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Résumé – Étant donné un graphe avec un sous-ensemble de nœuds étiquetés, nous sommes intéressés par la qualité de l’estimateur
de la moyenne qui, pour un nœud non étiqueté, prédit la moyenne des observations de ses voisins étiquetés. Nous étudions
rigoureusement les propriétés de concentration, les limites de variance et les limites de risque dans ce contexte. Bien que l’estimateur
lui-même soit très simple, nous pensons que nos resultats contribueront à la compréhension théorique de méthodes plus sophistiquées
telles que les réseaux de neurones de graphes.

Abstract – Given a graph with a subset of labeled nodes, we are interested in the quality of the averaging estimator which for an
unlabeled node predicts the average of the observations of its labeled neighbours. We rigorously study concentration properties,
variance bounds and risk bounds in this context. While the estimator itself is very simple we believe that our results will contribute
towards the theoretical understanding of learning on graphs through more sophisticated methods such as Graph Neural Networks.

1 Introduction
Given a undirected graph on n + 1 vertices (e.g. nodes

represent people) and adjacency matrix A = [ai,j ] (e.g. edges
represent social relationships) where all but the (n + 1)-st
node have measurements yi (e.g. salary, living expenses, etc),
the graph regression problem adresses prediction of the (con-
tinuous valued) measurement yn+1 of the remaining node.
While there are various sophisticated designs of Graph Neural
Networks [6, 9, 16, 17] which can tackle this problem, little
has been done in terms of statistical analysis of any potential
solution in the context where the graph is random. In this
paper we will consider the simplest estimator, which for the
missing label of node n+ 1 is taking the average over all of
its neighbours, i.e.

ŷn+1 =

∑n
j=1 yjaj,n+1∑n
j=1 aj,n+1

(1)

To our knowledge, the statistical properties of this estimator
have not been studied in the statistical or machine learning liter-
ature. In this article we seek to understand the properties of this
estimator in a context when the graph is treated as random. To
conduct our analysis we will work with a random graph model
known as Latent Position Model (LPM) [7], where to each
node one associates a latent position in space, and typically
nodes that lie closer together in the latent space are more likely
to be linked. Due to the nature of this model, the estimator (1)
will resemble the Nadaraya-Watson (NW) estimator, a popular
regression estimator in the nonparametric estimation literature
[15], which just averages measurements in a window centered
at the location where signal prediction is to take place. For this
reason we decide to title it the Graphical Nadaraya-Watson
(GNW) estimator. There are two major differences between
the NW and the GNW estimator. First, NW is more expressive
in the sense that it comes with a tunable parameter (bandwidth)
hn, which sets the size of the neighbourhood over which to
average. For the GNW there is no tunable parameter, because
neighbourhood size is imposed by the graph. Therefore, the

performance of GNW depends on a latent bandwidth hn that
is not user-chosen and determines connectivity patterns in the
random graph. Second, in the analysis of GNW we include a
parameter αn which affects the sparsity of the observed graph.

We show that the GNW estimator is strongly related to a
NW estimator with bandwidth hn. Surprisingly, despite the
added randomness in the GNW estimator, its error is within
a multiplicative constant of the NW error. In addition, our
analysis holds in a regime where the graph is asymptotically
almost sparse. Whereas most of the methods discussed in
the literature require degree of logarithmic order i.e. dn ≥
C log(n) [11, 12], we show that the variance of GNW will
converge to zero as soon as dn → ∞, covering almost all
regimes of sparsity (excluding the bounded degree regime
dn ≤ D).

2 Regression in the Latent Position
Model

2.1 Background on the LPM
The Latent Position Model (LPM) [7] is a generative model

which samples a random graph on n nodes in two stages.
First, a sample of n i.i.d. latent variables Xi ∈ Rd with
density p is drawn. Second, for each pair of nodes i, j a
Bernoulli variable with parameter k(Xi, Xj) determines if
there is an edge between nodes i and j. Here, k is a symmetric
kernel on Rd, taking values in [0, 1]. The edge generating
Bernoulli variables are conditionally independent given the
latent variables. Intuitively we are more likely to observe an
edge between two nodes with positions that are similar with
respect to k.

When k is a similarity kernel (e.g. radial basis function) as
in the NW estimator (4), edges are likely to occur between
nodes whose latent positions are nearby in the latent space.
As an example, when k(x, z) = I(||x − z|| ≤ h), NW and
GNW coincide. This is the random geometric graph [13].
By allowing for discontinous kernels, LPMs can instantiate a

1

mailto:martin.giorgjevski@grenoble-inp.fr
mailto:nicolas.keriven@gipsa-lab.grenoble-inp.fr
mailto:simon.barthelme@gipsa-lab.grenoble-inp.fr
mailto:yohann.de-castro@ec-lyon.fr


Figure 1 – Sampling a LPM: Left - generating uniformly 300
latent positions on [0, 1]2. Right: generating a graph with
gaussian kernel k(x, y) = exp

(
− ||x−y||2

h2

)

model with intrinsic community structure known as Stochastic
Block Model (SBM) [8]. In the framework of LPMs, the graph
classification problem been addressed in [14], which employed
the method of adjacency spectral embedding. In contrast, we
use a local averaging approach.

