Adije licensed under CC, retrieved from Creative Fabrica.

Here, we propose to relax the automorphic equivalence defi-
nition, by considering an equivalence relation associated with
one or more nodal statistics, i.e. any map on the node set
s : V → s(V) which is a function of the adjacency matrix, i.e.
node degree, clustering coefficient of a node, centrality mea-
sures, etc. We observe that for every pair of automorphically
equivalent nodes u, v ∈ V , any nodal statistics s is preserved.
Therefore, we define the equivalence relation ∼s, associated
with the statistics s, on the nodes set V of a graph as follows:

v ∼s u ⇐⇒ s(u) = s(v). (1)

When the nodal statistics have as s(V) a dense and continuous
subset of R, the equivalence is defined up to a fixed positive
small ϵ: v ∼s u ⇐⇒ |s(u) − s(v)| ≤ ϵ ). As ∼s is an
equivalence relation on V , it is possible to find its induced
partition P on V ,

Ps :=
V
∼s

= {[a]l,∼s
∀l ∈ s(V)}, (2)

which we name the structural pattern of G associated with the
statistics s, and whose elements are the classes of equivalence
[a]l,∀l ∈ s(V),

[a]l,∼s
= [a] = {b ∈ V|a ∼s b ⇐⇒ s(a) = s(b) = l}. (3)

Each equivalence class identifies a node role.
Subsequently, we extend the equivalence relation associated
with one statistics to any statistics collection S = {si}i=1,..,n,
requiring that:

a ∼S b ⇐⇒ a ∼s1 b, a ∼s2 b, . . . , a ∼sn b. (4)

Again, we can determine PS := {[a]∼S} the induced partition
by ∼S on V as the intersection of each class of the considered
{si}i=1,..,n. The possibility of combining more nodal statistics
allows for refining the structural pattern of a graph at different
granularities. A visualization of the partitions associated with
the degree statistics is shown in Fig. 1.

2.2 Graph Collection
As it happens in our application, we consider graphs that

have the same node-set. In this case, we propose to compare
each graph pair by evaluating the correspondence between
their structural patterns. Note that the node set constraint can
be easily circumvented when two graphs do not share all the

nodes, by including all nodes in the graph vertex sets and
allowing the considered networks to be composed of more
connected components. Indeed, each network can be seen as
the union of one strongly-connected component with as many
single disconnected vertices as needed.
Hence, we define the structural pattern comparison as follows.
Let G,G′ be two graphs having same vertices V and let S be a
statistics collection whose associated partitions are PS , P

′
S on

G,G′ respectively. Given the bijective mappings from PS , P
′
S

to an initial segment of the natural numbers as enumerations,
and given c(vi), c

′(vi) be the enumeration of the classes of
node vi, the correspondence structural pattern score between
G,G′ is defined as:

C(G,G′) := max
π∈Π

1

|V|

|V|∑
i=1

X

(
π

(
c(vi)

)
= c′(vi)

)
(5)

where Π is the set of all coupling between the elements in PS
and the elements in P ′

S and X is the indicator function.
A possible implementation of C(G,G′) in polynomial time is
given by the Hungarian algorithm ([15]) for assignment prob-
lems with a complexity O(max{|PS |, |P ′

S |}3) ≤ O(|V|3).
The correspondence structural pattern score can be applied
to evaluate graph similarity based on their structural pattern
similarity. An example of the structural pattern computation
is shown on the right of Fig. 1. C(G,G′) takes values in ]0, 1].
If for every class in PS there exists one class of P ′

S having all
and only its elements, then PS = P ′

S and C(G,G′) = 1. The
opposite is also true: the same partitions determine a corre-
spondence structural pattern score equal to 1.
For a more complete description of this theoretical framework,
please refer to our previous work published in Physical Review
E [8].

3 Application in human brain func-
tional connectivity

3.1 Data
We apply our framework for the comparison of brain

functional connectivity networks. We consider 200 networks
built from resting-state functional magnetic resonance imaging
(RS-fMRI) of healthy subjects (HC) available through Human
Connectome Project (HCP) [22, 20] and a smaller dataset
including 20 healthy subjects and 17 comatose patients (CO)
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[2]. The brain is parcelled in ninety regions (AAL90 atlas)
[21], corresponding to the vertices of our network. For
each region, a unique time-series signal was determined by
averaging the RS-fMRI time-series over all voxels, weighted
by the gray matter proportion. Then, wavelet correlation [6]
among regional time-series was estimated at the frequency
scale just below 0.1Hz [17, 9, 19]. Finally, we threshold
our correlation matrices to extract unweighted graphs at a
specific sparsity ratio (the ratio of observed edges over the
total number of possible edges) [12, 3]. Particularly, we
select a sparsity of 0.1 which guarantees that each extracted
network belongs to a small-world regime corresponding to
global and local efficiencies comprised between the ones
of Erdős-Rényi graphs and ones of the complete graphs [1, 16].

