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Résumé — On s’intéresse au comportement limite des Réseaux de Neurones sur Graphes appliqués aux grands graphes aléatoires.
On démontre que sous certaines hypotheses de régularité, un GNN converge vers un homologue «continu». L’originalité de ce
travail est de considérer des fonctions d’agrégation abstraites et générales tandis que les études antérieures traitent de cas particuliers.
On quantifie les convergences a I’aide de bornes non asymptotiques en probabilité basées sur 1’inégalité de McDiarmid pour des
agrégations ayant une régularité de type lipschitzienne. Le cas du maximum, non inclus dans cette catégorie, est traité a part.

Abstract — We study the limit behavior of GNNs on large random graphs. We consider GNNs with a generic aggregation function
and show that under mild regularity conditions, they converge to a ’continuous* counterpart. We provide some non asymptotic
bounds with high probability for this convergence which encompass several cases of aggregation such as, the mean, or the maximum.

1 Introduction

A classical approach to study the properties of Graph Neural
Networks [1] (GNNSs) is to compare them to the Weisfeiler-
Lehman test for the graph isomorphism problem [10]]. Nev-
ertheless, this approach becomes questionable for very large
graphs, where we would rather focus on global tendencies.
The latter are traditionally modelled with random graphs [2l:
since the early Erdos Rényi model, they have become classical
tools in statistics, statistical learning and statistical physics,
for instance to study clustering problems [4]] or limits of large
graphs [5]] and their properties. In the case of GNNs, this
approach has shed light on their generalization properties [7]]
or stability to deformations [3}9]]. In this paper, our purpose is
to examine whether a GNN on a large random graph is close
to a “continuous” limit on the random graph model. We aim to
address Message-Passing GNN (MPGNN) with generic aggre-
gation function, including non-smooth ones like max, while
previous work [3} [7} 8] focused on particular cases such as
Graph Convolutional Network or degree normalized mean. We
give sufficient conditions under which the discrete model is a
good approximation of the continuous analogue, and provide
non asymptotic deviation bounds. Depending on the regularity
of the aggregation function, we obtain different rates of con-
vergence. Due to space constraints, we refer the reader to the
full version of the paper [6] for the mathematical proofs.

2 Notations and definitions

We fix a positive integer d and X' a compact subset of R¢,
endowed with the infinite norm ||z||,, = max; |x;| as well as
its Borel sigma algebra. Except when specified differently, all
topological concepts will be considered relatively to || -

|OO'
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The space of continuous functions from &’ to RP is written
C(X,RP), and it is also equipped with the supremum norm
[ flloc = supze [1f(#)[co-

The group of permutations of {1,...,n} is denoted as S,,. If
x = (x1,...,%,) is an n-tuple and o an element of S,,, we
define the n-tuple 0 -z as 0 - & = (To-1(1), -+ To-1(n))-
The set of bijections ¢ of X' such that both ¢ and ¢! are
measurable is a group for the composition of functions. We
call this group the group of automorphisms of X and denote
it as Aut(X). We denote as P(X) the set of probability
measures on X. For a measure P € P(X) and a bijection
¢ € Aut(X), the push forward measure of P through ¢ is
defined as ¢ P(A) = P(¢~1(A)) for all open sets A. Since
this makes Aut(X’) act on the set of probability measures, we
also use the notation ¢ - P = ¢4 P, which is standard for
a (left) group action. For the same reason, we shall use the
notation ¢ - f = fo ¢~ and ¢ - W = W(6~(-),67())
whenever f is a measurable function on X and W is a bivariate
measurable function on X x X.

Sets are represented between braces {-}, whereas multisets,
sets in which an element is allowed to appear twice or more,
are represented by double braces {-}. If M and M’ are two
multisets of the same size, say n, containing elements from a
metric space (&, d), we define their distance by:

S(M,M’) = min  max

d(zi, ). 1
oESy xEM,ziEM’ (CE ’$0(1)> ( )
We define the sampling operator the following way. If f : £ —
Eand X = (x1,...,2,) €EE™

SXf:(f(xl>7vf(xn)) Gg/n' (2)

Graph. An undirected weighted graph G with n vertices is
defined by a triplet (V, E, w), where V- = {v1,...,v,} is a
finite set called the set of vertices (or nodes) and F is the set
of edges. The set of neighbors of a vertex v; in G is referred to
as NV (7). The weight function w assigns a nonnegative number
to each edge. It is often represented by a symmetric function
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w : V? — RT and the abbreviation w; ; is used to denote the
weight w(v;, vj) = w(v;,v;) where {v;, v;} € E. The set of
graphs defined on the vertex set V' is denoted as G(V).