As large graphs in the real world tend to be sparse [1],
a significant effort in the community detection literature is
dedicated to understanding statistical properties of graphs with
low expected degrees [2, 10, 11, 12]. In such frameworks one
considers asymptotic regimes where kn(x, z) = αnK(x, z)
with K being a fixed kernel and αn → 0 as n → ∞. The
scaling αn determines the sparsity of the graph where nαn

is the expected degree of the graph, up to a multiplicative
constant. The parameter αn is not user-chosen (and not user-
known). In this sense, we will instead consider asymptotic
regimes with

kn(x, z) = αnK

(
x− z

hn

)
(2)

where K : Rd → [0, 1] is compactly supported, 0 < αn ≤ 1
and hn > 0, with αn, hn being parameters that are not user-
chosen.

Once again, it is worth highlighting the key distinction be-
tween the setups for NW (4) and GNW (1): the user has
the freedom to select the bandwidth hn in the case of NW,
whereas in GNW, this choice is not within the user’s control.
As kn(x, z) ≤ αn, we see that smaller values of αn will
generate sparser graphs.

The benefit of Latent Position Models is that they allow us
to perform graph analysis in the familiar setting of Euclidean
geometry. We will use that correspondence to relate signal
prediction of graphs to classical nonparametric regression.

2.2 Nonparametric Regression
The regression problem can be stated as estimating a regres-

sion function f : Rd → R given noisy measurements

Yi = f(Xi) + ϵi (3)

where f : Rd → R with ||f ||∞ ≤ B, ϵi additive centered
noise with finite variance. One is also given the data points
X1, ..., Xn which can be either deterministic (fixed design)
or random i.i.d. samples from a distribution with density p
(random design). A classical approach is the weighted average

Nadaraya-Watson estimator [3, 5, 15]

f̂NW (x) =

{∑n
i=1 Yik(x,Xi)∑n
i=1 k(x,Xi)

if
∑n

i=1 k(x,Xi) ̸= 0

0 otherwise
(4)

Here, k(x, z) = K
(
x−z
h

)
depends on function K : Rd → R

and the bandwidth h which controls the scale on which the
data is being averaged. This parameter needs to be chosen
carefully, as too small values of h produce estimates of high
variance, while too large values of h give highly biased estima-
tors, an instance of the Bias-Variance tradeoff, a well known
phenomenon in statistics. There are two main measures of sta-
tistical performance for NW (4), the pointwise and integrated
risk. For a given point x ∈ Rd, the pointwise risk is given by

R
(
f̂NW (x), f(x)

)
= E

[(
f̂NW (x)− f(x)

)2
]

(5)

where the expectation is taken over the noise and the data
points X1, ..., Xn for the random design setting (only over the
noise for the fixed design). It is also known as mean squared
error (MSE). This metric is local in the sense that it only
captures statistical information for a particular point. A metric
that captures global statistical information is the integrated
risk given by

R
(
f̂NW , f

)
=

∫
R

(
f̂NW (x), f(x)

)
p(x)dx (6)

The integrated risk is also known as mean integrated squared
error (MISE) and can be interpreted as the risk for a new
random variable X with density p, independent from the data
X1, ..., Xn.

2.3 Framework and Outline
We observe a random graph with n + 1 nodes sampled

according to a LPM and assume that for all nodes but the
last there is a label of the form (3). Conditionally on node
n+1 having latent position x ∈ Rd, we write a(x,Xi) for the
indicator of an edge between the node n+ 1 and node i. With
this notation, the GNW estimator (1) becomes

f̂GNW (x) =

{∑n
i=1 Yia(x,Xi)∑n
i=1 a(x,Xi)

if
∑n

i=1 a(x,Xi) ̸= 0

0 otherwise
(7)

For x ∈ Rd, we introduce the local expected degree dn(x) by

dn(x) = n

∫
Rd

kn(x, z)p(z)dz (8)

which acts as local sample size. Indeed, dn(x) is the expected
degree of node n+1 given that its latent position is x. Finally,
for x ∈ Rd and f : Rd → R bounded, we introduce the local
averaging operator

bn(f, x) =

{ ∫
f(z)kn(x,z)p(z)dz∫

kn(x,z)p(z)dz
if dn(x) > 0

0 otherwise
(9)

which can be considered as a biased version of f(x) (the
sequence of operators bn(f, x) resembles an approximation
of identity and under mild conditions on K and f discussed
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in Section 4 one has bn(f, x) → f(x) if hn → 0). Note
that bn(f, x) does not depend on αn in (2). Similarly to the
pointwise risk (5) of NW (4), we will consider the pointwise
risk for GNW (7)

