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Résumé – Cet article étudie l’algorithme de déflation appliqué à l’estimation d’un modèle de rang faible symétrique contenu dans
un tenseur de grandes dimensions corrompu par un bruit additif gaussien. Plus précisément, nous fournissons une caractérisation
précise de la performance en grandes dimensions de la déflation en termes des alignements des vecteurs obtenus par approximations
successives de rang 1 et de leurs poids, en supposant des corrélations (fixes) non-triviales entre les composantes du modèle. Notre
analyse permet de comprendre le mécanisme de déflation en présence de bruit et peut être exploitée pour concevoir des méthodes
d’estimation plus efficaces.

Abstract – This paper studies the deflation algorithm when applied to estimate a low-rank symmetric spike contained in a large
tensor corrupted by additive Gaussian noise. Specifically, we provide a precise characterization of the large-dimensional performance
of deflation in terms of the alignments of the vectors obtained by successive rank-1 approximation and of their estimated weights,
assuming non-trivial (fixed) correlations among spike components. Our analysis allows an understanding of the deflation mechanism
in the presence of noise and can be exploited for designing more efficient signal estimation methods.

1 Introduction
By capitalizing on the uniqueness properties of certain ten-

sor decompositions, one can address many parameter estima-
tion or information retrieval problems in signal processing,
data sciences, and machine learning by recasting them as the
decomposition of some data tensor built from the observations
[3]. An archetypal application in signal processing is source
separation, which can be formulated as the decomposition of
a tensor containing either data acquired by a sensor array or
high-order statistics estimated from these data [6].

Among these (essentially) unique tensor decompositions,
the canonical polyadic decomposition (CPD) [9] figures promi-
nently. It consists in writing a tensor as a (minimal) sum of
rank-one terms, and as such can be seen as one possible exten-
sion of the singular value decomposition. Yet, these rank-one
terms need not be orthogonal for their uniqueness, and this
fact is at the heart of its popularity. In several problems, the
tensor of interest is symmetric and the sought information is
encoded in a rank-r symmetric CPD, that is,

X =

r∑
i=1

βi x
⊗d
i , (1)

where βi ∈ R, ∥xi∥ = 1 and x⊗d denotes the tensor product
of vector x ∈ Rn with itself d− 1 times (for instance, x⊗3 =
x⊗ x⊗ x). One example is in latent variable model learning
[3], where the vectors xi appearing in the decomposition are
directly related to the model’s parameters (for instance, each
xi is the mean of a Gaussian component in a mixture model).

If the vectors xi in (1) were orthogonal, then one could
retrieve them by resorting to a greedy deflation procedure,
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first introduced by Hotelling for matrices [10]: a best rank-1
approximation of X is computed and then subtracted from X,
and the process is repeated r times. Algorithmically, each
such approximation can be computed by power iteration [12].
However, this is no longer true when these vectors are not
orthogonal—in fact, subtracting a best rank-1 approximation
from X can even yield a tensor of higher rank [16]. In some
applications, this can in principle be circumvented by trans-
forming X in such a way that it becomes a rank-r symmetric
orthogonal decomposition, as long as r ≤ n. For instance,
in latent variable model learning the eigendecomposition of
a matrix of second-order statistics can be exploited to ob-
tain a whitening matrix W ∈ Rr×n such that the vectors
x̃i = Wxi ∈ Rr, i = 1, . . . , r, are pairwise orthogonal. An
analysis of an algorithm employing this technique coupled
with tensor power iteration was carried out in [3], including
a robust estimation result quantifying the performance in the
case one observes Y = X̄+E, in terms of the spectral norm of
the perturbation E, where X̄ admits a symmetric orthogonal de-
composition. Performance bounds were also derived in [1, 2]
for an algorithm involving tensor power iteration in the over-
complete regime with r > n, where whitening is no longer
possible and thus one has to impose additional constraints to
control deviation from orthogonality (such as small coherence
or uniform sampling from the unit sphere).

Yet, the results of these previous works are not well suited
to the large-dimensional regime. Specifically, the vectors xi

become nearly orthogonal under the assumptions made in
[1, 2] as n → ∞, which can be quite restrictive, while the
bound on the spectral norm of the perturbation imposed on
[3] may not hold when the data dimension n is of the same
order of the number of samples used to estimate the required
statistics, which is a typical assumption in this regime.

