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Résumé – Un rendez-vous spatial est une manœuvre au cours de laquelle un véhicule spatial, appelé chasseur, s’approche d’une
cible dans un même plan orbital. Cet article étudie le cas d’un rendez-vous en orbite circulaire, et estime la précision atteignable par
un radar pour le contrôle précis du chasseur.

Abstract – A space rendezvous is a maneuver during which a spacecraft, namely the chaser, approaches a target in the same orbital
plane. This paper studies the case of rendezvous in a circular orbit, and estimates the precision of a radar as support of precise
control of the chaser.

1 Introduction
Space rendezvous and formation flying started in 1965 when

the Gemini missions were preparing the various orbital maneu-
vers of the Apollo program [2]. Space rendezvous were then
decisive for the implementation of the Apollo lunar missions
and for the assembly and refueling of the Mir and the Inter-
national Space Station (ISS). An astronaut, usually guided by
lidar or radar [3] systems, controls a space vehicle (namely
the chaser) to approach a cooperative target during these mis-
sions. Nowadays, in-orbit servicing and active debris removal
strengthen the stake in autonomous space rendezvous [5]. The
chaser will most likely host various sensors such as camera, li-
dar or radar to ensure the safety of operations. For that purpose,
the estimation of the relative motion between the chaser and
its target from discrete radar observations is studied. Circular
orbits are assumed, which enables to consider the well-known
Clohessy-Wiltshire (CW) motion model [4].

The paper is organized as follow: first the models describ-
ing the orbital relative motion and the radar measurements are
presented. Then, the Fisher Information Matrix (FIM) is com-
puted for the motion parameter estimation from discrete radar
observations during long-range space rendezvous. Finally, a
comparison with the Maximum Likelihood Estimation (MLE)
is performed to assess the validity of the FIM.

The results of this paper may be used as in [6] where a
similar approach is proposed. The FIM is determined for
bearing-only measurements and is exploited to optimize the
fuel consumption of the chaser while maintaining the observ-
ability of the target during space rendezvous.

2 Model

2.1 Orbital Relative Motion
Clohessy and Wiltshire have demonstrated that the restricted

three-body problem involving the chaser (C) nearby its target
(T ) in a circular orbit around the Earth (E) results in a relative
motion that is entirely defined from the initial relative position

and speed between C and T . To describe this motion, the CW
frame, R = {C, x, y, z}, is introduced as the right-handed
orthonormal frame with x in the direction of zenith of the
point C, and y tangent to the orbit at the point C and in the
direction of its motion (cf. figure 1). The coordinates of the
target in R are taken to be T = (x, y, z)T .

X(t) =

[
F (t)

Ḟ (t)

]
X(0), (1)

where X(t) = [x(t) y(t) z(t) ẋ(t) ẏ(t) ż(t)]T is the state
vector describing the relative motion, and F (t) is a 3× 6 ma-
trix defined as follow: F1,1(t) = 4 − 3 cos(ωt); F2,1(t) =
6(sin(ωt) − ωt); F2,2(t) = 1; F3,3(t) = cos(ωt); F1,4(t) =
(1/ω) sin(ωt); F2,4(t) = −(2/ω)(1 − cos(ωt)); F1,5(t) =
(2/ω)(1 − cos(ωt)); F2,5(t) = (1/ω)(4 sin(ωt) − 3ωt);
F3,6(t) = (sin(ωt)/ω); while other terms of F (t) are null.
Finally, ω is the angular rate and depends on the altitude.
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Figure 1 – Clohessy-Wiltshire frame.

2.2 Radar Observations
A radar, onboard the chaser, observes the target during the

time window [−To/2 + To/2] and uniformly samples the

1

mailto:benjamin.gigleux@onera.fr
mailto:francois.vincent@isae-supaero.fr
mailto:eric.chaumette@isae-supaero.fr
mailto:thomas.husson@thalesgroup.com


target parameters, namely θ, comprising the range (r), the
range-rate (ṙ), and both direction cosines (ux′ , uz′) within the
radar frame R′ = {C, x′, y′, z′}. To estimate those parame-
ters, the radar integrates the received signal during Ti = To/S.
In general, the radar processing chain is implemented as the
Maximum Likelihood Estimator (MLE) which justifies that
the radar measurements asymptotically follow a Gaussian dis-
tribution at high Signal-to-Noise Ratio (SNR):

