
Gradient Scarcity with Bilevel Optimization for Graph Learning

Hashem GHANEM1 Samuel VAITER2 Nicolas KERIVEN3

1Institut de Mathematiques de Bourgogne, 9 avenue Alain Savary BP 47870, 21078 Dijon Cedex, France
2Laboratoire Mathématiques & Interactions J.A. Dieudonné, Parc Valrose, 28 Avenue Valrose, 06108 Nice Cedex 02, France

3Institut de Recherche en Informatique et Systèmes Aléatoires, 263 avenue du Général Leclerc, 35042 RENNES cedex, France

Résumé – Dans le cadre de l’apprentissage semi-supervisé, la minimisation d’une function de coût pour apprendre à la fois
le graphe de similarité entre les données et le classificateur peut conduire à un phénomène de rareté du gradient. Il s’agit
d’arêtes éloignées des nœuds étiquetés qui reçoivent des gradients nuls. Initialement, le problème a été observé dans un contexte
d’optimisation jointe et de Graph Neural Networks (GNN). Dans ce papier, nous démontrons que le problème se pose également pour
l’optimisation biniveau, malgré une dépendance supplémentaire entre les paramètres du problème. Alors que la rareté du gradient
avec les GNN résulte de leur champ réceptif fini, nous montrons qu’elle est également présente pour modèle de régularisation
Laplacien, qui a pourtant un champ réceptif infini, avec des gradients diminuant exponentiellement avec la distance aux nœuds
étiquetés. Pour résoudre ce problème, nous étudions plusieurs stratégies : utiliser un modèle de graphe latent, un procédé de
régularisation ou un graphe de diamètre réduit. Nos expériences illustrent notre analyse et valident les solutions proposées.

Abstract – Under the semi-supervised learning setting, minimizing a classification loss while learning both the graph and the
downstream classifier can lead to gradient scarcity. It refers to the fact that edges distant from labelled nodes receive zero gradients.
Initially, the problem was observed while jointly optimizing the graph and Graph Neural Network (GNN) classifiers. This study
demonstrates that the problem also arises in the bilevel optimization scheme, where additional dependency exists between the
parameters of the problem. While gradient scarcity with GNNs is a result of their finite receptive field, we show that it is also
present with the Laplacian regularization model, which has an infinite receptive field, with gradients diminishing exponentially with
distance to labeled nodes. To address this issue, we suggest using latent graph learning, graph regularization, or optimizing on a
graph with a reduced diameter. Our experiments support our analysis and validate the proposed solutions.

1 Introduction
Graphs model relations between points. In Semi-Supervised

Learning (SSL) tasks, where only a small portion of points are
labelled, graphs provide essential knowledge as linked points
are likely to share the same label. Formally, a graph G is a
pair (V,E), where V is a set of n nodes and E ⊆ V × V is
a set of edges. We represent a graph by its adjacency ma-
trix A ∈ Rn×n, where Ai,j is the edge weight between
i, j. We here look at transductive SSL problems. Given
(X, Aobs, Y obs), where X ∈ Rn×p is the feature matrix
whose rows include the features of corresponding nodes, Aobs

is the observed graph, and Y obs ∈ Rn contains the labels
of a subset of points at coordinates i ∈ Vtr ⊂ V (its value
outside Vtr does not matter), the goal is to predict labels on un-
labelled points. There are roughly two main strategies to solve
SSL problems. The first is to propagate known labels using a
regularization process. A popular choice is the Laplacian reg-
ularization model, where predicted labels, while emphasizing
the dependence on the adjacency matrix A, write:

Y Reg(A)∈argmin
Y

1
|Vtr|

∑
i∈Vtr

`(Y i, (Y obs)i)+
λ
|E|Y

>LY ,

(1)
where ` is a smooth loss function commonly chosen to be the
Categorical Cross Entropy (CCE) loss for classification, and
the Mean Square Error (MSE) for regression, L = L(A) =
D−A is the graph Laplacian, and λ is a balancing parameter.

