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Résumé – La catalyse hétérogène implique des interactions des réactifs sur la surface d’un catalyseur solide, qui nécessitent des
méthodes d’optimisation pour maximiser le rendement d’une réaction. Nous proposons une approche d’optimisation bayésienne
adaptée sur une plateforme d’expérimentation automatisée et robotisée à haut débit pour optimiser le rendement du produit en
termes de débit des réactifs et de charge du catalyseur dans une réaction catalysée de manière hétérogène. En 10 expériences, nous
déterminons les conditions optimales, à savoir le débit des réactifs et la masse du catalyseur. Nos résultats fournissent un plan
d’action pour des laboratoires auto-pilotés accélérés et efficaces dans la catalyse hétérogène.

Abstract – Heterogeneous catalysis involves interactions of reactants on the surface of a solid catalyst, which require optimization
methods to maximize the yield of a reaction. We propose an adopted Bayesian optimization approach on an automated and robotic
high-throughput experimentation platform to optimize the product yield in terms of reactant flow rate and catalyst loading of a
heterogeneously catalyzed reaction. Within 10 experiments, we determine optimal conditions, namely reactant flow rate and catalyst
mass. Our results provide a roadmap for accelerated and efficient self-driving labs in heterogeneous catalysis.

1 Introduction
Heterogeneous catalysis plays a major role in enabling cost-

effective production of various chemicals [2]. Generally this
involves a solid catalyst that provides a surface with so-called
active sites and a non-condensed reactant that reacts on the
catalyst surface. Catalysis is a process in which a substance,
called a catalyst, accelerates a chemical reaction without being
consumed by reducing the energy needed for the reaction to
occur. The global market size of this industry was roughly 34
billion USD in 2019 [10]. However, optimizing the reaction
conditions to maximize product yield is still mainly an empir-
ical approach that relies on inefficient budget intensive trial
and error or design of experiments methods [2].

Closed-loop laboratory systems employing optimization
algorithms, such as Bayesian Optimization (BO), have demon-
strated success in various fields [3]. These algorithms are
particularly useful in optimizing complex processes and select-
ing the best parameters for specific tasks. In recent years, there
has been a growing interest in applying these optimization
methods across different domains in chemistry. For example,
BO has been effectively used in optimizing physicochemical
features and reaction yields [3]. In heterogeneous catalysis,
several studies have focused on incorporating sequential opti-
mization methods. BO was used to maximize product yields
and improve catalyst properties [6, 5, 8]. These advancements
showcase the potential for combining optimization algorithms
in various chemistry related fields.

This work results from a collaboration with REALCAT [7].
REALCAT is a state-of-the-art high-throughput experimen-
tation (HTE) robotic-supported platform. High-throughput
experimentation enables parallel testing of multiple catalysts
and reaction conditions, accelerating catalyst development
while reducing the number of experiments and resource con-

sumption to optimize a reaction and its catalyst. REALCAT
is specialized in the development of heterogeneous catalysts.
It is equipped with advanced high-throughput technologies,
including robots with freely movable arms for scheduled auto-
matic parallel synthesis, parallel continuous and batch reactors,
and linked analytical devices. Those analytical devices enable
online assessment of catalyst performance. REALCAT offers
unique capabilities for efficient catalyst development in terms
of different parameters. Those parameters can either be con-
tinuous or discrete. This results in the possibility to perform
several experiments in different conditions in parallel within a
programmable set-up. Incorporating signal processing meth-
ods into the REALCAT platform, which is recognized as one
of the few labs in the world with such extensive resources
while belonging to the French "équipements d’excellence"
(EQUIPEX) category, is the goal of our work. It aims to further
improve the efficiency of heterogeneous catalyst development.

We propose a protocol to optimize the product yield in a het-
erogeneously catalyzed reaction using the REALCAT platform.
Our approach optimizes working conditions, namely the reac-
tant flow rate and catalyst mass. Our protocol consists of the
circular integration of REALCAT’s high-throughput testing ca-
pabilities, gas chromatography (GC), mass spectrometry (MS),
and BO. The integration of HTE and BO reduces the number
of required experiments significantly to find the optimal work-
ing conditions by automatically suggesting a sequence of test
conditions. This sequence is guided by a balanced exploration-
exploitation strategy. This results in the decrease of optimum
search time. Additionally, leveraging faster MS measurements
with slower GC measurements enables efficient online cata-
lyst performance monitoring. This reduces measurement time
and therefore, lowering the overall experimentation time im-
mensely. Our method represents a significant advancement
towards closed-loop automated laboratories for heterogeneous
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catalysis. It serves as a proof of concept for accelerated lab
automation which is crucial for increased efficiency in terms
of economic profitability and environmental concerns.

