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Abstract— Envelope analysis is one of the most useful 

approaches for bearing diagnostics, but obtaining an 

appropriate frequency band for demodulation has been a 

major challenge for a long time. Spectral Kurtosis and 

Kurtogram are commonly used to address this issue, but they 

can fall short in situations where the Signal to Noise Ratio is 

too low or in the presence of non-Gaussian noise, thereby 

reducing their performance. 

To solve this issue, this work investigates two versions of the 

Autogram: one (close to the original) using kurtosis and the 

other using the Gini Index, with the aim of comparing their 

ability to detect impulsive content. Both methods take 

advantage of the high levels of second-order cyclostationarity 

present in vibration data from bearings, particularly in the 

presence of mechanical faults. 

The comparison was made on real experimental vibration 

data from a Suzlon S88 wind turbine generator with a 2 MW 

power generation capacity. 
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1 Introduction 

Bearings are one of the most used components in a rotating 

system, and their failure is the most significant source of 

machinery breakdowns [1].  Wind Turbine Generators 

(WTGs) present many failure modes due to the high 

mechanical charge and the fluctuating of wind speed. As 

believed by National Renewable Energy laboratory statistics 

[2], the High-Speed Shaft Bearing (HSSB) is the most 

components, which have an important percentage of failure 

compared to other components inside the gearbox. Thus, 

correctly identifying and diagnosing bearing failure at prior 

stages of their total failure is very important. It avoids 

catastrophic damage, which leads to electricity production 

cessation. 

As a localized fault generates, either on the outer race, the 

inner race, the cage or the balls, a shock is created each time 

the fault rolls through the defect. Consequently, the system 

structure and the bearing are flurried, especially at their 

resonance frequencies [3]. The vibration signal will include 

all the harmonics of this, which repeats periodically at a rate 

depending on bearing geometry. Investigation of the 

vibration data is crucial to identify the defects and many 

approaches in the literature have been established to extract 

the bearing specific frequencies of the vibration signals. 

Among them, envelope analysis [3, 4], also named high 

frequency resonance approach, has been used for a long 

period: the signal is first band-pass filter in the excited 

structural resonance frequency band, and the analysis is 

carried on the spectrum of the envelope signal.  

Spectral kurtosis (SK) has been a good tool to solve this 

difficulty. This approach efficiently identifies the series of 

impulses in a signal and can be used to detect the suitable 

demodulation frequency band in which a signal has the 

maximum impulsivity.  

Kramti applied in [5] the approach of Antoni [6] which is 

based on filter banks. In the Short-Time Fourier Transform 

(STFT) based SK, the goal is to detect the window length Nw 

and the central frequency f which maximize the value of the 

SK over all probable choices. The Kurtogram is shown in 2D 

coloured maps present the values of SK for every pair Nw and 

f. Additionally, Antoni [6] evolved the Fast Kurtogram (FK), 

which is essentially based on the multirate filter-bank 

structure (MFB) to overcome the rigorous but long 

computation of full Kurtogram. The approach is very useful 

and robust for industrial process.  

The remainder of this work is divided as follow: Proposed 

Approaches in the second section. Section third established 

the diagnostic results and the conclusion is drawn in the 

fourth section.  

2 Proposed Approaches 

2.1  Spectral Kurtosis and Kurtogram  

The kurtosis is a statistical feature which calculates the 

peakedness of a signal, therefore it can be used to identify 

mechanical faults in vibration signal related the rotary 

process. Kurtosis is defined as  
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Where 𝑥(𝑡𝑖) is the sample at time 𝑡𝑖 =
𝑖

𝑓𝑠
, fs is the sampling 

frequency, N and 𝜇𝑥 are the length of data set and the mean 

value respectively. The SK is the derived from kurtosis 

equation to frequency domain where a band is created to 

modulate the signal in order to remove its impulsive and non-

stationary part. The SK can be represented by the fourth order 

normalization cumulant [6] it is defined as  
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Where 〈∎〉  is the time averaging operator. 𝑌(𝑡𝑖 , 𝑓)  is the 

STFT of signal 𝑥(𝑡𝑘)  achieved at time 𝑡𝑖  by changing a 

constant length window (Nw) along the signal, therefore SK 

is a function of frequency and STFT window length. 



As mentioned in  [7], Nw really involve the STFT based SK. 

So its value should be perfectly selected in real application, 

the window length Nw and the frequency f could be found in 

maximizing the STFT based SK over all probable choices. 

The map created by the STFT based SK as a function of Nw 

and f is known as kurtogram [9,10,11]. An optimal band-pass 

filter for the envelope analysis was obtained from the 

maximum of the SK with optimal Nw. So, the bandwidth of the 

band-pass filter Bf and the optimal central frequency fc can be 

defined by which both maximize the kurtogram. 