θ̂(ts) =
[
r̂(ts) ˆ̇r(ts) ûx′(ts) ûz′(ts)

]T
∼ N

(
0, J−1(ts)

)
,

where J(ts) the FIM about the target parameter θ(ts) sampled
around ts = (s − S/2)Ti for s = 1, 2, . . . , S. In this paper,
J(ts) is supposed to be diagonal (i.e. no coupling) to simplify
the calculation. Finally, the transformation matrix between
the radar frame (R′) and the CW frame (R) is defined as
[x(t) y(t) z(t)]T = Q(t)[x′(t) y′(t) z′(t)]T where x′, y′ and
z′ relate to the target parameters:

r
ṙ
ux′
uy′

 =
1√

x′2 + y′2 + z′2


x′2 + y′2 + z′2

x′ẋ′ + y′ẏ′ + z′ż′

x′

z′


3 Estimation of the Relative Motion

from Radar Observations
The problem consists in estimating the initial state vector,

X0 = X(0), which defines the complete target motion in the
CW coordinates system, from discrete radar observations. To
simplify the problem, the center of the radar receiver is as-
sumed to coincide with the chaser center of mass. This implies
that the lever arm correction is not necessary. In addition, the
angular rate, ω, is assumed to be known. Moreover, the radar
observations are supposed to be uniformly acquired in a short
period of time with respect to the angular rate, such that the
variations of the state vector X(t) are limited. This assump-
tion enables to consider the target as non-fluctuating (Swerling
0) and the distribution of scattering points can thereby be ne-
glected in the error budget (therefore: ∀s, J [s] ≃ J). Finally,
during space rendezvous, the off-track components, namely
x(t) and z(t), are assumed to be maintained as a fraction of
the along-track component, namely y(t).

The FIM for the estimation of the parameter vector X(0)
from discrete radar observations is now computed. Slepian
and Bangs have established the expression of the FIM in the
case of real Gaussian signals [1]. Applying this result to S
independent radar scans gives the FIM for the estimation of
the parameter vector X(0):

Ip,q =
1

2
Tr

{
J−1 ∂ J

∂ (X0)p
J−1 ∂ J

∂ (X0)q

}
+

∂θH [{1, 2, . . . , S}, X0]

∂ (X0)p
J

∂ θ [{1, 2, . . . , S}, X0]

∂ (X0)q
,

where J = diag{J(t1), J(t2), . . . , J(tS)]} is a block diago-
nal matrix whose blocks are the FIM of individual radar scans.
Developing the calculation produces:

Ip,q = Irp,q + I ṙp,q + I
ux′
p,q + I

uz′
p,q , (2)

where Irp,q accounts for the information provided by the range,
I ṙp,q by the range-rate, Iux′

p,q and I
uz′
p,q by the direction-cosines.

The contribution of each term is detailed below and the overall
error budget is discussed afterwards to give an insight into a
radar architecture and maneuvering strategy to perform space
rendezvous.

3.1 Contribution of the Range
The contribution of the range equals:

Irp,q
∆
=

S∑
s=1

∂ r(ts, X0)

∂ (X0)p
J1,1(ts)

∂ r(ts, X0)

∂ (X0)q
.

Acknowledging that the range varies little over the integration
time, the contribution of the range can be approximated as:

Irp,q ≃ J1,1
r2(0, X0)

×

(F (0) X0)
T 1

Ti

∫ +To
2

−To
2

FFp,q(t)dt (F (0) X0),

with:

FFp,q(t) =

 F1,p(t)
F2,p(t)
F3,p(t)

 [F1,q(t) F2,q(t) F3,q(t)] .

