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Résumé – L’intérêt pour les graphes s’étant accru ces dernières années, le calcul de divers outils géométriques est devenu essentiel.
Dans certains domaines tels que le traitement des maillages, ces outils reposent souvent sur le calcul des géodésiques et des plus
courts chemins dans les manifolds discrétisés. Un exemple récent d’un tel outil est le calcul des barycentres de Wasserstein (WB),
une notion très générale de barycentres dérivée de la théorie du Transport Optimal, et de leur variante entropique-régularisée. Dans
cet article, nous examinons comment les WB sur des maillages discrétisés sont liés à la géométrie de la variété sous-jacente. Nous
fournissons d’abord un résultat de stabilité générique en ce qui concerne les matrices de coût d’entrée. Nous appliquons ensuite ce
résultat aux graphes géométriques aléatoires sur les variétés, dont les plus courts chemins convergent vers des géodésiques, ce qui
prouve la cohérence des WB calculés sur des formes discrétisées.

Abstract – As interest in graph data has grown in recent years, the computation of various geometric tools has become essential.
In some area such as mesh processing, they often rely on the computation of geodesics and shortest paths in discretized manifolds.
A recent example of such a tool is the computation of Wasserstein barycenters (WB), a very general notion of barycenters derived
from the theory of Optimal Transport, and their entropic-regularized variant. In this paper, we examine how WBs on discretized
meshes relate to the geometry of the underlying manifold. We first provide a generic stability result with respect to the input cost
matrices. We then apply this result to random geometric graphs on manifolds, whose shortest paths converge to geodesics, hence
proving the consistency of WBs computed on discretized shapes.

1 Introduction
Graphs, and their variants, are becoming increasingly pop-

ular in machine learning and signal processing to represent
many kinds of data [8], from social or computer networks to
molecules and proteins, three-dimensional shapes, and so on.
In some areas, graphs are usually associated with the represen-
tation of an underlying “geometry”. For instance, the study of
Graph Neural Networks and their variants is at the origin of
the very active domain of Geometric Deep Learning [3], and
the analysis of such “geometric” (random) graphs and their
limit is encountered in many domains of data science [15].

In the same fashion, Optimal Transport (OT) [14] is a pow-
erful theory that defines geometrically-meaningful distances
and mappings, that can be applied to graph-structured data [9].
A resurgence in data science has recently been experienced,
mostly due to novel, efficient computation methods [14], for
instance based on entropic regularization [6]. Among the
many applications derived from OT, Wasserstein barycenters
(WB) [1] are powerful tools to compute meaningful geomet-
ric means between measures that can represent very general
objects. They have found applications in imagery, statistics,
machine learning [7], signal processing [16] and so on. More-
over, they are also amenable to fast computations [2].

In this paper, we examine some theoretical properties of
Wasserstein barycenters on irregular domains such as (random)
graphs, where the ground cost function may be noisy and
converge to some (unknown) limit. We show that WBs are
stable to deformations of the cost matrices that represent the
distances in the space, more so when entropic regularization
is used. We then apply these results on random geometric

graphs, where the shortest paths are known to converge toward
the geodesic distances on an underlying manifold. As a result,
this guarantees for instance that WBs computed on properly
discretized 3D shapes with respect to the shortest paths indeed
converge toward the “true” WBs (Fig. 1).

Outline. In Sec. 2, we start by preliminary materials on OT
and Wasserstein barycenters. In Sec. 3, we give a generic
stability results of Wasserstein barycenters to deformation
cost, before presenting an application on random geometric
graphs in Sec. 4 with some numerical illustrations. The code
to reproduce the figures is available at https://github.
com/nkeriven/otrg. Technical proofs are provided in
the Appendix, available at [17].

Related Work. Stability of (classical) OT has been mostly
studied w.r.t. the input measures, since an important goal is
to understand the convergence speed of OT when replacing
the measures by a sampled version [11]. There are a few
results on the stability w.r.t. cost deformation, with some
applications on random graphs [9]. For WBs, stability w.r.t.
the input measures has been studied [4], but to our knowledge
stability w.r.t. cost deformation is novel. We remark that a
recent preprint [5] (published after the preprint version of this
paper [17]) includes improved variations of our results with a
completely different proof technique.