2 Proposed Approach
We propose an accelerated optimization protocol that com-

bines the HTE REALCAT capabilities, MS and GC measure-
ments, and BO for optimizing the product yield of the ODHP
reaction in terms of the reactant flow rate and the catalyst mass.

2.1 Experimental Setting
The HTE unit on REALCAT consists of 16 continuous

batch flow reactors which allow for parallel condition test-
ing of various discrete catalyst masses and allows scheduling
experimental settings. Measurement duration is a significant
factor for the total experimentation time. Hence, we propose
the combination between the MS and GC analytical devices to
determine the yield of the reaction in an accelerated manner.
MS measurements need 10 seconds to measure the yield of
the reaction while GC measurements take 10 minutes. MS
measurements need GC measurements for calibration. More
GC measurements lead to more accurately calibrated MS mea-
surements. A trade-off between the fast MS measurements
and the number of slow GC measurements is necessary.

By integrating BO with the HTE testing unit from REAL-
CAT, we automatically generate a sequence of few as possible
conditions to maximize the product yield. Furthermore, by
combining MS measurements with GC measurements, we are
able to significantly reduce measurement time. To demonstrate
our protocol’s effectiveness, we introduce a model oxidative-
dehydrogenation of propane (ODHP) reaction to validate the
successful optimization of working conditions for a hetero-
geneously catalyzed reaction. This reaction is of significant
economic importance in various industries [4]. Thus, this
reaction has been extensively researched, leading to the iden-
tification of numerous catalysts. Hence, it is an ideal model
reaction to showcase our protocol. In this work, we employ
the catalyst reported by [9].

The experimental setup involves a circular and iterative pro-
cess between the HTE unit, a GC, MS, and BO software. In
this setup, the BO-suggested condition is manually set in the
HTE unit, the yield determined via MS and GC measurements
is then passed to the BO software for iterative optimization
until the budget is depleted. Additionally, our protocol ensures
reproducibility, addressing a common challenge in heteroge-
neous catalysis.

2.2 Bayesian Optimization
In the following we give a brief introduction to Bayesian Op-

timization (BO) using Gaussian processes (GP) as presented
in [1]. BO is used to optimize expansive, black box objective
functions like the unknown yield function of the ODHP reac-
tion in a sample-efficient gradientless manner. It is based on
a sequential optimization approach and is using a probabilis-
tic surrogate model like GP to optimize black-box objective
functions. The GP is characterized by a predictive mean func-
tion µ(x) and a covariance function κ(x, x′). It defines a
distribution over functions and allows optimization within a

probabilistic framework. The prior distribution is sequentially
updated as new data becomes available to provide a posterior
distribution that measures uncertainty about the objective func-
tion. The distribution, i.e. the GP of the functions f is given
by:

f ∼ GP(µ, κ), (1)

where f(x) is distributed normally as N (µ(x), κ(x, x)) for
all x ∈ X . BO iteratively suggests new points to sample by
maximizing an acquisition function α(x) given the state of the
current surrogate model f1:t−1 that balances exploration and
exploitation:

xt = argmax
x∈X

α(x | f1:t−1) (2)

Common acquisition functions include upper confidence
bound (UCB) with a tunable λ:

UCB(x) = µ(x) + λσ(x). (3)

The acquisition function selects points based on the surrogate
model’s posterior distribution, which is updated with each new
evaluation of the objective function by taking the Prior P (f)
and the likelihood P (D1:t | f) of our data given our surrogate
model f :

P (f | D1:t) = P (D1:t | f)P (f) (4)

BO has a finite budget of evaluations, and the goal is to find the
optimal point within that budget. Hence, BO is an appropriate
sample efficient sequential optimization algorithm that is used
in our proposed protocol.

2.3 HTE Sequential Optimization Approach
We aim to maximize the product yield of the reaction. The

HTE unit presents technical constraints that limit the optimiza-
tion process. The catalyst masses in the 16 parallel reactors
are set at the beginning and cannot be changed during the
optimization process. Additionally, the propane flow rate must
be the same across all reactors, meaning that the individual
propane flow rate cannot be set individually per reactor.