Our goal here is to study the performance of a deflation
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procedure in the case where r is fixed (for simplicity, r = 2),
the observations are corrupted by noise, n → ∞ but the align-
ments |⟨xi,xj⟩| ≠ 0 are fixed and not o(1). Such an analysis
is a first step towards devising more sophisticated algorithms
such as orthogonalized deflation, as has been recently done
in the asymmetric case [15]. To this end, we build upon a
recently developed approach [8, 14] which allows studying
random tensor models by deploying tools from random ma-
trix theory. The core idea of this approach is to study partial
contractions, which give rise to large random matrices.

More concretely, we study the (random) alignments between
the vectors obtained by deflation and the components xi of our
CPD model, in the regime of asymptotically large tensor di-
mensions. Under the assumption that these alignments (and the
estimates of the weights βi) concentrate and some additional
technical conditions, we derive a system of equations that are
satisfied by the limiting values of these quantities. Once the
deflation procedure is applied, one can plug its output into the
equations and numerically solve for the other unknown quan-
tities, including the weights βi and the alignments ⟨xi,uj⟩,
where the vectors uj are the estimated components obtained
by deflation. This allows evaluating the quality of the obtained
decomposition in terms of the alignments ⟨xi,uj⟩, which is
useful in practice. Moreover, our technical results give insights
on the properties of the standard deflation algorithm, thus be-
ing a first step towards proposing better algorithms based on
rank-one approximations. Finally, our numerical results for
finite dimensions show that the obtained values closely match
the predictions given by the derived equations.

2 Spiked tensor and deflation
We consider the following rank-r and order-d symmetric

spiked random tensor

S ≡
∑r

i=1 βix
⊗d
i + 1√

n
W, (2)

with xi on the unit sphere Sn−1 and W a dth-order symmetric
Gaussian tensor (see [8] for a formal definition). The signal
part is modeled by the rank-r component with weights βi > 0,
which collectively determine the signal-to-noise ratio 1 of the
model. We further assume that the rank-one components are
non-orthogonal and we denote

αij ≡ ⟨xi,xj⟩ ≠ 0 for all i ̸= j. (3)

In the following, we will study a deflation approach aimed at
approximately recovering the low-rank signal tensor, which
consists in performing successive rank-one approximations
and subtracting the result at each iteration. Specifically, at
iteration i ∈ [r], we compute the best rank-one approximation
of Si, denoted λ̂iu

⊗d
i , and subtract it from Si. Starting with

S0 = S, this yields the sequence of tensors

Si = Si−1 − λ̂i−1u
⊗d
i−1, (4)

where λ̂0 = 0 by convention, and

ui ≡ argmax
∥u∥=1

Si · ud, (5)

λ̂i ≡ Si · ud
i , (6)

1. Here we assume for simplicity that βi > 0 for all i ∈ [r], which
implies no loss of generality for odd d. The case with arbitrary signs can be
treated similarly, at the expense of more cumbersome derivations.

where S · um denotes m-fold contraction of the tensor S with
the vector u. It follows that each Si is also a low-rank spiked
random tensor given by

Si =
∑r

j=1 βjx
⊗d
j −

∑i−1
j=1 λ̂ju

⊗d
j + 1√

n
W. (7)

Note that the solution to the best rank-one tensor approxima-
tion problem (5) is in general not a component of the CPD of
S. This is due to the fact that the Eckhart-Young theorem is not
applicable in the non-orthogonally decomposable setting [7].
Thus, there is admittedly a mismatch between the objective
of estimating the components of the CPD and the strategy of
computing successive rank-one approximations. Nonetheless,
the deflation approach is algorithmically simple and easier to
analyze than joint optimization schemes (as it relies on rank-1
approximation), and can also provide acceptable approximate
solutions when cross-component correlations are small. In the
sequel, we give analytical tools to characterize and improve
the accuracy achieved by Hotelling-type tensor deflation.

To understand the performance of this procedure in the
large-dimensional regime, our main task consists in estimating
the following quantities, which we refer to as summary statis-
tics as introduced by [4], when n → ∞, as functions of the
parameters αij and βi:

λ̂i, ρ̂ij ≡ ⟨ui,xj⟩, η̂ij ≡ ⟨ui,uj⟩ for i, j ∈ [r]. (8)

We will see in the sequel how this problem can be addressed
through the analysis of certain random matrices, built from
contractions of the tensors Si.