Graph signal. Given a graph G € G(V), where |V| =
n, a signal on G is a map from the set of vertices V to R¢
that assigns a d-dimensional vector z; to each vertex v;. The
images from all vertices are stacked into a tensor Z of size
n X d. Abusing notations, we may not distinguish between the
map and its image Z, the latter being also named the signal.

Random Graph Model. A random graph model is a cou-
ple (W, P) where P is a probability measure on X and
W @ X2 — [0,1] is a similarity kernel, i.e. a symmetric
measurable function. We generate a random graph of size n
from (W, P) as follows:

%1 P, wi’j = wj,i = W(X“Xj) . (3)

Xi,...,X,
When convenient, we will use the short notation X =
(X1,...,X,) for the tuple of the vertices of a random graph.
We call G,, (W, P) the distribution from which random graphs
with n nodes are drawn. We bring the reader’s attention to
the fact that in the above definition, a random graph is always
fully connected and edge may have a weight equal to zero. A
common model [3]] is to add a Bernoulli distribution to the
connectivity, which is not done here for the sake of simplicity.

Graph and Random Graph Model isomorphism. Two
graphs G7 and G5 in G(V) are said to be isomorphic
if there is a permutation ¢ € S, such that Fy :=
{vo-16), 001} {viyvi} € Er} and wi(vi,v5) =
w2 (Vg-1(3), Vo—1(5))- This permutation is called a graph iso-
morphism. In this case we note Go = ¢ - G1. Moreover, if Z
is a signal on G and o € §,,, 0 - Z is an isomorphic signal
on the graph ¢ - G1. Two probability measures P; and P, on
X are said isomorphic if there is some ¢ in Aut(X) such that

= ¢ - P;. Similarly, two random graph models (W1, P;)
and (W3, P,) on X are said to be isomorphic if there is a ¢ in
Aut(X) such that (Wa, Py) = (¢ - Wi, ¢ - P1), in this case,
we will note (Wa, Po) = ¢ - (W1, Py).

3 MPGNN

A L-layer MPGNN iteratively propagates a signal over a graph.
At each step, the current representations of every node’s neigh-
bors are gathered, transformed, and combined to update the
node’s representation. Let G € G(V) with |V| = n, and
Z = Z(0) ¢ R™*% be a signal on it. There are L operators
(F(l))lngL such that, at each layer, the update Z(+1) of the
signal is computed node-wise by:

2D = pO+D (Zfl)v {{(Zg('l)awi,j)}ja\/(i)> eR™. (4)

The F() are referred to as aggregations. They are the core of
a MPGNN and their fundamental property is to be invariant to
the permutation of the neighbors. As a result, the full network
is equivariant to permutations of the graph, that is, consistent
with graph isomorphism.

Proposition 3.1. Call ©¢(Z) = Z"). Forall Z € R™"*%,
0 € Sp, we have ©,.¢(0 - Z) =0 - O¢(2).

(l

Typically, the aggregation first transforms the z; ) through a

learnable transformation ¢(1+1)’ then combine them using a
weighted mean € (in a broad sense, such as arithmetic mean,
point-wise maximum, efc..) with weights

D = () ( M 4 ) wz]) &)

,]

such that @) can be rewritten as
41 Dy (41
A =@ () bew) -

Examples. 1. Convolution
(+1) _ (1)
G = W aev Wi (D).
2. Degree Normalized Convolution:
(+1) _ wij 14+1) (0
Zi - ZjGN(i) ZkeN(‘J) wi, kw( )(Zj )

3. Graph Attention (GAT): the c® from (5 (l) are learnable:

LU+ e 1+1) (D)
%= D ien mﬁ’( 1(27)-
4. Mlaj_c Convolution: 0
zl( b = Max;cpr(; )w,ﬂ/}(”rl (z z; ).

4 Continuous MPGNN

As we will see in the next section, when the number of nodes
grows, MPGNNSs will often converge to “continuous models”
on random graphs. Let (W, P) be a random graph model. A L-
layer continuous MPGNN (cMPGNN) propagates a function

over the latent space X', using operators Fp (+D that take a
vector and a function as input and output a vector. For an input
=19 ec(x,RP), f0+1 is computed by:

1 @) = 7Y (10@), (10 W(,)) ) € Rt
(6)
For notational convenience, we overload the notations f,S” as

FOEW) ca o FO(f(@), (W (z,-). O

Such, Eq. (6) now writes as

f(l+1)($)

Naturally, we also demand the cMPGNN to be equivariant to
random graph model isomorphisms. To that extent, we need

— FUD (1O W) (2). )

the following assumption on the operators JF }(;l)

Assumption 4.1. There is a subgroup H C Aut(X) such that
V1<I<LVfeCX R, Vo€ H:
Foplo 1.0 W) =0 FP (. W)
¢‘P 9 P 9 .
Ass.[4.]is inspired by the classical change of variable formula

in Lebesgue integration: for any ¢ bijective and measurable
and any measurable map f, [ fdP = [¢- fd(¢- P).