The experimental design for optimization of the catalyst
mass will therefore rely on a regular sampling of the pre-
sumed interval of masses. Let M = {m1, . . . ,m16} be
the discrete set of catalyst masses for the 16 reactors with
i ∈ I = [1, . . . 16], and let R = [5.5ml/min, 50ml/min] rep-
resent the continuous range of propane flow rates. We can
express the optimization problem as finding the optimal dis-
crete catalyst mass mi ∈ M and the continuous propane flow
rate r ∈ R in order to maximize the yield:

x∗ = argmaxx∈XF (x) (5)

Here, F : X ⊂ R2 → [0, 1] is the product yield function with
x 7→ y(x) where y(x) is the measured yield at a flow r and
mass mi with X = M ×R.

We tackle this problem by optimizing the flow rate on the
fly and the mass a posteriori. That is, we define an updated
yield function F ′ : R ⊂ R → [0, 1], with r 7→ F ′(r) =
maxmi∈MFmi

(r). We can optimize F ′ by formulating a se-
quential optimization problem by using a surrogate model
f ′
1:t−1, which reflects our belief about the underlying updated

yield function F ′. In (6) we present the transformed sequential
optimization problem, which we solve on the fly:
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rt = argmax
r∈R

f ′
1:t−1(r) (6)

At each step t ∈ 1, . . . , N , where N represents our budget
of flows which we can test, the surrogate model is updated
with the results of the most recent experiment. It permits to
iteratively refine our estimate of F ′. After determining the best
flow rate r∗ based on (6), we can a posteriori determine the
best mass. I.e., the optimal mass and flow rate combination,
denoted by x∗, is determined by choosing the pair (mi, r1:t)
that maximizes the measured yields yi,1:t(x) for all possible
masses mi and tested flow rates r1:t ∀i, t.

In order to solve the optimization problem (5) in a sequential
manner as in (6), we propose using Bayesian optimization
with the UCB acquisition function to represent the exploration-
exploitation trade-off in 1:

Algorithm 1: HTE adapted Bayesian Optimization

for t=1, . . . , N do
rt=optimize acquisition function α(r|f ′

1:t−1),
yi,t = F (xt), query at flow rt for mi,∀i.
Dt = D1:t−1 ∪ (xt,max(yi,t)), update data set,
P (f ′|D1:t) = P (D1:t|f ′)P (f ′), update

surrogate.
end
x∗ = argmaxx∈{mi,r1:t}yi,1:t(x), max yield ∀i, t

In summary, the initial optimization problem is transformed
into a sequential optimization problem that takes the process
constraints into account by optimizing the reactant flow rate
on the fly over a grid of possible masses. The optimal mass
is determined a posteriori among tested masses for the opti-
mal flow rate. This approach yields an efficient and adaptive
optimization process that respects the constraints of the HTE
REALCAT unit while maximizing the product yield of the
reaction of interest.

3 Experiments
We conducted three sets of experiments utilizing REAL-

CAT’s HTE unit in conjunction with the MS and GC. Be-
fore the experiments started 14 different catalyst masses were
selected as loading in the reactors. Accuracy checks were
performed on 2 reactors, which were loaded with inert silica
oxide. Therefore, this procedure allows to test as many masses
as possible while guarantying accurate measurements. These
loadings were used for all subsequent experiments.

In the first experiment set, we focused on determining the
optimal number of GC measurements required for accurate
transformation of the MS measurements while minimizing the
measurement time. We found that using 16 GC measurements
resulted in the lowest mean absolute error (MAE) of 0.10%.
However, by reducing the number of GC measurements to
8 (one for every second reactor), the MAE only slightly in-
creased to 0.25%. This trade-off between accuracy and mea-
surement time effectively lowers the measurement duration
by 50%, while maintaining an acceptable level of accuracy
in transforming MS measurements into volume percentages.
Further reduction in the number of GC measurements to 5 or

2 led to higher MAE values, indicating a decrease in the accu-
racy of the transformation. This demonstrates that using one
GC measurement for every second reactor is a suitable trade-
off between maintaining acceptable accuracy in transforming
MS measurements into volume percentages and reducing the
measurement time.