3 Main results

3.1 Associated random matrices
For r = 1, the problem (5) is tantamount to the maximum

likelihood estimation (MLE) of x1. In this setting, [8] intro-
duced an approach for studying the performance of MLE by
borrowing tools from random matrix theory. This approach is
based upon two crucial observations: (i) critical points u of
(5) are eigenvectors of Si satisfying [13]

Si · ud−1 = λu, (9)

with the eigenvalue λ given by Si · ud; (ii) every eigenpair
(λ,u) of the tensor Si is also an eigenpair of the matrix result-
ing from the contraction Si · ud−2, since by (9)(

Si · ud−2
)
u = Si · ud−1 = λu. (10)

Hence the solution ui of (5) is an eigenvector (in fact, the
dominant eigenvector [8]) of the matrix Si · ud−2

i . The matrix
eigenproblem (10) does not provide a constructive way to
solve for u since Si · ud−2 itself depends on u; however, its
analysis through random matrix theory allows to characterize
the properties of the solutions. Specifically, by analyzing
contractions of this form, combined with the tensor eigenvalue
equation (9), [8] derived an asymptotic expression for the
performance of MLE in terms of the alignment of u1 and x1

in the regime where estimation is possible (that is, beyond the
phase transition characterized by [11]).

Here, assuming now that r is a fixed integer such that r > 1,
we carry out a similar study of the random tensor models Si

through the analysis of the contractions Si · ud−2
i .
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
λi +

1

d− 1
g

(
λi

d− 1

)
=

r∑
j=1

βjρ
d
ij −

i−1∑
j=1

λjη
d
ij , h(λi)ρij =

r∑
k=1

βkαjkρ
d−1
ik −

i−1∑
k=1

λkρkjη
d−1
ik , (i, j) ∈ [r]2,

[
h(λi) + q(λj)η

d−2
ij

]
ηij =

r∑
k=1

βkρjkρ
d−1
ik −

i−1∑
k=1

λkηkjη
d−1
ik , i ∈ [r], j < i.
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Figure 1 – Empirical (dots, Monte-Carlo simulations) versus asymptotic (lines, as per Corollary 3.4) summary statistics of the
symmetric Hotelling deflation, for parameters r = 2, d = 3, n = 100 and α = 0.4, for a range of β1 and a fixed β2 = 5. (a) First
deflation step: alignments of u1 with x1 and x2. (b) Second deflation step: alignments of u2 with x1 and x2. (c) Eigenvalues λ̂i

and their limits λi resp. (d) Alignment η12 between the eigenvectors estimated at the first and second deflation step. The asymptotic
curves are obtained by solving numerically Ψ(·,β, ·) = 0 in Corollary 3.4 initialized with the simulated summary statistics for one
realization of the noise tensor W.

3.2 Limiting spectrum
Our first result characterizes the limiting spectral measure

of the contractions Si · ud−2
i , and is instrumental in proving

our main result, which is an asymptotic characterization of the
summary statistics in (8).

Theorem 3.1. The empirical spectral measures of Si · ud−2
i

and of 1√
n

W · ud−2
i converge weakly almost surely to the

semi-circle distribution µ whose Stieltjes transform is given by

g(z) ≡ 2

γ2
d

(
−z +

√
z2 − γ2

d

)
,

and whose density reads µ(dx) = 2
πγ2

d

√
γ2
d − x2 dx and is

supported on [−γd, γd].

Proof sketch: The proof starts by noticing that the random
matrix Si ·ud−2

i can be written as L+ 1√
n

W ·ud−2
i where L

is a low-rank matrix. Therefore, involving classical random
matrix arguments, the matrices Si·ud−2

i and 1√
n

W·ud−2
i share

the same limiting spectrum, and the former is characterized
similarly to the rank-one case from [8].