The Kurtogram is a fourth-order spectral analysis approach 

used for identifying the non-stationarity in a signal. The model 

based on the affirmation that each type of transient is related 

to a suitable (frequency/frequency resolution) dyad {f, Δf} 

which maximises the kurtosis values, and hence its detection. 

To generate the exact bandwidth and center frequency, all 
probable window widths should be mentioned, which is costly 
and may be unrealistic in true applications. According quasi-
analytic filters and multirate filter bank  (MFB) structure, the 
fast kurtogram was more evolved to fast compute and 
determine the SK results [12]. The fast kurtogram results are 
really close to those of kurtogram, and can be calculated more 
rapidly than the kurtogram,  thus it has been largely applied 
and almost considered as a benchmark tool for bearing failure 
diagnosis. The fundamental algorithm of the kurtogram is 
built in an arborescent MFB configuration. The ½-binary tree 
kurtogram estimator where the bandwidth and the center 
frequency can be automatically computed. Those colours 
presented in many squares in Fig.1 easily show the values of 
SK. Therefore, the maximum value can be clearly found by 
some easy searching tool. 

2.2 Autogram 

This work introduces a recent approach based on unbiased 
Autocorrelation (AC) to surmount the restrictions established 
by grave Gaussian and non-Gaussian background noise. The 
unbiased AC is calculated on the squared envelope of the 
signal as follows 

𝑅𝑋𝑋(𝜏)̂ =
1

𝑁 − 𝑞
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Where X is the squared envelope of the filtered signal, the 

delay factor is  𝜏 =
𝑞

𝑓𝑠
 , and q=0…,N-1. 

 The proposed approach is thought to be sufficiently typical 

for mechanical failure detection impulsive signal, e.g. 

Bearings and gears. Analogous to FK, the Autogram is blind 

and no prior knowledge of signals is needed. The proposed 

method composed of 4 steps and the details of every step are 

explained as follows. 

Step 1: In this step, time domain signal is divided into 

frequency bands using the Maximal Overlap Discrete 

Wavelet Packet Transform (MODWPT). More details can be 

found in Ref [13]. 

Fundamentally, the MODWT is used as a filter for the 

considered time history and a series of data is consequently 

created at every level of decomposition. The filtered data, 

each corresponding to a frequency band and central 

frequency (node), are the inputs for step 2. 

MODWT has been applied because it preserves full-time 

resolution, which is necessary for the proposed approach. 

Step 2: The essential idea which leads to this paper is to take 

advantage of periodicity of the autocovariance function, 

which represent the second order cyclostationarity of bearing 

vibration data. Therefore, the unbiased AC of the periodic 

instantaneous of the signal is calculated where the signal is 

filtered by MODWPT at the previous step. AC has the 

advantage of eliminating the uncorrelated elements of the 

signal, i.e. noise and random impulsive contents, both 

detached to any specific bearing defects. In addition, the 

periodic portion of the signal, which is associated to faults is 

enhanced. 

The output is the AC, which moves in an extra diagnosis 

process than possible with the original outputs of MODWPT. 

In fact, impulsive noise, which ineffectively assigns a high 

kurtosis value to a signal, can generally be eliminated.  

Step 3: the main goal of this step is to obtain the appropriate 

frequency band for demodulation. This is important to have 

an efficient bearing diagnosis. So here the kurtosis is 

calculated from the signal resulting from the previous step, 

i.e. the unbiased AC of the squared envelope, for each level 

and frequency band (nodes). Consequently, the kurtosis 

values of all nodes like FK are plotted in a colormap, whose 

colour degree is linked to kurtosis value, and the horizontal 

and vertical axis correspond to the frequency and level of the 

MODWPT decomposition respectively. The concept is 

similar to Kurtogram and this process is based on 

autocorrelation for this reason the authors in [14] propose the 

name “Autogram”  

Step 4: The Fourier Transform is eventually applied to the 

squared envelope of the signal involved to the node chosen in 

the previous step. The mechanical failure frequencies are 

extracted, and the diagnosis is achieved. 

 

2.3 Gini Index 

 
Recently, the Gini Index (GI) is introduced for the feature 

extraction of mechanical fault diagnosis, Miao et al in [15] 

applied GI to replace kurtosis feature to improve the 

traditional Kurtogram. A numerical example introduced in 

[16,17] proved that GI has a raising direction when the 

impulses in the signal increases, yet the maximum value of 

other features (Hoyer measure, L1/L2 norm and kurtosis) 

appears when the signal has a single impulse. So, GI might 

have a better ability to distinguish impulsiveness and 

repetitive transients in the signal compared to other features. 