In the second set, we optimized the propane flow rate by
implementing the recommendations from the BO software
calling these experiments the BO run. We examined 10 dif-
ferent flow rates at a constant temperature of 560 °C, starting
with an initial flow rate of 10 ml/min chosen uniformly at
random. Due to time constraints, we tested 10 flow rates, as
the experiments took one week to perform. To validate the re-
sults’ reproducibility, we conducted a final set of experiments
with evenly spaced propane flow rates. GC measurement was
employed for every second reactor for the MS calibration to
ensure accuracy during the BO run while for the validation run
all reactors were measured via GC.

4 Results and Discussion
We optimize the product yield of the ODHP reaction using

the REALCAT HTE unit with a budget of only 10 tested pan
flow rate conditions. Figure 1 shows all the measurements
from the BO-guided run and the validation test set. For both
runs, we present the maximum yield of all reactors across all
tested conditions. Additionally, we indicate the order of the
BO run proposed conditions tested. By the sixth iteration,
we achieve a yield that is within 0.5% of the actual optimum
yield of 8%, with a propane flow rate that differs by roughly 2
ml/min. Figure 1 shows that, after the complete budget was

Figure 1 – Comparison BO run and validation run

used, the BO results are in accordance with the validation
results. This indicates that the final belief of the underlying
objective function was replicated during the BO run.

Figure 2 shows intermediate results of the surrogate model
and the acquisition function during the optimization proce-
dure. It illustrates the Gaussian process used to model the
underlying yield function with the corresponding acquisition
function after 4 propane flow rates tested. The surrogate model
slightly resembles a parabolic form, thus indicating that the
underlying objective function has a maximum. Additionally,
the maximum of the UCB acquisition function suggests a new
reactant flow rate. Figure 2 presents the updated state of the
mean function of the GP surrogate model at iteration t = 5
with the additional tested reactant flow rate that was proposed

3



Figure 2 – Evolution of the GP from iteration t = 4 to iteration
t = 5 and the state of UCB at iteration t = 4. The solid red
line represents the predictive mean function µt=4 at iteration
4, while the dashed red line shows the updated mean function
µt=5 after querying the suggested flow at the yellow dashed
line. The yellow dashed line indicates the maximum of the
UCB function in blue. The shaded blue area represents the
variance κt=3 of the GP at iteration t = 4. Green × symbols
denote the first four measured MS results, and the 5th mea-
sured MS result is illustrated as a blue star.

Figure 3 – Reactor loadings and propylene yield of MS and GC
measurements at optimal propane flow rate r = 39.5ml/min
of the BO run.

by maximizing UCB at iteration t = 4. The new tested flow
updates the belief of the underlying yield function and thus
updates the surrogates model mean function from µ4 to µ5.

The Bayesian optimization procedure is generally successful
in updating our belief of the underlying yield function at each
iteration. The UCB acquisition function guides the selection
of the next tested pan flow rate condition. Besides determining
the optimal flow the optimal catalyst mass of 150 mg was
successfully determined.

Figure 3 illustrates the measured yields of all reactors at
the optimal propane flow rate r = 39.5ml/min. A steady
increase of the yield almost linearly in dependence of the
catalyst mass can be observed. At a mass around 0 a Propylene
yield of approximately 0% is measured while the highest yield
is measured at the maximum loading of 150 mg. Since the
number of active sites linearly correlates with catalyst mass
and influence the yield of a catalyst, it is reasonable to see that
the highest mass, i.e. highest number of active sites has the
highest yield.

Our results demonstrate the effectiveness of the proposed

Bayesian optimization approach for optimizing propene yield
of the ODHP reaction in dependence of propane flow rate and
catalyst loading via a semi automized experimental setting
using the HTE unit in combination with the MS and GC.

5 Conclusion
We present a semi-automated Bayesian optimization pro-

tocol on a robotic high-throughput experimentation platform,
efficiently identifying optimal working conditions for a hetero-
geneously catalyzed reaction. The protocol combines GC-MS
measurements to reduce measurement time and uses a min-
imum number of experiments to find the optimum working
conditions based on the integration of BO into HTE. We suc-
cessfully optimize catalyst loading and reactant flow rate using
UCB acquisition function.

Our results demonstrate the effectiveness of this protocol
in optimizing the product yield for the ODHP reaction using
the HTE facilities from REALCAT. Future work will focus on
adapting sequential optimization approaches to fully exploit
Gaussian process properties, enabling exploration of a broader
range of conditions, such as temperature. Additionally, once
an API becomes available for the HTE unit, we aim to fully
automate the optimization process.
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