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Abstract – Early evaluation of Neural Networks (NN) deployments on edge multi-core platforms with memory limitations is
necessary to find deployments that optimize resource usage, performance and energy. In this paper, we propose a timing and power
modeling methodology which combines simulation, analytical models, and measurements to offer fast yet accurate performance
and energy prediction of NNs on multi-core platforms. The proposed approach is validated against measurements obtained from a
real implementation of 27 mappings of four NNs with high accuracy and a fast evaluation time of approximately 20 s per mapping.

1 Introduction
With the important growth of the Internet-of-Things field

comes the need for the deployment of Artificial Intelligence
(AI) algorithms such as Neural Networks (NNs) at the edge,
where their execution close to the sensors allows improving re-
sponse times and saving bandwidth. However deploying NNs
on embedded platforms available at the edge is difficult as NNs
are computation-intensive and require important amount of
resources whereas embedded platforms have limited process-
ing and memory resources and strict energy constraints. To
find implementations that optimize performance, energy and
resource usage, several evaluation flows for edge NN deploy-
ment have been proposed. Many focus on evaluation through
systematic implementation and characterization of NNs on a
real platform [10, 1, 2]. The effort to obtain evaluation results
is however important as numerous mappings must be deployed
on the implementation platform and tested which represents
a time-consuming effort. The implementation technology is
also fixed due to the need of having the real platform in the
loop which restrict the possibilities in regards to architectural
exploration. Other approaches [4, 8, 7] are based on pure
analytical models that demonstrate efficient exploration of
hardware accelerators for NNs, but they have limited scala-
bility for multi-core platforms due to the possible influence
of shared resources (bus, memory resources). On multi-core
platforms one difficulty comes from the accurate prediction of
shared resource contention, which has non-negligible impact
on timing and power.

To tackle this challenge, we propose in this paper a timing
and power modeling methodology used to efficiently predict
performance and energy of NNs deployed on multi-core em-
bedded platforms. This approach relies on a hybrid modeling
flow which combines simulation, analytical models and mea-
surements. Simulable models are used to describe shared
resources, analytical models are used to offer fast prediction
and measurement on real prototypes are used to appropriately
calibrate our models. The efficiency of our approach is val-
idated against timing and power measurements from a real
implementation of 27 mappings of four NNs, including one
Convolutional NN (CNN) and three different Multi-Layer Per-

ceptrons (MLPs), with more than 97% accuracy on timing and
95% accuracy on power. In Section 2 we explain our work
hypothesis and how our timing and power models are obtained.
Section 3 presents and discusses the experimental setup used
to perform the calibration of our models and their validation.
Conclusions and perspectives are drawn in Section 4.

2 Proposed modeling methodology
An overview of the proposed timing and power modeling

methodology is provided in Figure 1. In the scope of this
work we only consider MLPs and CNNs 1 . The descrip-
tion of the NN in a dataflow-oriented Model of Computation
(MoC) 2 and its mapping on the platform 3 are discussed in
Section 2.1. When executed on the platform, base delays can
be identified and measured to calibrate analytical timing mod-
els used to describe NN computation part 4 as explained in
Section 2.2. The computation time analytical models are then
integrated in a SystemC executable model 5 to simulate the
influence of shared resources on the overall system execution
as discussed in Section 2.3. The execution traces generated
from the simulation 6 are then used to estimate the power
consumption 7 . The power model is presented in Section 2.4.