R
(
f̂GNW (x), f(x)

)
= E

[(
f̂GNW (x)− f(x)

)2
]

(10)

where the expectation is taken over all random variables ap-
pearing in the model (edge randomness, latent positions and
noise), as well as the integrated risk

R
(
f̂GNW , f

)
=

∫
R

(
f̂GNW (x), f(x)

)
p(x)dx (11)

Our main result is a bound on the integrated risk (11). The
approach taken in this paper is to bound (10) over the support
of p and then to integrate the result. To this goal, we follow a
bias-variance decomposition inspired approach by introducing
the bias proxy

bn(x) = bn(f, x)− f(x) (12)

and the variance proxy

vn(x) = E
[(

f̂GNW (x)− bn(f, x)
)2

]
(13)

We emphasize that the bias and variance proxies do not corre-
spond to the standard notions of bias and variance of GNW and
the standard bias-variance decomposition does not hold. In-
deed, in Section 3, Proposition (1) we compute E[f̂GNW (x)]
explicitly. For simplicity we choose to work with the bias (12)
and variance (13) proxies instead of the standard bias-variance
decomposition. It can be shown that the bias and variance
proxies are within O(e−2dn(x)) of the true bias and variance
[4]. Moreover, for bounded functions f with ||f ||∞ ≤ B, we
can replace the bias-variance decomposition by the inequality

R
(
f̂GNW (x), f(x)

)
≤ min

{
2
[
b2n(x) + vn(x)

]
, 4B2

}
(14)

Hence it suffices to provide bounds on the bias (12) and
variance proxies (13). As the variance proxy (13) can be
treated in greater generality, we tackle it first in Section 3. The
bias proxy (12) is treated in Section 4, along with the pointwise
(10) and integrated (11) risks.

3 Statistical properties of GNW
The main result of this section is a bound on the variance

proxy (13) of order 1/dn(x). Additionally, we show that under
bounded noise, f̂GNW (x) (7) concentrates around bn(f, x)
(9) with a rate that is exponentially decaying in dn(x) (8).
Finally, we derive an explicit formula for E[f̂GNW (x)] in
terms of bn(f, x) and dn(x). Our key insight is the decoupling
trick, a novel technique specialised for Bernoulli variables
which introduces independence into the weights of GNW that
otherwise are ratios of dependent variables. For proofs we
refer to the extended version of this paper [4].

Theorem 3.1 Suppose that f : Rd → R with ||f ||∞ ≤ B and
E[ϵ21] = σ2. Then

σ2
(
1− e−dn(x)

)2
dn(x)

≤ vn(x) ≤
261B2 + 65σ2

dn(x)

For the asymptotic analysis, it states that the variance proxy
(13) tends to zero as soon as dn(x) → ∞. Conversely, for
bounded degree graphs, in the presence of noise the variance
proxy (13) stays bounded away from 0. With stronger assump-
tions on the distribution on the noise one can prove stronger
concentration results, as given by the following Theorem.

Theorem 3.2 Suppose that f : Rd → R is bounded with
||f ||∞ ≤ B and the noise variables satisfy |ϵi| ≤ σ. Then

P
(
|f̂GNW (x)− bn(f, x)| ≥ δ

)
≤ 6 exp(−Cdn(x))

Here, C > 0 depends on δ,B and σ, but not on the sample size
n.

We conclude this section by a formula for E[f̂GNW (x)]. Inter-
estingly, for smooth kernels, an analogous explicit formula for
E[f̂NW (x)] is not available in the kernel regression literature.

Proposition 1 Suppose that ||f ||∞ ≤ B. Then

E
[
f̂GNW (x)

]
= bn(f, x)

[
1− (1− dn(x)

n
)n
]

4 Risk of GNW
So far we have bounded the variance proxy (13) in terms of

the local expected degree (8) (Theorem 3.1). In this section
we bound the pointwise (10) and integrated (11) risk. In view
of the bound (14) to bound the risk (10) we need to bound
the bias proxy (12), and we also need to understand the re-
lationship between the degree dn(x) and the parameters αn

and hn. These problems are addressed in Subsection 4.1. In
order to bound the integrated risk (11), we need to control
the pointwise risk (10) uniformly over the support of the data
distribution p. This problem is addressed in Subsection 4.2.

4.1 Bias bound and Pointwise risk of GNW
In the NW literature, it is standard to assume compactly

supported kernels [5, 15], an assumption that we adopt as well.