Proposition 4.1. Call O p(f) = fF). Under Ass. 4.1 nfor
any f and any ¢ € H, ©4.cw,py(¢ - f) = ¢ - Ow,p(f).



Ideally, one would like H = Aut(X’). However, we will see
with Ex. 4 that this is not always possible and one may have
to restrict equivariance to a subgroup of Aut(X’).

Examples (continuous equivalents of 1, 2, 3 and 4).

a. Convolution:
FED (@) = [ W (@, ) (FO(y))dP.
b. Degree Normalized Convolution:
FU0@) = [ w0 @) dP.

c. GAT:
f(l'H)(x)

_ D (my, W () 141) (£
=bT e ndem D (W) dP.

d. Max Convolution:
FUD () = esssup W (z, ) D (FB ().
P

5 Construction of the cMPGNN

Let (W, P) be a random graph model and f € C(X,R%).
In this subsection, we consider a single layer of a MPGNN
applied on a random graph G,, ~ G, (W, P) and input matrix
Sx f as node features. We present a canonical way of defining
a limit corresponding cMPGNN layer on (W, P) with input
map f, under some convergence assumptions that will be
satisfied in our examples. Since there is no multi layers in this
section, we drop the superscript indexation.

Definition 5.1. Let F' be a MPGNN layer and (W, P) a ran-
dom graph model. For f € C(X,R%) we define the sequence

FP,n(fa W) :
v Bx,ox, [F(f (@), {(F(Xe), Wz, Xi)) Br<ksn)]
)
where the expected value is taken over all the X1, ..., X, i

P. Let F be an operator of the form (§) taking value in
C(X,RY) and suppose we have a non-trivial subgroup H C
Aut(X) such that for any f € C(X,R?), for any ¢ € H,

ll-lloo
F¢P7n(¢fa¢w)%]:¢1’(¢f7¢w) (10)
Then we say that F is the continuous counterpart of F.

This F is a good candidate to be a cMPGNN. Indeed, it satis-
fies.T) on the ¢ for which it is well defined.

Proposition 5.1. Let F be the continuous counterpart of F'
as defined in Def. Then it satisfies Ass.[d.1|for any ¢ € H.

We prove that the continuous equivalents of our previous ex-
amples 1, 2, 3 and 4 are respectively a, b, ¢ and d:

Examples.
I-a. a. is the continuous counterpart of 1. for H = Aut(X)

2-b. If ¢ is bounded and W > « for some o« > 0. Then b. is
the continuous counterpart of 2. for the full H = Aut(X).

3-c. Call V(z,y) = c(f(x), fly), W(x,y)), if ¥ is bounded
and o« <V < Ba.s for some 0 < o < f3, then c. is the
continuous counterpart of 3. for the full H = Aut(X).

4-d. Suppose that W and 1), are continuous and that the mea-
sure P is strictly positive on X i.e, any nonvoid relative open
of X has a strictly positive measure by P. Then d. is the con-
tinuous counterpart of 4. for H = Hom(X'): the subgroup of
Aut(X) made of the ¢ € Aut(X) that are homeomorphisms.

The rates of convergence are given in the next section.

6 Convergence of MPGNN to

¢cMPGNN

Let (W, P) be a random graph model, (G,,),>1 be a se-
quence of random graphs drawn from G, (W, P). We con-
sider a MPGNN (F()); ;< and its continuous counterparts
(FD)1<i<p. Foran f € C(X,R%), does the MPGNN on G,
with input signal Sx f actually converge to the cMPGNN on
(W, P) with input signal f? If yes, at which speed? In this sec-
tion we provide non asymptotic bounds with high probability
to quantify this convergence.

Our main theorem states that, under mild regularity condition,

with high probability, (Sx () is close to f&)(X;). To
compare the output of this signal through the discrete network
to the output of f through the continuous counterpart, we shall

use the following Maximum Absolute Error (MAE):

MAE(f) = max H(Sx(f))EL) - f(L) (Xz)H

oo

6.1 Bounded differences method

Our main result relies on the so called McDiarmid concentra-
tion inequality, which relies on the following property.

Definition 6.1 (Bounded Differences Property). Let f : E" —
RP be a function of n variables. We say that f has the bounded
differences property if there exist n nonnegative constants

Ci,.-.,Cp such that forany 1 <1 < n:
[f(@1 @i mn) = f(@r, 2l @) oo < 65
(11)
forall xy,...,x;, 2}, ... Ty.