2.1 Work hypothesis
The first step in the proposed methodology aims at describ-

ing the NN in a dataflow-oriented Model of Computation
(MoC) in order to have a separation of computation and com-
munication, which ease the analysis process. In this work we
rely on the Synchronous DataFlow (SDF) [6] MoC 2 . The
operations executed in NN layers (e.g. the neurons from dense
layers) are represented as actors depicted in green in Figure 1.
Communication channels, which are depicted in blue, corre-
sponds to bounded FIFO buffers to store the data exchanged
between actors. SDF offers the possibility to represent the
application with several levels of granularity. In the coarsest
level of granularity, each layer of the NN is described as one
actor. Finer levels of granularity are possible, in which layers
are split into several actors with equitable workload. They
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1 |  ReadTokens(pool-hl); 
2 |  ExecuteActorHL(I=5x14x14, N=64, FLOAT 
                      input[I],FLOAT output[N]): 
3 |    INTEGER n; 
4 |    FOR n FROM 0 TO N: 
6 |        INTEGER i; FLOAT sum = 0; 
7 |        FOR i FROM 0 TO I: 
8 |          sum <= sum + weights[n][i]*input[i]; 
9 |        sum <= sum + bias; 
10|        output[n] <= ActivationFunction(sum); 
11|  WriteTokens(hl-ol); 
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Figure 1 – Overview of the proposed modeling flow for timing and power prediction of NNs on multi-core platform

allow exploiting more computation parallelism from the NN
at the cost of a higher number of communication channels. An
example of a CNN described in two SDF graphs of different
levels of granularity is provided in Figure 1. The SDF graph
2a corresponds to the highest level of granularity possible,
while in the graph 2b the convolution layer is split into 5
actors of equitable workload. Once the NN described in SDF,
it must be mapped onto the platform 3 . In our work the plat-
form is composed of a set of tiles, each composed of a single
core and a private memory for instructions and data. A shared
memory is accessible through a communication infrastructure.
Actors are mapped on tiles and communication channels are
mapped on the shared memory. The separation of communi-
cation and computation offered by SDF is respected by the
implementation platform. This allows building models with
separate communication and computation time.

2.2 Timing model
MLPs are composed entirely of dense layers, whereas CNNs

are composed of three types of layers: convolution, pooling
and dense layers. These three layer types rely on the computa-
tion of the same operations a multitude of times over different
inputs. It is therefore possible to propose an analytical compu-
tation time model for each of these layer types. For example
on Figure 1 4 a zoom on the code performed in the actor ’hl’
is provided which corresponds to a dense layer. Three delays
can be identified: DΣ for the multiply accumulate operations
inside neurons, Dφ for the activation function of the neuron
and Dsetup for calling the function and setting up variables.
Dsetup occurs only once when calling the function correspond-
ing to the actor computation. Dφ is repeated a total of N times,
with N being the number of neurons inside the actor. DΣ is
repeated a total of N · I with I being the number of inputs of
the dense layer. The resulting analytical model is presented in
Equation 1. All the data (neuron’s weights, inputs) and instruc-
tions are available in the local memory of tiles. The model
is thus scalable to any actor issued from the partitioning of a
dense layer regardless of the number of neurons it contains.

Ddense(N, I) = N · I ·DΣ +N ·Dφ +Dsetup (1)

Using the same approach, we propose an analytical com-
putation time model for convolution and pooling layers. The

delay needed to compute an actor issued from a convolution
layer as shown in Equation 2 depends on the number of con-
volution filters F , the number of inputs I and the filters’ size
S, as well as the base delays Dsetup, Dφ and D∗, with D∗
being the delay needed to perform the convolution operation.
The delay needed to compute the pooling layer as shown in
Equation 3 depends on the number of filters F and the num-
ber of inputs I . In our approach base delays identified in the
proposed models (e.g. DΣ) are calibrated through measure-
ment. Another possibility to alleviate the calibration effort is
to provide an estimation for a given processor, using informa-
tion from the chip provider for example. Once calibrated, the
models can be used to predict the computation time of NN
mappings without further re-calibration.