3.2 Contribution of the Range-Rate
The contribution of the range-rate is:

I ṙp,q =

S∑
s=1

∂ ṙ(ts, X0)

∂ (X0)p
J2,2(ts)

∂ ṙ(ts, X0)

∂ (X0)q

Similarly to the contribution of the range, the contribution of
the range-rate can be approximated as:

I ṙp,q ≃ J2,2
r2(0, X0)

×

(Ḟ (0) X0)
T 1

Ti

∫ +To
2

−To
2

FḞp,q(t)dt (Ḟ (0) X0) +

(F (0) X0)
T 1

Ti

∫ +To
2

−To
2

Ḟ Ḟp,q(t)dt (F (0) X0),

with:

FḞp,q(t) =

 Ḟ1,p(t)

Ḟ2,p(t)

Ḟ3,p(t)

 [F1,q(t) F2,q(t) F3,q(t)] ,

Ḟ Ḟp,q(t) =

 Ḟ1,p(t)

Ḟ2,p(t)

Ḟ3,p(t)

 [
Ḟ1,q(t) Ḟ2,q(t) Ḟ3,q(t)

]
.
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3.3 Contribution of the Direction-Cosines
The contributions of the direction-cosines are:
I
ux′
p,q =

S∑
s=1

∂ ux′(ts, X0)

∂ (X0)p
J3,3(ts)

∂ ux′(ts, X0)

∂ (X0)q
,

I
uz′
p,q =

S∑
s=1

∂ uz′(ts, X0)

∂ (X0)p
J4,4(ts)

∂ uz′(ts, X0)

∂ (X0)q
.

Recalling that the off-track components are assumed to be
maintained as a fraction of the along-track component, and
assuming that the chaser is stabilized (Q(t) ≃ Q(0)), the
contribution of the direction-cosines can be approximated as:

I
ux′
p,q ≃

S∑
s=1

J3,3
r2(0, X0)

[Q−1
1,1(0) 0 Q−1

1,3(0)] ×

1

Ti

∫ +To
2

−To
2

FFp,q(t)dt [Q−1
1,1(0) 0 Q−1

1,3(0)]
T .

I
uz′
p,q ≃

S∑
s=1

J4,4
r2(0, X0)

[Q−1
3,1(0) 0 Q−1

3,3(0)] ×

1

Ti

∫ +To
2

−To
2

FFp,q(t)dt [Q−1
3,1(0) 0 Q−1

3,3(0)]
T .

3.4 Discussion
Developing the calculation results in the expression of the

FIM for the estimation of the parameter vector X(0) from
discrete radar observations. For the sake of compacity, only
its diagonal terms are detailed in table 1. Examining those
terms in the case of a typical radar design shows that during
space rendezvous, when the off-track components, namely
x(t) and z(t), are assumed to be maintained as a fraction of
the along-track component, namely y(t):

1. Most information about x0, is provided by the direction
cosines: I1,1 ≃ S/r2 (J3,3 (Q

−1
1,1)

2 + J4,4 (Q
−1
3,1)

2),

2. Most information about y0, is provided by the range:
I2,2 ≃ S J1,1,

3. Most information about z0, is provided by the direction
cosines: I3,3 ≃ S/r2 (J3,3 (Q

−1
1,3)

2 + J4,4 (Q
−1
3,3)

2),

4. Most information about ẋ0, is provided by the range and
range-rate thanks to the coupling between x, y, ẋ and ẏ in
equation (1). The direction cosines enable to better condi-
tion the problem when only few radar scans are available:
I4,4 ≃ S (J1,1 ω

2To
4/80 + J2,2 ω

2To
2/3),

5. Most information about ẏ0, is provided by the range and
range-rate: I5,5 ≃ S (J1,1 To

2/12 + J2,2),

6. Most information about ż0, is provided by the direc-
tion cosines: I6,6 ≃ S/r2 To

2/12 (J3,3 (Q−1
1,3)

2 +

J4,4 (Q
−1
3,3)

2).

Those observations show that a careful attention should be
given to the interpolation of range and range-rate to maximize
the information about y0, ẋ0 and ẏ0. In addition, the relative
motion between the target and the chaser is not sufficient to

exploit a synthetic antenna for the estimation of x0, z0 and ż0.
This advocates for the use of a larger antenna array along the z
axis to improve the measurement of ż0. Eventually, the radar
should be orientated perpendicular to the orbit of the chaser
(i.e. Q(t) = Id) to maximize the information provided by
the direction cosines on the initial position and speed in the
perpendicular plane to the chaser orbit.