GI of signal x is defined as follows 

𝐺𝐼 = 1 − 2∑
𝑥(𝑛)
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Where the data x with length N. The vector 

 �⃗� = [𝑥(1)𝑥(2)𝑥(3). . . ]  and the elements are arranged from 

smallest to largest values (ascending order), i.e. 

 𝑥(1) ≤ 𝑥(2) ≤ 𝑥(3) ≤ ⋯ ≤ 𝑥(𝑛). And ‖�⃗�‖1 is the l1 norm of �⃗� 

 

3. Diagnosis results 

The vibration data are measured from high-speed shaft 

bearing installed in real wind turbine generator (S88, Suzlon) 

given by the Green Power Monitoring System (GPMS) in the 

USA more details can be found in ref [8]. 

The data set includes run-to-failure investigation where the 

recording time of vibration data was 6s each day during 50 



days with a high sample rate. In this paper, the authors 

investigate only the last vibration measurements (the 50th 

day) as shown in Fig.2 (a). The shaft speed is 1888 rpm and 

the theoretical failure frequencies referenced to the shaft 

frequency (1888/60=31.4 Hz) are as follows: Ball pass 

Frequency, Inner race “BPFI=9.25”, Ball pass Frequency 

Outer race “BPFO= 6.72”, Fundamental train frequency 

(cage speed) “FTF=0.42” and Ball (roller) Spin Frequency 

“BSF=2.87”. 

 

 
Figure 1: Fast Kurtogram (Bw=3051.75 Hz, 

fc=10681.125Hz) at level 4. 

 
Figure 2: (a) original signal, (b) envelope of the filtered 

signal and (c) Fourier transform of the squared envelope 

(Fast kurtogram) 

 

The proposed approaches (Fast kurtogram, Autogram and the 

Improved Autogram) are applied to the mentioned vibration 

signal in Fig.2 (a). The Fast Kurtogram is shown in Fig.1 the 

maximum value is obtained with center frequency 10681.125 

Hz and bandwidth 3051.75 Hz at level 4. The Fourier 

transform of the squared envelope of the signal associated 

with a node with highest kurtosis is presented in Fig.2 (c) 

where the red dashed lines are first two harmonics of the 

BPFI (290Hz and 580 Hz), this approach is unable to limit 

the influence of non-periodic impulses and noise from raw 

vibration data, which are not linked to any actual mechanical 

faults, so Fast kurtogram isn’t robust for bearing diagnosis in 

this application.  

The Autogram is shown in Fig.3 the maximum value is 

obtained with center frequency 8392.3 Hz and bandwidth 

1525.8 Hz at level 5. The Squared Envelope Spectrum (SES) 

of the signal associated with a node with highest kurtosis is 

presented in Fig.4, where the green dash-dot line is the shaft 

frequency, red dashed lines are first two harmonics of the 

BPFI (290Hz and 580 Hz), and red dotted lines are first order 

modulation sidebands at a shaft speed around the BPFI and 

its harmonics. 

The Improved Autogram has the same algorithm than the 

Autogram but the Gini index is used instead of the kurtosis in 

step 3, as shown in Fig.5 the maximum value is obtained with 

center frequency 10681.125 Hz and bandwidth 3051.75 Hz at 

level 4. The Squared Envelope Spectrum (SES) of the signal 

associated to node with highest Gini Index is presented in 

Fig.6, where the green dash-dot line is the shaft frequency, 

red dashed lines are first two harmonics of the BPFI (290Hz 

and 580 Hz), and red dotted lines are first order modulation 

sidebands at a shaft speed around the BPFI and its harmonics. 

The best diagnosis result is achieved using the Improved 

Autogram where the non-periodic impulses and noise are 

reduced and the periodic impulses related to bearing defects 

are improved compared to the previous approaches. 

 

 
Figure 3: Autogram (Bw = 1525.8, fc = 8392.3) at level 5 

 

 
Figure 4: Squared Envelope Spectrum (Autogram) 

 

 
Figure 5: Improved Autogram (Bw=3051.75 Hz, fc 

=10681.125 Hz) at level 4. 

 
Figure 6: Squared envelope spectrum (Improved Autogram) 



4. Conclusion 
 

This work introduces a recent approach for finding the 

appropriate frequency band demodulation in bearing defect 

diagnosis. Initially, the Fast Kurtogram is applied, but the 

resulting spectral analysis includes many non-periodic 

impulses, leading to a difficult diagnosis task as relevant 

information is drowned out. 

Two versions of the MODWPT are then compared to select 

the most informative frequency band. Both are based on the 

unbiased autocorrelation of the squared envelope of the 

signal, computed to take advantage of the second-order 

cyclostationarity of the failure signal, and reducing the level 

of uncorrelated random noise and enhancing the defects 

linked peaks.  