Dconv(F, I, S) = F · I · S ·D∗ + F · I ·Dφ +Dsetup (2)

Dpool(F, I) = F · I ·Dmax +Dsetup (3)

2.3 Simulation in SystemC
In order to predict the performance of NNs on multi-core

platforms, both the computation time model presented in Sec-
tion 2.2 and the message level communication time model
presented in [11] are used inside a simulation described in
SystemC as shown on Figure 1 5 . These two models are inte-
grated in a behavioral description of each tile which describes
the sequence of the mapped computation and communication
statements. When an actor is being executed in simulation, the
analytical computation time model is called to compute the
corresponding delay. During communications through chan-
nels, the communication time model is called to compute the
delays of communications on the platform especially in the
case of contentions at shared resources. The simulation allows
knowing the state of cores and shared resources at any time of
the estimated execution, and obtaining the estimated execution
traces of the NN mapped on the platform. Due to the separa-
tion of computation and communication offered by SDF and
respected by the platform and the use of separate models for
computation and communication delays, the SystemC model
is composable: the number of tiles does not modify the nature
of the model.
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2.4 Power model
The power model is used with the simulated execution traces

from SystemC to estimate the total power consumption as
shown in Figure 1 6 and 7 . During the execution of NNs,
tiles execute computation or communication activities. The
dynamic power consumption of the platform executing NNs
can thus be described using two terms: PΣ

comp(t), the total
power consumption of tiles in computation mode at time t
and PΣ

comm(t), the total power consumption in communica-
tion mode at time t. To obtain the total power consumption of
the system PΣ(t), the static power consumption of the circuit
Pstatic must also be added. When tiles are in computation
mode, they are executing the computations inside the NN (e.g.
the neurons from dense layer) and are therefore independent
from one another as all necessary data is contained in the
private memory of the tile. When tiles are in the communi-
cation activity, they either: 1. perform a read or write in the
shared memory, which is modeled by PΣ

RW (t), 2. wait for the
availability of data, which is modeled by PΣ

Wait(t).
The calibration of the power model is performed by charac-

terizing through measurements the static power consumption
of the platform when no activity is executed, and the power
consumption of each individual tile in the identified activities
(computation, read and write access on the shared memory
and waiting). A multi-linear regression is then performed on
the measurements to extract the power model. Once the char-
acterization phase done, the power model can be used for any
NN mapping without further re-calibration.

3 Experimental results and discussions

3.1 Platform prototype and model calibration
In order to evaluate the prediction accuracy of the proposed

modeling flow, we implemented a prototype of multi-core plat-
form on the programmable logic section of a Xilinx UltraScale
MPSoC+ FPGA (ZCU102 board). The processing core of
the tiles is a MicroBlaze. The private memory of tiles and
the shared memory are implemented as BRAM, which are
internal to the FPGA SoC. The communication medium to
access the shared memory is implemented as a shared AXI
interconnect. The implementation platform is composed of
7 tiles. The timing measurement infrastructure is presented
in [9]. The power measurements are obtained by probing the
supply voltage of the programmable logic part of the FPGA
using the R&S HMC8012 Digital Multimeter.

The computation and communication time models are cal-
ibrated by measuring directly the base delays (e.g. DΣ as
introduced in Section 2.2). When performing the calibration,
we observed that the variability of execution time based on
input data was marginal. This allows fixing as constant the
base delays identified in the analytical models. The power
model is characterized through measurement as presented in
Section 2.4. Once they are calibrated, all models can be used to
evaluate any NN deployment on multi-core platforms without
further re-calibration.

3.2 Results and discussions
To validate our timing and power modeling flow, we trained

and tested one CNN and three MLPs. These different use-cases
offer a variety of complexity as well as different communi-
cation workloads which leads to a comprehensive validation
of our models. The CNN, MLP1 and MLP2 were trained on
the MNIST [5] dataset whereas the MLP3 was trained on the
GTSRB dataset [3]. The CNN is composed of one convo-
lution layer with 5 filters, one pooling layer and two dense
layers. MLP1 is composed of three dense layers while MLP2
and MLP1 are composed of four. All NNs were trained using
lightweight open source C libraries available online 1 and use
the ReLU activation function.

Table 1 – Observed average and maximum error on tested map-
pings regarding four different metrics: the latency in processor
cycles (T ) , the throughput in outputs/s (Φ), the power con-
sumption in W (P ) and the energy consumption in J (E). The
column titled "# tested mappings" provides the total number
of different mappings tested for each application.