The relationship between shortest paths on geometric graphs
and geodesics on manifolds has been long established, with
many applications in shape and graph analysis [13]. OT on
shapes has been explored empirically and theoretically [9],
and WBs have found applications in imagery, for instance for
texture mixing. The theoretical properties of WBs on mani-
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folds has been thoroughly explored e.g. in [10], but results
pertaining to the infinite-node limit of discretized manifolds
such as the one presented here are, to our knowledge, novel.

Notations. We define the scalar product between two ma-
trices by < A,B >= tr(AtB). The probability simplex is
∆n

+ = {a ∈ Rn
+;
∑

i ai = 1}. The norm ∥ · ∥∞ refers to the
maximal element both for vectors and matrices. Real functions
are applied to vectors and matrices element-by-element, for
instance eA or log(A).

(a) Barycenters with the true geodesics (known for the sphere).

(b) Barycenters with the shortest paths in a random graph.

Figure 1 – Interpolation between S = 4 distributions on a
half sphere, for varying weights λs, with true geodesics (top)
or estimated ones on a random graph (bottom). Sec. 3 and 4
prove the convergence of the noisy barycenters to the true ones
when the number of nodes goes to infinity.

2 Background on Optimal Transport
Let us start by recalling some background material on dis-

crete Optimal Transport. We consider two finite distributions
a ∈ ∆n

+ and b ∈ ∆m
+ as well as a cost matrix C ∈ Rn×m

+ . Usu-
ally (but technically not necessarily!), a and b are weights as-

sociated to two sets of points {x1, . . . , xn} and {y1, . . . , ym}
and Cij indicates how “costly” it is to transport mass from
xi to yj , often through a metric d elevated to some power
Cij = d(xi, yj)

p. The xi and yj can live in different spaces,
as long as d is properly defined.

We denote by Ua,b =
{
T ∈ Rn×m

+ , T1m = a, T⊤1n = b
}

the set of couplings between a and b. The OT distance between
a and b is defined as:

WC(a, b) := min
T∈U(a,b)

< T,C > . (1)

When Cij = d(xi, yj)
p, WC(a, b)

1/p is the so-called p-
Wasserstein distance between the measures

∑
i aiδxi

and∑
j bjδyj

. However, note that only the knowledge of a, b, C is
necessary to compute WC(a, b).

Computing (1) is a linear problem, which makes it difficult
to solve at large scale. This can be handled by adding entropic
regularization to the cost function [6]: for ϵ ≥ 0,

W ϵ
C(a, b) := min

T∈U(a,b)
W ϵ

C(a, b, T )

where W ϵ
C(a, b, T ) :=< T,C > −ϵH(T ) (2)

where H(T ) = −
∑

i,j Ti,j log Ti,j with the convention that
0 log 0 = 0 by continuity. The resulting problem is strictly
convex when ϵ > 0, and can be solved efficiently by a numbers
of methods [14], including the celebrated Sinkhorn’s algorithm
[6]. When ϵ → 0, the problem converges (in various ways) to
the unregularized one (1) [14].

In this paper, we examine so-called Wasserstein barycen-
ters. Consider S discrete measures bs ∈ ∆ms

+ of size ms,
along with S cost matrices Cs ∈ Rn×ms

+ that indicate the
transportation cost from each bs to a common space of size n.
The “barycenter” of the bs is thus a measure a ∈ ∆n

+. Given
weights λ ∈ ∆S

+, it is computed by a Fréchet mean w.r.t. the
W ϵ distance: denoting Θ = {λs, bs, Cs}Ss=1 for short,

Bϵ(Θ) := min
a∈∆n

+

Bϵ(Θ, a)

where Bϵ(Θ, a) :=

S∑
s=1

λsW
ϵ
Cs

(a, bs) (3)

This is a smooth convex optimization problem [14], with a
unique minimizer when ϵ > 0, that we denote by aΘ. When
ϵ > 0, it can be computed by a variant of Sinkhorn’s algorithm
[14, Chap. 9]. As before, generally (but, again, not necessarily)
bs represent the weights of a discrete measure over positions
{y1s, . . . , ymss}, the sought-after barycenter a is over some
positions {x1, . . . , xn}, and the cost matrices are defined with
metrics Ci,j,s = ds(xi, yjs)

p. Again, the spaces in which
yjs, xi live need not be the same, as long as the metrics ds are
over the appropriate domains.

