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Résumé – Un imageur sans lentille est un dispositif de microscopie effectuant des mesures holographiques. Ce dernier de par son
large champ de vue permet d’imager des cultures cellulaire sur une surface de 30 mm² sur plusieurs jours. Ces dernières années,
l’analyse d’image a rapidement évolué en profitant des avancées des algorithmes par apprentissage. Couplés à un imageur sans
lentille ces algorithmes permettent d’effectuer des mesures quantitatives sur des cellules uniques au sein de larges populations
(>10.000). Nous proposons ici une solution intégrant l’analyse morphologique et temporelle, afin d’extraire la description d’une
culture de cellules HeLa. Notre approche permet de mesurer automatiquement des paramètres liés aux cycles de division cellulaire.

Abstract – A lens-free microscope is a device performing holographic measurements. Its large field of view allows one to image
cell cultures on a surface of 30 mm² over several days. In recent years, image analysis has evolved rapidly by taking advantage of
advances in learning algorithms. Coupled to lens-free imaging, these algorithms enable wide field quantitative measurements on
single cells within large populations (>10.000). We propose here a solution integrating morphological and temporal analysis to
gather the description of a HeLa cell culture. Our approach allows to measure metrics related to cell division cycles.

1 Introduction
Recent advances in bioimaging have allowed the visual-

ization and the quantification of novel spatial and temporal
cellular features, thus increasing exponentially the amount of
available data for analysis [1]. These requirements translate
into the need for more complex imaging analysis pipelines
to quantify the dynamics present in the biological models.
Deep Learning (DL) methods have been shown to be capable
of extracting cellular features and often outperform standard
image-processing strategies in terms of performance and com-
putational speed [2]. The most diffused algorithms for image
analysis are currently Convolutionnal Neural Network (CNN),
which learns how to extract targeted parameters directly from
raw data by using multiple linear and/or non-linear transforma-
tions [3]. Typical tasks now performed by CNNs include image
segmentation, cellular tracking, quantification of features, and
image classification [1]. Recently, generalist pre-trained mod-
els have been used as analysis tools to facilitate image analysis
and cell detection [4, 5]. While these models are generalist, i.e.
trained on large databases of highly variable data, they need
to be adapted to a specific dataset with a human-in-the-loop
pipeline [6].

We present here a novel pipeline that performs single-cell
analysis and feature quantification on time-lapses of lens-free
microscopy images. The challenge lies in adapting neural net-
works solution to this modality, the acquisitions being not well
resolved and the field of view being ten folds larger in com-
parison with the microscopy techniques. Feature extraction
is based on algorithms for cell segmentation [5] and tracking.
To improve the segmentation algorithm, a human-in-the loop

approach [6] has been used to adapt to the data to be analysed.
Different types of features are extracted, including morphol-
ogy, kinetics or cell-to-cell division metrics. The large field
of view of the lens-free microscope enables the analysis of
thousands of cells per frame. In addition, the use of time-
lapses scales the number of cell instances under analysis in
the million range and cell tracking enables life-long metric
extraction for cell-division cycles. This proof-of-concept has
been conducted on a standard cell culture model to build up a
gold reference for more heterogeneous cell culture conditions.

2 Materials and Methods
This section presents the methods proposed to analyse a cell

culture time-lapse, as well as the cell line used for experiments.

2.1 HeLa Cell Culture
HeLa cells were cultured in high glucose DMEM supple-

mented with GlutaMAX, pyruvate, 10% calf serum (Gibco)
and 1% penicillin/streptomycin (Invitrogen). Hela is an im-
mortalized cell line derived from cervical cancer cells.

2.2 Lens-free Imaging
Images were acquired in a cell culture incubator every 10

minutes for three days on a lens-free microscope (Iprasense,
FR) as previously described [7]. In brief, the microscope
features an Red Green Blue (RGB) LED source that directly
illuminates the sample located on a CMOS detector (3840 x
2748 pixels of 1.67µm pitch, for a total imaging area of 29.4
mm²). The lens-free setup records intensity-only measure-
ments at the sensor plane. Three different diffraction patterns
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RGB are then processed to reconstruct Optical Path Difference
(OPD) and absorption images [8]. This process is based on an
inverse problem optimization improved by a CNN iteration.
Data fidelity is guaranteed by a second inverse problem opti-
mization using the prediction from the CNN as initialization
of the algorithms. The process can be further accelerated to 3
s per image by performing CNN-based phase unwrapping [7].
In Figure 2a the top left quarter of the image is the output of
the lens-free image reconstruction. Measurements of dry mass
are acquired with a precision of approximately 35 pg [9].

2.3 Analysis Pipeline
The analysis pipeline consists of two parts. First a segmen-

tation pipeline is applied frame by frame to detect individual
cells. Second, a tracking algorithm links detections related to
cell instances. Segmentation masks and temporal tracks are
analysed to obtain morphological and temporal metrics of the
entire cell population at single-cell level.