4 Numerical Application
A space rendezvous with a non-fluctuating target is con-

sidered. The chaser realizes a thrust maneuver with an im-
pulsive change in velocity to initiate the rendezvous. After
the maneuver, the radar estimates the initial state vector re-
sulting from the thrust. The transformation matrix Q(t) is
set at the identity matrix while the initial state vector is (in
MKSI): X0 = [0 5000 0 1 0 0]T . The radar observes the
signal up to To = 100 seconds with a scanning rate of 1 Hz
(i.e. Ti = 1 second). The FIM about the target parameters
is simulated through a radar link budget and is almost con-
stant as supposed in section 3. The diagonal terms of the FIM
are detailed in table 2. Eventually, the Mean Squared Errors
(MSE) for both the position and speed estimated by the lin-
earized Maximum Likelyhood Estimator (MLE) are computed
using Monte-Carlo simulations (100 runs) and compared to
the Cramer-Rao Bound (CRB) derived from the FIM in equa-
tion (2). The linearized MLE asymptotically converges to the
CRB in figures 2 and 3 as expected which verifies the pro-
posed FIM. Besides, it can be observed that the estimates are
more precise along the y dimension as the range and Doppler
almost result from the respective projections of the position
and speed on this axis. In addition, the speed estimate along
the x dimension benefits from the coupling between ẋ and ẏ
in equation (1), which explains why it becomes more precise
than the speed estimate along the z dimension. The lattest is
indeed independent from both other dimensions. Finally, the
position estimates along both x and z dimensions have simi-
lar precision as they mostly result from the direction cosines
which have the same precision in this numerical application.

Table 2 – Standard deviations for the radar observations.

Range error: (J1,1)−1/2 = 5.3× 10−2 [m]
Range-rate error: (J2,2)−1/2 = 1.6× 10−4 [m.s−1]
Direction cosine errors for the unit vectors x/r and z/r:
(J3,3)

−1/2 = (J4,4)
−1/2 = 4.7× 10−4

5 Conclusion
The FIM for the estimation of the orbital relative motion

from discrete radar observations has been established in the
case of rendezvous in circular orbits. The FIM can be used
to design a space-based radar with respect to the specified
performances; or can be computed onboard the radar to decide
when enough measurements have been collected to estimate
the relative position between the chaser and its target during
rendezvous and proximity operations. Nonetheless, one shall
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Table 1 – Diagonal terms of the FIM for the estimation of the X0 from discrete radar observation

I1,1 =
S

r2

{(
J1,1 + J2,2

3 ω4To
2

4

)
x2(0) +

(
J1,1

ω6To
6

448
+ J2,2

9 ω6To
4

80

)
y2(0) +

(
J2,2

)
ẋ2(0) +(

J2,2
ω6To

6

448

)
ẏ2(0) +

(
J3,3 (Q

−1
1,1)

2 + J4,4 (Q
−1
3,1)

2

)}

I2,2 =
S

r2

{
J1,1 y2(0) + J2,2 ẏ2(0)

}

I3,3 =
S

r2

{(
J1,1 + J2,2

ω4To
2

12

)
z2(0) +

(
J2,2

)
ż2(0) +

(
J3,3 (Q

−1
1,3)

2 + J4,4 (Q
−1
3,3)

2

)}

I4,4 =
S

r2

{(
J1,1

To
2

12
+ J2,2

)
x2(0) +

(
J1,1

ω2To
4

80
+ J2,2

ω2To
2

3

)
y2(0) +

(
J2,2

To
2

12

)
ẋ2(0) +(

J2,2
ω2To

4

80

)
ẏ2(0) +

(
J3,3

To
2

12
(Q−1

1,1)
2 + J4,4

To
2

12
(Q−1

3,1)
2

)}

I5,5 =
S

r2

{(
J1,1

ω2To
4

80
+ J2,2

ω2To
2

3

)
x2(0) +

(
J1,1

To
2

12
+ J2,2

)
y2(0) +

(
J2,2

ω2To
4

80

)
ẋ2(0) +(

J2,2
To

2

12

)
ẏ2(0)

}

I6,6 =
S

r2

{(
J1,1

To
2

12
+ J2,2

)
z2(0) +

(
J2,2

To
2

12

)
ż2(0) +

(
J3,3

To
2

12
(Q−1

1,3)
2 + J4,4

To
2

12
(Q−1

3,3)
2

)}
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Figure 2 – Position Errors.

keep in mind that the target is in practice not a single scattering
point and that the distribution of scattering points is expected
to impact the error budget.
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