In the next section, we examine the stability of this problem
to perturbations of the cost matrices Cs ∈ Rms×n, before
presenting an application on random geometric graphs on
manifolds in Sec. 4.

3 Stability of Wasserstein barycenters
We study the stability of Wasserstein barycenters (3) to

perturbations of the cost matrices Cs. In the rest of the section,
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we denote Θ = {λs, bs, Cs}Ss=1 and Θ̃ = {λs, bs, C̃s}Ss=1

with the same λs, bs but perturbed cost matrices C̃s.
Our first result guarantees closeness of the cost function for

any regularization level, including ϵ = 0. It does not, however,
guarantee proximity of the optimal barycenters. The proof,
presented in the Appendix [17], is straightforward.

Proposition 1. For all ϵ ≥ 0, we have∣∣∣Bϵ(Θ)−Bϵ(Θ̃)
∣∣∣ ≤∑

s

λs∥Cs − C̃s∥∞ (4)

Hence, if all matrices C̃s converge to Cs in ∞-norm, the
cost functions Bϵ converge to one another. However, this
proposition does not provide stability of the barycenter aΘ

itself, which is what interests us in practice. For this we need
strict convexity of the problem, which holds only when ϵ > 0.
The following theorem is then our main result. Recall that aΘ

is the optimal barycenter in (3).

Theorem 1. Assume 0 ≤ cmin ≤ Csij , C̃sij ≤ cmax hold for
all s, i, j. For all ϵ > 0 we have

∥aΘ − aΘ̃∥22 ≲ ϵe3(cmax−cmin)/ϵ
∑
s

λs∥Cs − C̃s∥∞ (5)

We therefore obtain stability of the optimal barycenters,
with a potentially large multiplicative constant in ϵ. We also
note that the bound is insensitive to shifting the costs Cs and
C̃s by a constant c (which shifts cmin and cmax), which is to be
expected since this shifts WC by the same constant and does
not affect the transport plans [9].

In the next section, we apply this result to the approximation
of Wasserstein barycenters on manifolds. The rest of this
section is dedicated to a sketch of proof of this theorem, whose
details can be found in Appendix [17].

Sketch of proof. As usual in convex optimization, we work
with the dual problem of (3), which can be found e.g. in [14,
Chap. 9]. Our proof is available on the arxiv version of the
article [17] and consist in three parts. First, we bound the
solutions of the dual problem with respect to the parameters of
the problem. Then, we bound the error of the optimal solution
with the error of L, using strict convexity. Finally, we bound
the error of L with the norm between cost matrices.

4 Random geometric graphs
A classical approach to manipulating manifolds such as 3D

shapes is to discretize them, for instance by constructing a ran-
dom geometric graph [12]. This is done by randomly drawing
N points on the manifold and connecting them if their distance
in the ambient space is less than a certain hN which tends to 0
when N tends to infinity. It is then known [9] that the length
of the shortest paths in the graph converge, under some condi-
tions, to the geodesic distance of the manifold. More precisely,
assume that we have a compact, smooth submanifold M ⊂ Rd

of dimension k, without boundary for simplicity. Its geodesic
distance is d(x, y), while ∥x − y∥ refers to the norm in the
ambient space Rd. Its diameter is DM := supu,t∈M d(u, t).

Consider the following objects: for 1 ≤ s ≤ S, distri-
butions νs ∈ ∆ds

+ , weights λs, and ms supporting points
{ys1, . . . , ysms} ⊂ M on the manifold, for each distribution

(they need not be distinct). Then, the n supporting points
{x1, . . . , xn} ⊂ M on which we are going to compute the
barycenter a ∈ ∆n

+. Finally, we complete with N additional
points {z1, . . . , zN} ⊂ M drawn i.i.d. according to some dis-
tribution P on M, which we assume to have a density pz with
respect to the uniform measure on M, bounded away from
zero: pz(z) ≥ cz > 0. We then construct a random graph with
radius hN on M using all the points V := {xi, ysj , zℓ}ijℓ: if
any two such points u, t ∈ V satisfy ∥u− t∥ ≤ hN , then we
add an edge between them. Note that here xi and ysj are deter-
ministic, while zℓ are random. We let N → ∞, and hN → 0,
and aim to prove that the shortest paths length between xi, ysj
converge to the geodesic distance. See Fig. 2.