Application # tested
mappings Metric Error %

Average Maximum

MLP1
MNIST 7

T 0.71 2.85
Φ 0.72 2.94
P 1.14 2.22
E 2.29 3.43

MLP2
MNIST 7

T 0.23 0.60
Φ 0.23 0.61
P 1.72 2.28
E 1.69 2.44

MLP3
GTSRB 7

T 0.54 0.99
Φ 0.54 0.98
P 1.50 2.43
E 1.07 1.47

CNN
MNIST 6

T 0.37 0.67
Φ 0.38 0.67
P 2.70 4.54
E 2.81 4.69

All
applications 27

T 0.47 2.85
Φ 0.47 2.94
P 1.73 4.54
E 1.93 4.69

Table 1 provides a summary of the observed average and
maximum errors on all tested mappings of the four NNs. The
latency T and the power P are predicted using our model-
ing flow. To obtain the throughput Φ we compute how many
outputs per second the mapping offer based on the predicted
latency. To obtain the energy consumption E, we integrate the
power consumption over the latency. The highest error 2.85%
on latency and 2.94% on throughput is observed for MLP1 on
a 7-core mapping with a communication workload of more
than 70%. This NN has the simplest topology compared to
the others and thus the lowest amount of computations. The
low computation rate and high communication rate of this
mapping leads to this error, which remain acceptable. The
highest error 4.54% on power and 4.69% on energy is ob-
served for one mapping of the CNN. The CNN is composed of
convolution, pooling and dense layers, which leads to a slightly
higher prediction errors on power and energy due to the variety
of layers. This error is acceptable for a high level modeling
flow. It can be noted that the error on timing is overall smaller

1. MLPs: https://github.com/libfann/fann
CNN: https://github.com/tranleanh/CNN-cpp
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Figure 2 – Predicted latency in millions of processor cycles, throughput in outputs per second, power in mW and energy in mJ - and
error in % for every considered mappings of the CNN application. Mapping IDs in X-axis are defined in Table 2.

Table 2 – Tested mappings of the CNN application.

ID Mapping of actor on tile T#

Conv Pool Dense1 Dense2
1 T0 T0 T0 T0

2 T0 T1 T0 T0

3 T0 T1 T2 T3

4 T0 T0 T0 T0 T0 T0 T0 T0

5 T1 T2 T3 T4 T5 T0 T0 T0

6 T1 T2 T3 T4 T5 T6 T0 T0

than the error on power and energy. This is due to the tim-
ing measurement infrastructure being cycle accurate which
leads to more accurate calibration of the timing model as well
as a more reliable use for the validation of the models. The
power measurements are performed with a multimeter with a
higher measurement error, which leads to a less accurate cali-
bration and validation of the model. The error on the energy is
also higher due to the propagation of both the error on timing
and power when computing it. One of the main advantage
of the proposed modeling flow is the evaluation speed. The
evaluation of a given mapping takes only 20 s, which is two
times faster than our fully automatized timing and power mea-
surement infrastructure. A more important effort is however
required if the models need to be re-calibrated (e.g. change in
the platform, or consideration of other NN layer types).

We also provide a focus of the validation of the models
regarding the CNN application, as presented in Figure 2. The
tested mappings shown in the X-axis are given in Table 2.
Regarding the latency and throughput, the model has very high
accuracy as the error lies below 0.67%. Regarding the power
consumption, it can be noted that the error lies on average
around 2.70%, with important variations which are due to the
accuracy limitations of the power measurement infrastructure.
When comparing the plots of the power consumption and
energy consumption, it can be noted that the error on power is
directly propagated on the energy, as the plots of error follows
the same shapes. The overall observed increase in error of the
energy consumption comes from the propagation also of the
error on latency, used to compute it.

4 Conclusion
This paper presents a early performance and energy predic-

tion methodology for NNs on multi-core platforms which uses
simulation, analytical models and measurements. This method-
ology offers highly accurate predictions with a fast evaluation
time and modularity in regards to the number of cores used in
the platform and the communication workload. In future work
we will extend this modeling flow to architectures including
external memory and caches. More information on the project

can be found on our GitLab repository 2.
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