The second strategy is to train a parametric model
Y W (X,A) parameterized by the weights W , such as Graph

Neural Networks (GNNs):

Y GNN (A) = Y W?(X,A), where

W ? = argmin
W

1

|Vtr|
∑
i∈Vtr

`
((
Y W (X,A)

)
i
, (Y obs)i

)
. (2)

We here adopt classical message-passing GNNs with sum
aggregation, where the output of the (l + 1)-th layer equals

X [l+1] = φ(X [l]W
[l+1]
1 +AX [l]W

[l+1]
2 + 1n(b

[l+1])>),

where W
[l+1]
1 ,W

[l+1]
2 ∈ Rdl×dl+1 , b[l+1] ∈ Rdl+1 are learn-

able weights, dl is the output dimensionality of the l-th layer,
1n = [1, . . . , 1]> ∈ Rn, and φ is a non-linear function.
Y W (X,A) = X [k] is the output after k rounds of message
passing, and W is gathered as W = {W [l]

1 ,W
[l]
2 , b

[l]}kl=1.
Unfortunately, real-world graphs are noisy, which signifi-

cantly degrades the performance in SSL tasks. A mainstream
approach in graph learning to overcome this issue seeks a graph
that, when used by the classifier (either Y Reg or Y GNN ), min-
imizes the labelling loss on labeled nodes. However, the clas-
sifier itself requires an optimization process on its parameters.
Two mathematical formulations are possible for this problem,
which both are usually solved by gradient-based algorithms. In
joint optimization, a single loss function F is used to optimize
for both objects. For example, in the GNN scenario we solve:
minA∈A,W

∑
i∈Vtr

`
((
Y W (X,A)

)
i
, (Y obs)i

)
, where A is

a set of admissible adjacency matrices. A,W in the joint set-
ting are simultaneously updated at each iteration and consid-
ered independent of each other, i.e., ∂W∂A = 0. The formulation
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of interest here, called bilevel optimization, associates a loss
function Fout to the graph that is a function of the trained
classifier. Assuming that there is another set of labelled nodes
Vout ⊂ V distinct from Vtr, we seek any

Â ∈ argmin
A∈A

Fout(A) =
1

|Vout|
∑
i∈Vout

`(Y (A)i,Y i) , (3)

such that Y (A) = Y GNN (A) or Y (A) = Y Reg(A). That
is, the minimization of the objective function Fout, called the
outer problem, involves Y (A), which is itself the result of
an optimization problem called the inner problem. We refer
to the outer gradient ∇Fout as hypergradient. A common
model for A is edge refinement A = {A ∈ Rn×n|Aij =
0 when (Aobs)ij = 0}. We will see that other models are
capable of resolving the problem of interest in this work, which
emerges in edge refinement tasks: gradient scarcity.

Remark: min-min problems are an instance of bilevel prob-
lems which are usually easier to analyze. They take place
when the inner and the outer objectives are identical, e.g., when
Y (A) = Y GNN (A) and Vtr = Vout. Therefore, the analy-
sis in this paper encompasses the min-min setting as it does
not necessitate Vtr, Vout being disjoint sets. Recall that we
consider this assumption to achieve a better generalization.

Unlike bilevel optimization, joint optimization lead to the
trivial solution A = 0 when adopting the Laplacian regulariza-
tion. Moreover, joint optimization promotes overfitting with
GNNs, as GNNs usually have the capacity to fit the small sub-
set of labelled data Vtr with an arbitrary graph. By introducing
a distinct training set for the graph in the outer problem, which
can be seen as a validation set, bilevel optimization leads to a
graph that generalizes better on test nodes.

The gradient scarcity phenomenon [2] was observed solving
the joint optimization problem using a gradient-based algo-
rithm with the classifier being a GNN. Indeed, a k-layer GNN
computes the label of a node using information from nodes
up to k-hop away, hence due to this limited receptive field,
the gradient of this label becomes zero when calculated with
respect to edges that connect nodes outside of this range. How-
ever, it is not clear how to extend this argument to the bilevel
optimization setting where the weights of the GNN themselves
depend on the graph, i.e., ∂W∂A 6= 0. It is also not clear whether
using graph-based models with an infinite receptive field, such
as the Laplacian regularization, can solve this problem.