For p ≥ 1, we denote by Cs = [d(xi, ysj)
p]ij ∈ Rn×ms

the matrices containing the true geodesic distances between
our points of interest elevated to some power p, with respect
to which we want to compute Wasserstein barycenters. We
then denote by SP (u, t) the shortest path (minimal number of
edges) in the graph between two vertices u, t, with SP (u, t) =
+∞ if they are not connected. We define

C̃s = [(hNSP (xi, ysj))
p] (6)

the matrices containing the shortest paths between xis and yj ,
normalized by hN . Then, the following result is from [9].

Lemma 1 (Theorem 2 in [9]). Consider u, t two vertices
among the fixed points {xi, ysj}, and ρ > 0. For N large
enough, with probability 1− ρ, we have

|d(u, t)− hNSP (u, t)| ≲ hN +

(
log 1

hNρ

czNhk
N

)1/k

(7)

where the multiplicative constant depends on M.

This convergence translates into the convergence of the cost
matrix of the graph to the cost matrix of the manifold. Hence,
using a union bound and the results of Sec. 3, we immediately
obtain the following corollary.

Corollary 1. With probability 1− ρ, for all ϵ > 0 we have

∥aΘ − aΘ̃∥22 ≲ pDp−1
M ϵe

6DM
ϵ

hN +

 log
n
∑

s ms

hNρ

czNhk
N

 1
k


In other words, as long as when N → ∞:

hN → 0,
Nhk

N

log(1/hN )
→ +∞

then the barycenters computed using the shortest paths in the
graph converge to the barycenters that use the true geodesic
distance d, see Fig. 2. Note that on a k-manifold the average
degree of a random geometric graph is O(Nhk

N ), so here the
average degree needs to increase to +∞ (the graph is not
sparse), at least by a logarithmic factor.

Numerical illustration. In Fig. 1 and 2, we illustrate our
results on two examples of discretized manifolds: a sphere,
where the true geodesics are known and we directly compare
the effect of the discretization, and a complicated 2D domain
(note that the latter technically has a boundary, while our theo-
retical results required the absence of boundaries for simplicity.
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Figure 2 – Example of Wasserstein barycenters in a random graph on a 2D domain. From left to right: distributions νs located at
points ysj ; support points for the barycenter xi; random geometric graph constructed with xi, ysj , as well as additional random
points z1, . . . , zN ; visualization of the barycenters and the transport plans for two values N = 10 and N = 2000.
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Figure 3 – Error between true WBs on the (hyper-)sphere and
barycenters computed with shortest paths, w.r.t. N , for several
dimension d, averaged over 30 experiments.

They still seem to be empirically valid). We use p = 2, and
compute the entropic Wasserstein barycenters with ϵ > 0 us-
ing a variant of Sinkhorn’s algorithm [14, Chap. 9]. In Fig. 3,
we compute ∥aΘ − aΘ̃∥22 on the sphere, w.r.t. N , and compare
with the theoretical rates given by Cor. 1. The bounds appears
to be, as expected, quite loose, and the problem quite noisy.

5 Conclusion
In this paper, we have shown the stability of entropic WBs

with respect to the cost matrices. We then gave an applica-
tion to random geometric graphs for which the shortest paths
converge to the geodesics of the underlying manifold, guaran-
teeing for instance the convergence of WBs on discretized 3D
shapes. Our theoretical work hints at many potential outlooks.
Other models of random graphs could be treated [9], with
different applications. Finally, we have assumed fixed the sup-
porting points of the distributions and barycenters, while the
stability of WBs to sampling the target measures has recently
been shown [4]. Combining the results would finalize the link
between continuous [10] and discretized WBs.
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