Detection/Segmentation Cellpose [5] has been used for
cell detection and segmentation. Cellpose is a deep neural
network for segmentation. Its architecture has a U-Net style
and contains residual blocks. We used the publicly released
code for running Cellpose. Here, we leveraged the human-in-
the-loop faculty of the package to train a segmentation model
dedicated to our data. The fine-tuning process started from
the predictions of the "Cyto" pre-trained model of Cellpose.
256×256 pixels patches were extracted from the images of the
dataset to be segmented. 5 images were picked at different
cell concentrations in the range of 100-500 cells/mm² (em-
pirically selected limits to avoid high cell concentrations and
superposition of the cell borders). The patches were then used
as training samples in the Cellpose human-in-the-loop inter-
face. Precision and recall were measured at each training step.
The training process stopped when no detection improvements
were observed. The ground-truth positions were manually gen-
erated using the CellCounter plugin of FIJI [10]. At the end
of the training, 0.99 precision and recall scores are reached on
an evaluation set which contains 1320 cells at a density of 500
cells/mm². The ground-truth masks for segmentation evalua-
tion were outlined manually using the Cellpose interface. The
average Intersection over Union (IoU) on an evaluation set of
221 cells at a density of 500 cells/mm² is 0.8.

Once the model is trained, segmentation masks for all the
frames of the time-lapse are predicted. Figure 2a top-right quar-
ter displays the masks predicted by the segmentation model.
From these predictions different features are measured directly
from the masks including: centroid coordinates, dry mass, area,
thickness, axis lengths. The major and minor axis lengths are
measured by fitting an ellipse to the cell masks. At this point,
frame-wise features can also be measured to obtain global and
neighbouring cell densities.

Figure 1 displays box-plots representing the errors of the
analysis pipeline. Cell features are overall under-estimated, i.e.
predicted values tends to be smaller than ground-truths. Indeed,
the main drawback of the analysis is the correct segmentation
of cell protrusions. Interestingly, Figure 1 shows zero 5th
to 95th percentil errors for thickness analysis. Thickness is
calculated from the maximum value of the cell-masked OPD
which often lies in the center of the mask, leading to measured
values that perfectly match the ground-truth.

Tracking Once the masks of the whole time-lapse are pre-
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Figure 1 – Evaluation of measurements errors. Values are the
difference between features measured from manual annotation
and measured from the fine-tuned Cellpose model. The box-
plots display from bottom to top: the 5th, 25th, 75th and 95th
percentils of errors. The notch represents the median value.

dicted, the tracking algorithm links individual instances cor-
responding to the same cell. For this purpose, the TrackPy
library was used [11]. TrackPy is a Python implementation of
the Crocker–Grier algorithm [12]. The tracking was computed
with respect to spatial coordinates from one frame to the next.
A threshold of D = 23µm has been applied to the pairing
distance in order to limit cell displacements between consecu-
tive frames. The threshold has been selected empirically to be
as large as the maximum displacement observed in the whole
time-lapse. A gap-closing parameter of 3 frames (C = 3) was
used to link individual cell instances. This parameter avoids
the tracking to terminate when an occlusion occurs, i.e. when
a cell detection is missing on individual frames. The pairing
is constrained by a threshold ∆DM = 150pg on the cell dry
mass evolution which enables track splitting when cell division
occurs. The cell dry mass is expected, indeed, to halve as a
cell divides.

The track splitting at division events makes it possible to
gather cell-division cycle features like, initial and final dry
mass, the time between consecutive divisions, and cell dis-
placements. For this purpose, only complete cell-division
cycles (i.e. from one cell division to the next) were analysed,
therefore excluding: i) incomplete tracks starting or lasting
outside the imaging time, and ii) tracks containing detections
closer than 25µm from the frame border (to avoid cells enter-
ing and exiting the field of view). A threshold of 5 hours has
been applied to the data, according to published distributions
on cell-division duration related to different cell lines [9].

3 Experiments
This section presents the analysis of a HeLa cell culture us-

ing the proposed method. The analysis is made on a time-lapse
of 436 images of resolution 3840 x 2748 acquired with a time
step of 10 minutes. This time-lapse represents an acquisition
of more than three days. At the beginning of the acquisition,
the field of view includes 1700+ cells, whose consecutive divi-
sions led to 22000+ cells in the end. Overall, we were able to
detect around 4 million instances in this time-lapse.