Contribution: we prove that by solving edge refinement
tasks with bilevel optimization while using a k-layer GNN
classifier, the hypergradient on edges between nodes at least
k-hop from nodes in Vtr ∪ Vout are null. The distance to a
subset of nodes is defined as the shortest distance to any of
its member nodes. Similarly, we prove that hypergradient
scarcity persists in the Laplacian regularization case, with
hypergradients being exponentially damped as distance from
labeled nodes increases. Our empirical validation supports
these results. To address this issue, we explore three possible
strategies: latent graph learning, graph regularization, and
refining a power of the given adjacency matrix.

2 Related work
The method in [3] learns graphs by optimizing the parame-

ters of Bernoulli probability distributions over random edges

using bilevel optimization; however, it learns n2 parameters
which limits scalability. Other works adopted joint optimiza-
tion, as in [14] or in attention mechanisms [12], where edge
weights are refined after each GNN layer based on similarity
between node representations. The method in [13], called
GAM, learns graphs by penalizing edge absence between
nodes with the same label, hence GAM does not adopt the
bilevel nor the joint setting.

Gradient scarcity was detected in [2] where for tasks adopt-
ing a 2-layer GNN classifier, the authors show that edges
between unlabelled nodes do not receive supervision if they
are at least 2-hop from labelled nodes. This issue cannot be
resolved by adding more GNN layers due to the oversmooth-
ing issue [8]. To provide more supervision on the graph level,
authors regularize the graph using a penalty term that opti-
mizes its performance in denoising node features. That said,
this study assumed no dependence between the GNN weights
and the graph as it considered joint optimization. Gradient
scarcity has not been studied under the bilevel optimization
setting, and when considering other graph-based models.

In [10], authors state that optimizing the graph and a GNN
model under the supervision of a classification task introduces
reliance on available labels, and bias in the edge distribution.
This, however, is not theoretically justified. To overcome this
problem, authors proposed an unsupervised graph learning
framework. Although the proposed framework competed state-
of-the-art methods, we believe that labels contain informative
knowledge that is not exploited by unsupervised learners.

3 Hypergradient scarcity with GNNs
We consider bilevel optimization (3) for edge refinement,

adopting the GNN classifier Y (A) = Y GNN (A).

Theorem 3.1. Let Y W be a k-layer GNN parametrized by the
set of weights W . Assume that the inner optimization problem
is solved with a gradient-based algorithm. Then, for any pair
of nodes i, j at least k-hop from nodes in Vout ∪ Vtr, we have
∂Fout

∂Ai,j
= 0.

Sketch of Proof. By induction on gradient-based updates on
W , we prove that the weights Wt at any iteration t are not a
function of edges connecting nodes at least k-hop from nodes
in Vtr. We then prove for all u in Vout, given the previous
result and the GNN’s finite receptive field, that (Y Wt

)u is not
a function of Ai,j , which completes the proof as with the chain
rule one gets ∂Fout

∂Ai,j
= 0. Full proof is available in [4].

We point out that the proof does not assume that the gradient-
based inner optimizer converges to a minimizer of the inner
problem. Thus, hypergradient scarcity occurs even when this
optimizer converges to a local minimum, which is the case in
practice as the inner problem is not convex.

4 Hypergradient scarcity with the
Laplacian regularization

Since the finite receptive field of GNNs leads to gradient
scarcity, we now investigate hypergradient scarcity in the case
where Y (A) = Y Reg(A) with the Laplacian regularization.
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In this scenario, the inner problem (1) does not induce a finite
receptive field because in general ∂Y (A)

∂Aij 6= 0 for all i, j.
We show that although to a lesser degree, this issue still

arises. Specifically, we establish that the hypergradient’s mag-
nitude diminishes exponentially as the sum of the two distances
to Vtr and Vout increases. Our study is focused on regression
tasks, where ` is the MSE loss function in Eqs. (1) and (3).
Let Sin ∈ Rn×n be the diagonal matrix with entries equal to
1 for nodes in Vtr and 0 otherwise, the solution Y (A) enjoys
a closed-form expression:

Y (A) = B−1S̃inY obs ,

where S̃in = Sin

|Vtr| and B = Sin

|Vtr| +λ
L
|E| . Given that, we now

state the main result of this section.