Assumption 1 There exists M1,M2 > 0 such that for all
z ∈ Rd we have 1

2 I (||z|| ≤ M1) ≤ K(z) ≤ I (||z|| ≤ M2)

We denote the support of the measure induced by p with Q.
In order to control the bias proxy (12), one needs a regularity
assumption on f . We work under the assumption of Hölder
continuity. For 0 < a ≤ 1 and L > 0, we say that f belongs
in the Hölder class Σ (a, L) on Q if for all x, z ∈ Q, we have
|f(x)− f(z)| ≤ L||x− z||a.

Assumption 2 There exist 0 < a ≤ 1, L > 0 and B > 0
such that f ∈ Σ (a, L) on Q and sup

x∈Q
|f(x)| ≤ B

Lemma 4.1 Suppose Assumptions 1 and 2 hold.

sup
x∈Q

|bn(f, x)− f(x)| ≤ LMa
2 h

a
n

The classical NW estimator (4) is known to perform poorly
near the boundary of the support and in regions where the
density function p is low. The following definition describes
sets for which the boundary issue can be mitigated. We say
that G ⊆ Rd has (r0, c0)-measure-retaining property if for
all x ∈ G and all r ≤ r0, m (G ∩Br(x)) ≥ c0m (Br(x)),
where m denotes Lebesgue measure on Rd.
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Assumption 3 There exist r0, c0 > 0 such that Q has the
(r0, c0)−measure-retaining property.

Lemma 4.2 Suppose that Assumption 1, 3 hold.
If M1hn < r0 and x ∈ Q is such that

inf
z∈Q

|x−z|≤M1hn

p(z) ≥ p0(x) > 0 (15)

Then
1

dn(x)
≤ C

nαnhd
np0(x)

where C depends on c0, M1 and d.

Combining Theorem 3.1 and Lemma 4.2, we see that if As-
sumptions 1 and 3 hold, then vn(x) ≤ C2

nαnhd
np0(x)

. If, in
addition Assumption 2 holds then, combining the last bound
with Equation (14) and Lemma 4.1, we get

R
(
f̂GNW (x), f(x)

)
≤ C1h

2α
n +

C2

nαnhd
np0(x)

(16)

where C1, C2 depend on the various parameters appearing
in the assumptions, and are explicitly given in the extended
version of this paper [4].

4.2 Integrated risk of GNW
Finally, to bound the integrated risk (11) using Equation

(16), one needs to deal with the quantity p0(x) (15) appearing
in the expression. The simplest way to do this is to assume
that for all x ∈ Q, we have p(x) ≥ p0. In that case one can
take p0(x) ≡ p0 in Equation (16), giving

R
(
f̂GNW , f

)
≤ C1h

2α
n +

C2

nαnhd
n

(17)

This rate is classical for the NW estimator (4) under uniform
density assumption [5, 15]. One can get a slightly weaker rate
for noncompactly supported densities p.

Assumption 4 There exist 0 < β ≤ 1 and L > 0 such that
p ∈ Σ(β, L) and

∫
p1/2(x)dx < ∞

Theorem 4.3 Suppose that Assumptions 1, 2, 3, 4 hold. If
M1hn < r0,

R
(
f̂GNW , f

)
≤ C1

nαnh
d+β
n

+ C2h
min{2α,β/2}
n

where C1, C2 depend on B, σ2, c0, d, α, β,M1,M2 and L.

Typically one optimizes the rates in Equation (17) or Theorem
4.3. However, as the user has no control of hn, we provide a
range of values of hn depending on nαn such that for Theorem
4.3 the integrated risk (11) is uniformly controlled over the
class of regression functions and densities apperaing in the
assumptions of Theorem 4.3. Set γ = min (2a, β). There
exist values C3, C4 > 0 depending on the various parameters
apperaing in the assumptions (explicitly given in [4]) such that
if r ≤ γ

d+β+γ , hn < min ( r0
M1

, 1) and

(nαn)
− 1−r

d+β ≤ C3hn ≤ (nαn)
− r

γ (18)

then
R

(
f̂GNW , f

)
≤ C4

(nαn)r
(19)

Note that for r = γ
d+β+γ the bound in (19) is the strongest

and the interval in (18) shrinks to a point.

5 Conclusion and perspectives
We showed that both the pointwise and integrated risk

bounds of the risk of f̂GNW are similar to ones of the classi-
cal NW estimator. If αn and hn fall into the suitable range
of values (i.e. hn → 0 and nαnh

d
n → ∞) then GNW will

perform well. As GNW uses only one-hop neighbourhood
information, it does not take advantage of the global graph
structure, it would be interesting to compare it with graph
spectral based regression estimators (such as graphical Ker-
nel Ridge Regression). Furthermore, it would be intriguing
to investigate whether utilizing node embeddings could offer
statistical benefits for estimation.
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