3.1 Population Analysis
To retrieve the morphological information, first we gathered

together all the features extracted from the cell segmentation
masks. Figure 2a shows a full frame image with colour-coded
masks of measured areas and dry masses (bottom-left and right
quarters, respectively). The analysis of individual morpholog-

2



500µm

0.0

0.2

0.4

O
PD

200

600

1000

D
ry

 M
as

s 
(p

g)

100

800

1500

A
re

a 
(µ

m
²)

(a)

0 10 20 30 40 50 60 70

Time (hours)

5000

10000

15000

20000

N
um

be
r 

of
 c

el
ls

0 250 500 750 1000 1250 1500 1750 2000

Area (µm²)

C
ou

nt

0 200 400 600 800 1000

Dry Mass (pg)

C
ou

nt

0 5 10 15 20 25 30 35

Thickness (µm)

C
ou

nt

0 10 20 30 40 50

Minor Axis Length (µm)

C
ou

nt

0 20 40 60 80 100

Major Axis Length (µm)

C
ou

nt

(b)

Figure 2 – (a) A full field frame extracted from time t = 21h 40m. The frame contains 4000+ cells corresponding to a cell density
of 135 cells/mm². Top-left: reconstructed phase image, i.e. the OPD; top-right: binary output of segmentation; bottom-left:
segmentation masks coding the measured area of the underlying cell; bottom-right: segmentation masks coding the measured
dry mass of the underlying cell. (b) Single-cell analysis of a complete time-lapse lasting 70+ hours. 4M+ detection instances are
measured.
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Figure 3 – (a) Display of the cell cycle progression at 6 different times for four different cells. The cursors show the position of
each cell of interest (identified by the color of the cursor). (b) Dry mass, area, thickness and major axis length, measured by our
method, versus time. The colors in each curve correspond to the cells as identified in (a). (c) Cycle-wise analysis. From top to
bottom: the first plot displays the histograms of cell dry mass measured at the beginning and at the end of the cycles. The second is
the histogram of cycle duration. The third plot displays the histogram of displacement sum through cell life, i.e. total displacement
during a cell cycle. The last plot shows the ratio of cells under analysis (i.e. in a complete cycle) with respect to the number of
detected cells.
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ical features is depicted in Figure 2b. Overall, the data are
normally distributed over the entire time-lapse, therefore show-
ing a good homogeneity of the cell population. As expected,
the cell number increased exponentially over the analysed
time-lapse. It is interesting to see that the analysis is precise
enough to highlight the difference in shape between mitotic
cells (spherical shape) and adherent cells. This can be deduced
from the 3 peaks appearing in the thickness analysis. First
the major peak corresponds to the thickness of adherent cells.
Then the two peaks at 21µm and 25µm coincide with the
thicknesses of cells, right before and after mitotic event, re-
spectively. These values can also be observed in Figure 3b, the
second row with 21µm and 25µm thicknesses at the beginning
and end of cycles, respectively. Interestingly, the same obser-
vation applies to major axis length measurements with peaks
at 20 and 23µm. These two values are close to the mean of
the minor axis lengths, representing indeed the rounded-shape
cell population.

3.2 Temporal Analysis
Our tool makes it possible to go further than a simple popu-

lation analysis. In fact, we are able to track the cells in time and
then conduct temporal analysis, population-wise or division
cycle-wise.

Figure 3a shows image cropped from four different cell-
division cycles while Figure 3b displays the corresponding
features monitored over time. The display of each cell at
six different positions shows that the cycles are well detected
from mitosis to mitosis (i.e. where a cell goes under spherical
configuration). As the cell grows, the monitoring of the cell
features confirms the increasing of dry mass over time, and
the correct definition of the mitotic events (corresponding to a
decrease in the cell surface area, increase of the cell thickness
and decrease of the major axis length).

Figure 3c shows the quantification of different cell-division
based features (namely the initial and final dry mass, the cell
cycle length and the total cell displacement). These graphs de-
scribe the overall cell population, giving important information
on the homogeneity of the cell culture. The initial dry mass
roughly doubled over the cell-division cycle. This behaviour is
in good agreement with previously published analysis from im-
ages acquired with a high resolution setup [13]. We observed
a mean cell-division duration of 18.5 hours, in fair agreement
with other published data on HeLa cells [9]. Importantly, we
can also estimate the ratio of the number of cells detected at
each point of the time-lapse and the number of cells under
complete-cycle analysis (bottom graph in Figure 3c). Overall,
the ratio of cells under analysis is over 0.88, which indicates
that the greater majority of the cells have been analysed.

4 Conclusion
This paper presents a method designed for the quantitative

analysis of cell culture time-lapses acquired using a lens-free
microscope. The method has been applied to a HeLa cell cul-
ture as a test experiment. Importantly, we show the extraction
of morphological and temporal features on more than 4 million
cells, gathering information on the homogeneity of the culture.
Overall, the data shows that the different extracted features
are maintained over many generations, despite the biological
variability that can occur over different cell cycles.

This work opens up novel directions for the analysis of
cell behaviour for different cell types and morphology. The
features extracted by the proposed pipeline may be used as
training sets for algorithms predicting directly cell quantitative
features from phase images. The large number of measurement
points opens up the prospect of graph neural network modeling
of cell cultures.
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