Theorem 4.1. Let nodes i, j be at least k-hop from Vout, and
q-hop from Vtr. Then we have:∣∣∣∣∂Fout∂Aij

∣∣∣∣ . λ

√
|Vout|+ µmin

√
|Vtr||Vout|

µ3
min|Vtr||E|

y2∞(1− µ)q+k ,

s.t. µmin (µmax) is the smallest (largest) eigenvalue of B sat-
isfying 0 < µmin < µmax, µ = µmin

µmax
, and y∞ = ‖Y obs‖∞.

Sketch of Proof. We express Y (A) as a Neumann series, then
bound the derivative of terms in the resulted series, and by
extension the gradient of Fout. Full proof is available in [4].

Since 0 < 1− µ < 1, Theorem 4.1 states that the hypergra-
dient is exponentially damped as q + k increases.

5 Alleviating hypergradient scarcity
We review 3 strategies to mitigate hypergradient scarcity:
— Generalized edge refinement: refining a power of Aobs

as Ar
obs yields a potential edge between neighbors less

than r-hop from each other in Aobs. Hence, the distance
between unlabelled and labelled nodes is reduced.

— Graph regularization provides another source of hyper-
gradients than the classification loss. Here, we adopt the
penalty −γ1>n logA1n proposed in [7], where γ is the
trade-off hyper-parameter, which penalizes graphs with
low node degrees and achieves state-of-the-art results
on graph learning from smooth signals.

— Latent graph learning: training a model fθ parameter-
ized by the weights θ on edge refinement, i.e., A =
{Aθ = fθ(Aobs,X)}. fθ takes as input node features
and the observed graph: we refer to such models as
Graph-to-Graph (G2G). Note that G2G outputs weights
only on observed edges. The adopted G2G model is:

(Aθ)i,j = α
(
(Xi −Xj)

2
)
, (4)

where the square function is applied entrywise, α :
Rp → R is a Multi-Layer Perceptron (MLP )
model of kG2G layers of the form: X [l+1] =

φ[l+1](X [l]W
[l+1]
1 + 1n(b

[l+1])>), where W
[l+1]
1 ∈

Rdl×dl+1 , b[l+1] ∈ Rdl+1 are learnable parameters, and
dl is the output dimensionality of the l-th layer. θ is
gathered as θ = {W [l]

1 , b
[l]}kG2G

l=1 .
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Figure 1 – Observing hypergradient scarcity and the effect
of graph regularization on Cora. Left: adopting the GNN
classifier. Right: adopting the Laplacian regularization model.
We plot the hypergradient against edge distance. When this
distance is not defined, e.g., in connected components without
a node from Vtr ∪ Vout, we assign the distance 15 to edges in
such components in order to be able to visualize them.

6 Experiments
We validate our findings on Cora [11], which is a common

SSL benchmark dataset for node classification. Cora consists
of one graph, where nodes correspond to publications repre-
sented by a bag of words, and edges represent citations. The
objective is to categorize the given articles based on their topic.
Further experiments on different datasets can be found in [4].

Models: the function α in the G2G model is an MLP
with 2 hidden layers, each having 32 neurons and followed by
the ReLu activation function. The GNN we consider has 1
hidden layer of 128 neurons that is followed by ReLu, while
the output layer is followed by the softmax function.

Setup: we unroll [6] τin iterations of the inner optimizer,
and deploy automatic differentiation [1], implemented in the
Higher package [5], to compute hypergradients. For the
inner and the outer solvers, we consider the Adaptive Moment
estimation algorithm (Adam) [9]. We set with a grid search
ηin = 10−2 with the GNN, ηin = 10−1 with the Laplacian
regularization, ηout = 10−2 in all experiments without a G2G
model, otherwise ηout = 10−4 with the GNN classifier, and
ηout = 10−3 with the Laplacian regularization. Also τin =
500 for the Laplacian regularization, and 100 with the GNN
classifier. We set the number of outer iterations to 150 and
select the model with the highest validation accuracy. We set
λ = 1 in training as we expect the bilevel algorithm to learn λ
by scaling the learned adjacency matrix. When applying the
Laplacian regularization fed with Aobs, we set λ = 0.1 after a
grid search. γ in the graph regularization term is tuned to 1.