3.3 Limiting summary statistics
We now look into the asymptotic values of the summary

statistics introduced in (8). To derive them, we start from the

tensor eigenvalue equations relating the pairs (λ̂i,ui) and the
tensors Si, that is

λ̂i ui = Si · ud−1
i =

r∑
j=1

βj⟨ui,xj⟩d−1xj (11)

−
i−1∑
j=1

λ̂j⟨ui,uj⟩d−1uj +
1√
n

W · ud−1
i ,

where we used (7). Then, we can have access to λ̂i by taking
the scalar product of both sides with ui, since this vector has a
unit norm. Similarly, ρ̂ij and η̂ij are obtained by taking scalar
products with xj and uj , respectively. Next, one can compute
the expectations of these quantities by invoking Stein’s lemma
(a.k.a. Gaussian integration by parts) to handle the dependence
between W and each ui, and take the limit n → ∞. Finally,
similarly to [8, 14, 15] we assume that these random quanti-
ties concentrate around their expectations, and impose some
technical conditions on their limiting values, as follows.

Assumption 3.2 (Almost sure convergence). We suppose that
for each tensor Si involved in the deflation there exists a se-
quence of eigenpairs {(λ̂i,ui)}n∈N of Si such that

λ̂i
a.s.−−−−→

n→∞
λi, ρ̂ij

a.s.−−−−→
n→∞

ρij , η̂ij
a.s.−−−−→

n→∞
ηij ,

with λi > γd(d − 1), ρij ̸= 0 and ηij ̸= 0 where γd =

2/
√
d(d− 1).
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Under these assumptions, we can derive a system of equa-
tions characterizing the summary statistics in the limit n → ∞.
As our numerical results will show, the solutions to these equa-
tions match the empirical observations for n large enough.

Theorem 3.3. Suppose that Assumption 3.2 holds, then the
limiting summary statistics λi, ρij and ηij satisfy the system of
equations shown in (S) on the preceding page with i, j ∈ [r],
where h(z) ≡ z + g (z/(d− 1)) /d and q(z) ≡ g(z/(d −
1))/(d(d− 1)).

Note that Theorem 3.3 only states that if the summary statis-
tics converge to their respective limits, then the latter are so-
lutions to the system of equations in (S); the converse is not
necessarily true. In fact, studying the existence and uniqueness
of the solutions of (S) is still an open question.

As we will see in the next section, when the system (S) is
solved numerically with proper initialization (e.g., with the
empirical summary statistics), the obtained solutions describe
well the asymptotic behavior of the maximizers of (5), despite
the fact that the tensor eigenvalue equations characterize all
critical points of these problems. We refer the reader to [8, 14]
for a discussion on similar phenomena observed in the rank-
one case, whose rigorous explanation remains open.

Corollary 3.4. Suppose r = 2, d = 3 and denote λ ≡
(λ1, λ2, η12), β ≡ (β1, β2, α12) and ρ ≡ (ρij)i,j∈[2]. Then,
the limiting summary statistics λ and ρ satisfy Ψ(λ,β,ρ) = 0,
where the mapping Ψ : R3 × R3 × R4 → R7 is defined by

Ψ

λ
β
ρ

 ≡



∑2
i=1 βiρ

3
1i − f(λ1)∑2

i=1 βiα1iρ
2
1i − h(λ1)ρ11∑2

i=1 βiα2iρ
2
1i − h(λ1)ρ12∑2

i=1 βiρ
3
2i − f(λ2)− λ1η

3
12∑2

i=1 βiα1iρ
2
2i − h(λ2)ρ21 − λ1ρ11η

2
12∑2

i=1 βiα2iρ
2
2i − h(λ2)ρ22 − λ1ρ12η

2
12∑2

i=1 βiρ1iρ
2
2i − h(λ2)η12 − [λ1 + q(λ1)]η

2
12


.

4 Discussion
Fig. 1 illustrates the accuracy of using the deflation approach

of (4)–(6) to estimate the spike components xi and weights
βi in the correlated case α = 0.4. As the result depends crit-
ically on the relative values of β1 and β2, we let β1 vary for
a fixed β2 = 5. In Figs. 1(a–b), as expected from the defla-
tion procedure, when β1 < β2, u1 tends to correlate with x2,
the strongest component, hence ρ12 is high; conversely, for
β1 > β2, u1 tends to correlate with x1 and ρ11 is high. Natu-
rally, ρ21 and ρ22 behave symmetrically. Interestingly, in the
regime β1 ≈ β2, u1 aligns fully neither with x1 nor with x2.
This indicates a significant weakness in the deflation approach
with non-orthogonally decomposable tensors when several
components have comparable power, since improperly esti-
mating and subtracting the first component has the detrimental
effect of increasing the rank of the non-noise component in S1