Fix, x1 € X, we are interested at the bounded differences of

FOFED (@), £ (n), W@, 2) brz2)  (12)

as a map of the n — 1 variables xo,...,2,. If c1,...,cp
satisfy (TI), since (I2) is invariant to the permutation of
Ta, ..., Ty, they can be taken all equal. We call Dg) (x1) =
¢4 = -+ = ¢p. Moreover, since (I2) is continuous as a
function of x1, it is also bounded by compactness, we define

DSIZ) = sup Dg)(xl) (13)

r1€EX
Since for all I, F® is the continuous counterpart of JalOn using
the notations of Def.[5.1] we let (a&f )) be a sequence of positive

reals such that ag ) — 0 and for all n

IED (fW) = FR (W)l <a®. (14

Next, we suppose, that (I3), (I4) and Def. [5.1] are satisfied.
Plus that the F(!) have some “Lipschitz-like” smoothness.



Assumption 6.1(i) Forall 1 < | < L, we endow R*~1 x
[0, 1) with the norm ||(y, t)||1 = ||ylleo + |t| and call 5, the
corresponding distance on multisets as defined in (I)). Let
z,x' € R4~ and M, M’ be two multisets of same cardinal
n containing elements of R4-1 x [0, 1], then there exist two

constants u > 0 and )\g)n > 0 such that:

HF(l)(x,/\/l) — FO@' M)

< 1|z — 2o + AW, 1 (M, M),

(ii) The sequence ()\g.i’)n) is bounded over n.

(iii) We have some DY) and o as defined in (13) and (14).
(iv) The FY) are the continuous counterparts of the F(1)),
Theorem 6.1. Under Ass.[6.1|for any p > 0,

n2Ldpan

MAEx(f) < LD, nln(
p

) + Lap—1. (16

with probability at least 1 — p. In (1), D, = max, fo),

l . .
dmaer = max;d;, a, = max; a%) and < hides some multi-

plicative constants which do not depend on n.

This bound suggests that if the bounded differences are sharp
enough, typically D,, = o(1/vnlInn), the MAE is small.

Corollary 6.1.1. If D,, = o(1/vnlnn) then MAEx (f) con-

verges to zero in probability.

This table sums up the results on the examples.

Cvrg by Th.

Example D, an,
1-a O(1/n) 0
2-b O(1/n) | O(1/y/n)
3¢ O(1/n) | O(1/y/n)
4-d Q(1) —

EIENENEN

6.2 The case of max

It turns out that MPGNNSs with max aggregation do not have
sharp bounded differences. Nevertheless, we provide a bound
for its convergence based on other concentration inequalities.

Definition 6.2 (Volume retaining property). We say that the
probability space (X, P) has the (rq, k)-volume retaining
property if for any r > 1o and for any x € X,

P(B(xz,r)NX) > cm(B(x,r)) (17

Where B(z, 1) is the ball of center x and radius r and m is the
classical d-dimensional Lebesgue measure in R?

Clearly, volume-retention implies strict positiveness of the
measure. This property ensures that the measure of a relative
small ball centered in a point of X is at least a portion of the
volume of that ball in R%. As an example, it is easy to check
that ([0, 1]¢,m) has the (1,1/29)-volume retaining property.
For a volume retaining probability space, we obtain a new
concentration inequality

Lemma 6.1. Let g : X2 — RP be \, Lipschitz and (X, P)
have the (r, k)-volume retaining property for some r,k > 0.

—e— d=2 (real)
=== d=2 (theory)
—+— d=3 (real)
rrrrrr d=3 (theory)
—v— d=5 (real)
rrrrrr d=5 (theory)

10* 107 10°
number of nodes

Figure 1: Log-scaled illustration of (I§) for d = 2, 3, 5. The dashed line
represents (1/n)/% and the plain line the MAE. L = 3, X = [0, 1]¢ with
the Lebesgue measure, W (x,y) = exp(— ||z — y||2) and f = 1.

Then for any p > 0, for any random variables X1, ..., X, w

P, with probability at least 1 — p:

nKk

g (In(p/p)\"*
N <9 .
I max g(X:) jlelgg(w)lloo_ 5 (

Armed with this lemma, we are ready to state the non asymp-
totic bound for a MPGNN with max aggregation:

Theorem 6.2. For a Max Conv. MPGNN, assume that (X, P)
has the (v, k)-volume retaining property. Then for any p > 0,
we have with probability at least 1 — p,

L-1 1/d
MAE(f) < L ( Lo (2 "dma"» . s
n—1 p

This bound indicates a different behaviour when the aggrega-
tion is a maximum. It depends on the input space’s dimension
and decreases significantly slower than (T6)) for a large d.
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