3.2 Experiments
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Figure 2 – Distribution of correspondence structural patterns
score in the dataset

First, we determine the distribution of the correspondence
structural pattern score associated with different nodal statis-
tics in three different groups: a group of only healthy controls,
a group including all the comatose and healthy controls, and a
smaller group including all the comatose patients. Next, we
train an SVM which employs the correspondence structural
pattern score as a kernel function to discriminate comatose
networks from healthy controls networks.

3.3 Results
In Figure 2, we report the distribution of the structural pat-

tern scores in the three groups of interest. Results are shown
for the equivalence relation associated with the degree and
the clustering coefficient in combination or as single statistics.
For the three equivalence relations, we can notice how the
healthy controls and the comatose patients distributions are

separated; the healthy controls group showing a higher corre-
spondence. This separation was found statistically significant
under the Z-test with a p-value < 0.001 for the three cases.
Significant difference was also observed in the distributions
of the entire dataset (CO+HC) and HC. No significant differ-
ence was found when comparing CO+HC and CO using the
clustering coefficient associated structural pattern, while it was
found in the other nodal statistics combinations. Indeed, the
correspondence between comatose subjects is similar to the
value obtained when they are pooled with HC, revealing a
high inhomogeneity in the CO group when considering the
clustering coefficient.
Moreover, we can appreciate the benefit of combining together
more nodal statistics for the identification of finer structural
patterns. Thus, structural pattern scores vary from 0.2 to 0.5
when considering only the degree and 0.4 to 0.8 when degree
and clustering coefficient are used. At the same time, the sig-
nificant difference between comatose and healthy controls is
maintained.
Finally, in Figure 3, we plot the results of the discrimination
between comatose patients and healthy controls when consider-
ing the structural pattern associated with degree and clustering
coefficient. The discrimination reaches a perfect score in a
5-cross-validation procedure.
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Figure 3 – Roc curve of discrimination between comatose net-
work and healthy controls in a 5 cross-validation considering
structural pattern associated with degree, clustering coefficient
and their combinations.

4 Conclusion
To conclude, we have proposed a mathematical framework

with the specific purpose of comparing networks by preserving
the nodal structural organization. Our method defines a new
nodal statistics-based equivalence relation that allows combin-
ing nodal statistics for single graph structural pattern detection
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in an original way. This definition relaxes the automorphically
equivalence definition but can retrieve it when considering an
infinity set of nodal statistics.
In this work, we apply our developed tools for human brain
functional connectivity networks. We report high correspon-
dence scores among networks of healthy controls, validating
the existence of a nodal organization signature in healthy sub-
jects. Moreover, we reach perfect discrimination scores be-
tween comatose patients and healthy controls. These results
not only validate that our proposed structural pattern compar-
ison can capture the nodal structural organization but is also
highly valuable in this specific application where no signif-
icant difference was obtained in a classical metric analysis
framework.

5 Acknowledgments
L. Carboni is the recipient of a grant from MIAI@Grenoble

Alpes (ANR 19-P3IA-003).

References
[1] Sophie Achard and Ed Bullmore. Efficiency and cost of

economical brain functional networks. PLoS computa-
tional biology, 3(2):e17, 2007.

[2] Sophie Achard, Chantal Delon-Martin, Petra E Vértes,
Félix Renard, et al. Hubs of brain functional networks are
radically reorganized in comatose patients. Proceedings
of the National Academy of Sciences, 109(50):20608–
20613, 2012.

[3] Sophie Achard, Raymond Salvador, Brandon Whitcher,
John Suckling, and ED Bullmore. A resilient, low-
frequency, small-world human brain functional network
with highly connected association cortical hubs. Journal
of Neuroscience, 26(1):63–72, 2006.

[4] Stephen P. Borgatti and Martin G. Everett. Notions of
position in social network analysis. Sociological Method-
ology, 22:1–35, 1992.

[5] Stephen P Borgatti, Ajay Mehra, Daniel J Brass, and
Giuseppe Labianca. Network analysis in the social sci-
ences. Science, 323(5916):892–895, 2009.

[6] Ed Bullmore, Jalal Fadili, Voichita Maxim, Levent Şen-
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