with respect to S0 (see eq. (7)). We also note that, during the
second deflation step, the estimator fails to achieve positive
correlation of u2 with either x1 or x2 for very low values of
β1. Fig. 1(c) shows that λ1 fairly accurately tracks the power
of the strongest component (equal to max(β1, 5)), while λ2 is
affected by a noise floor at the low range of β1 and constitutes
a poor estimator of the power of the weakest component (equal
to min(β1, 5)).

As is common with random matrix theory, the asymptotic
results from Theorem 3.3 hold approximately with remarkable
accuracy for finite dimension problems thanks to the concen-
tration of measure phenomenon[5].

References
[1] A. Anandkumar, R. Ge, and M. Janzamin. Learning over-

complete latent variable models through tensor methods. In
Conference on Learning Theory, pages 36–112. PMLR, 2015.

[2] A. Anandkumar, R. Ge, and M. Janzamin. Analyzing tensor
power method dynamics in overcomplete regime. Journal of
Machine Learning Research, 18(22):1–40, 2017.

[3] A. Anandkumar, D. Hsu, S. M. Kakade, and M. Telgarsky. Ten-
sor decompositions for learning latent variable models. Journal
of Machine Learning Research, 15:2773–2832, 2014.

[4] G. Ben Arous, R. Gheissari, and A. Jagannath. High-
dimensional limit theorems for sgd: Effective dynamics and
critical scaling. In S. Koyejo, S. Mohamed, A. Agarwal, D. Bel-
grave, K. Cho, and A. Oh, editors, Advances in Neural Infor-
mation Processing Systems, volume 35, pages 25349–25362,
2022.

[5] F. Benaych-Georges, A. Guionnet, and M. Maida. Fluctuations
of the extreme eigenvalues of finite rank deformations of ran-
dom matrices. Electronic Journal of Probability, 16:1621–1662,
2011.

[6] J.-F. Cardoso. Super-symmetric decomposition of the fourth-
order cumulant tensor. blind identification of more sources than
sensors. In Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), volume 91,
pages 3109–3112, 1991.

[7] J. Draisma, G. Ottaviani, and A. Tocino. Best rank-k approxi-
mations for tensors: generalizing Eckart–Young. Research in
the Mathematical Sciences, 5(2):27, 2018.

[8] J. H. de M. Goulart, R. Couillet, and P. Comon. A random
matrix perspective on random tensors. Journal of Machine
Learning Research, 23:1–36, 2022.

[9] F. L. Hitchcock. The expression of a tensor or a polyadic as
a sum of products. Journal of Mathematics and Physics, 6(1-
4):164–189, 1927.

[10] H. Hotelling. Analysis of a complex of statistical variables into
principal components. volume 24, pages 417–441. Warwick &
York, September 1933.

[11] A. Jagannath, P. Lopatto, and L. Miolane. Statistical thresholds
for Tensor PCA. The Annals of Applied Probability, 30(4):1910–
1933, 2020.

[12] E. Kofidis and P. A. Regalia. On the best rank-1 approxima-
tion of higher-order supersymmetric tensors. SIAM Journal on
Matrix Analysis and Applications, 23(3):863–884, 2002.

[13] L.-H. Lim. Singular values and eigenvalues of tensors: a varia-
tional approach. In CAMSAP, pages 129–132, Puerto Vallarta,
Mexico, December 2005.

[14] M. El A. Seddik, M. Guillaud, and R. Couillet. When random
tensors meet random matrices. Annals of Applied Probability,
2023. (accepted).

[15] M. El A. Seddik, M. Mahfoud, and M. Debbah. Optimizing or-
thogonalized tensor deflation via random tensor theory. preprint
arXiv:2302.05798, 2023.

[16] A. Stegeman and P. Comon. Subtracting a best rank-1 ap-
proximation may increase tensor rank. Linear Algebra and its
Applications, 433(7):1276–1300, 2010.

4


	 Introduction 
	Spiked tensor and deflation
	Main results
	Associated random matrices
	Limiting spectrum
	Limiting summary statistics

	Discussion