6.1 Results
The task at hand is a multi-label classification problem with

` set to the CCE function. In Fig. 1, we show the hypergradient
received on edges at outer iteration 9 as a function of their
distance to labelled nodes. For the Laplacian regularization
case, this is the edge cumulative distance to Vtr and Vout
defined as follows: we compute q + k, the sum of distances
to Vtr and Vout, respectively, for its both endpoint nodes, then
we take the minimum of the two results. Whereas in the
GNN case, we compute for each of its endpoint nodes its
distance to Vtr ∪ Vout, then we take the minimum. The figure
showcases our analysis, and shows that the GNN classifier
manifests null hypergradients for distances exceeding 2, while
the Laplacian regularization scenario displays a hypergradient
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Table 1 – Accuracies obtained on Cora when the classifier
is trained using the output graph of the Bilevel Optimization
(BO) framework, BO equipped with graph regularization, BO
equipped with the G2G model. We also benchmark against
GAM [13] (the result is reported from the according paper).
For each classifier, we report test accuracy in the according first
line and training accuracy on Vout in the second one. Training
accuracy on Vtr equals 100% for all methods.

Graph Aobs BO BO+Reg BO+G2G GAM

GNN 77.0 76.2 80.3 82.0 84.8
77.4 94.9 94.1 97.4 -

Laplacian 71.7 76.2 78.3 76.2 -
71.0 81.9 83.2 83.5 -

that diminishes exponentially as the distance increases.
Regarding the generalization capacity, Table 1 shows that

the learned graph exhibits lower generalization capacity in the
GNN case compared to Aobs. This suggests that hypergradi-
ent scarcity leads to overfitting, which is expected given the
extreme scarcity in the GNN scenario. Specifically, edges with
distances exceeding 2 retain their random initialization after
training. This is, however, not the case in the Laplacian regular-
ization scenario where most edges have distances less than 11
thereby they do not display severely damped hypergradients,
thus not affecting generalization.

We now evaluate the effectiveness of the proposed solu-
tions for mitigating hypergradient scarcity. Due to memory
constraints, we do not attempt to learn a power of Aobs; how-
ever, we applied this approach to other datasets in [4]. As
demonstrated in Fig. 1, graph regularization is a viable so-
lution, producing non-zero hypergradients on all edges with
magnitudes comparable to those of edges with small distances.
Note that hypergradients are received on the G2G weights
when it is used, not on edges, hence they are not depicted in
the figure. With respect to generalization, Table 1 illustrates
that both fixes result in significant improvements in test accu-
racy compared to Aobs when used with the GNN classifier. In
the Laplacian regularization scenario, graph regularization re-
sults in higher test accuracy, whereas the G2G model exhibits
similar generalization performance to learning edge weights
directly. Moreover, we observe that the GNN classifier consis-
tently outperforms the Laplacian regularization, particularly
when using the G2G model and graph regularization, as well
as when operating directly on Aobs. This is expected since
the Laplacian regularization promotes similarity between con-
nected nodes, but it is not a supervised technique like GNNs,
which is why it generally yields lower performance.

We finally point out that the bilevel optimization framework
with either fix does not achieve state-of-the-art results pro-
duced by GAM. This suggests that the label agreement model
produces graphs that generalize better on citation networks.

7 Conclusion
We examined the hypergradient scarcity issue when utiliz-

ing bilevel optimization to solve edge refinement tasks under
the SSL setting. This problem occurs when optimizing both
the graph and the classifier to improve the classification per-

formance, where edges that are far from labeled nodes receive
scarce hypergradients. We showed that using GNNs leads to
this phenomenon. We also investigated hypergradient scarcity
with the Laplacian regularization model, which has an infinite
receptive field. While the phenomenon still occurs, it is less
severe, and we proved that the magnitude of hypergradients
is exponentially damped with distance to labeled nodes. To
mitigate hypergradient scarcity, we proposed three solutions:
latent graph learning, graph regularization, and refining the
edges in a power of the observed adjacency matrix. Our exper-
iments confirmed our findings and proved the effectiveness of
the first two solutions. Future works include examining other
solutions, such as spectral graph convolutional networks while
setting its filter width large to have a larger receptive field.
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