The main advantage of the Autogram is its ability to reduce 

the impact of non-periodic impulses and noise from raw 

vibration data, which are not linked to any bearing faults. 

Despite the robustness of the Autogram, the improved 

Autogram appears to be more efficient than the mentioned 

approaches in this work due to the use of the Gini index, 

which The Gini index might be more powerful in detecting 

impulsiveness in a signal because it considers the entire 

distribution of the signal, whereas kurtosis only considers the 

tails of the distribution.  

All three approaches have been tested on real vibration 

signals from a wind turbine generator provided by GPMS in 

the USA. 

 

References 

 
[1]  L. Renforth, P. S. Hamer, D. Clark, S. Goodfellow and 

R. Tower, "Continuous, remote on-line partial discharge 
(OLPD) monitoring of HV EX/ATEX motors in the oil 
and gas industry," Industry Applications Society 60th 
Annual Petroleum and Chemical Industry Conference, 
Chicago, IL, USA, 2013, pp. 1-8. 

[2] National Renewable Energy Laboratory, “Report on 
Wind Turbine Subsystem Reliability-A Survey of 
Various Databases”, June, 2013, NREL/PR-5000-59111 

[3] M.S. Darlow, R.H. Badgley, G. Hogg, Application of 
high-frequency resonance techniques for bearing 
diagnostics in helicopter gearboxes, Mechanical 
Technology Inc, Latham NY, 1974-10-01. 

[4] R.B. Randall, J. Antoni, Rolling element bearing 
diagnostics–a tutorial, Mech. Syst. Signal Process. 25 (2) 
(2011) 485–520. 

[5] S.E. kramti, J. Ben Ali, E. Bechhoefer, K. Takrouni, A. 
Darghouthi, M. Sayadi, Toward an online strategy for 
mechanical failure diagnostics inside the wind turbine 
generators based on spectral analysis, Wind Engineering 
2021, vol, 45(4) 782-792. 

[6] J. Antoni, Fast computation of the kurtogram for the 
detection of transient faults, Mech. Syst. Signal Process. 
21 (1) (2007) 108–124. 

[7] Y. Wang, et al., Spectral kurtosis for fault detection, 
diagnosis and prognostics of rotating machines: A 
review with applications, Mech. Syst. Signal Process. 
(2015). 

[8] S.E Kramti, J. Ben Ali, L. Saidi, M. Sayadi, M. 
Bouchouicha, E. Bechhoefer, A neural network 
approach for improved bearing prognostics of wind 
turbine generators, Eur. Phys. J. Appl. Phys. 93, 20901 
(2021). 

[9] Gonzalez de la Rosa, J. J., Sierra-Fernández, J. M., 
Palomares-Salas, J. C., Agüera-Pérez, A., & Jimenez 
Montero, A. (2015). An application of spectral kurtosis 
to separate hybrid power quality events. Energies, 8(9), 
9777-9793. 

[10] J. Antoni, The spectral kurtosis of nonstationary signals: 
formalisation, some properties, and application, in: 12th 
European Signal Processing Conference, Vienna, 
Austria, 2004. 

[11] J. Antoni, R.B. Randall, The spectral kurtosis: 
application to the vibratory surveillance and diagnostics 
of rotating machines, Mech. Syst. Signal Process. 20 (2) 
(2006)308–331. 

[12] J. Antoni, Fast computation of the kurtogram for the 
detection of transient faults, Mech. Syst. Signal 
Process.21(1) (2007)108–124. 

[13] A.T. Walden, Wavelet analysis of discrete time series, 
in: European Congress of Mathematics, Springer, 2001, 
pp. 627–641. 

[14] A. Moshrefzadeh, A. Fasana, The Autogram: An 
effective approach for selecting the optimal 
demodulation band in rolling element bearings 
diagnosis, Mech. Syst Signal Process 105 (2018) 294-
318. 

[15] Y. Miao, J. Wang, B. Zhang, H. Li, Practical framework 
of Gini index in the application of machinery fault 
feature extraction, Mech. Syst. Signal Process 165 
(2022). 

[16] Y. Miao, M. Zhao, J. Lin, Improvement of kurtosis-
guided-grams via Gini Index for bearing fault feature 
identification, Measurement Science and Technology 
28-2017. 

[17] CHEN, Bingyan, SONG, Dongli, GU, Fengshou, et 
al. A full generalization of the Gini index for bearing 
condition monitoring. Mechanical Systems and Signal 
Processing, 2023, vol. 188, p. 109998.

 


	2.1  Spectral Kurtosis and Kurtogram

